WSL2-Linux-Kernel/drivers/gpio/gpio-mvebu.c

740 строки
21 KiB
C
Исходник Обычный вид История

/*
* GPIO driver for Marvell SoCs
*
* Copyright (C) 2012 Marvell
*
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
* Andrew Lunn <andrew@lunn.ch>
* Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*
* This driver is a fairly straightforward GPIO driver for the
* complete family of Marvell EBU SoC platforms (Orion, Dove,
* Kirkwood, Discovery, Armada 370/XP). The only complexity of this
* driver is the different register layout that exists between the
* non-SMP platforms (Orion, Dove, Kirkwood, Armada 370) and the SMP
* platforms (MV78200 from the Discovery family and the Armada
* XP). Therefore, this driver handles three variants of the GPIO
* block:
* - the basic variant, called "orion-gpio", with the simplest
* register set. Used on Orion, Dove, Kirkwoord, Armada 370 and
* non-SMP Discovery systems
* - the mv78200 variant for MV78200 Discovery systems. This variant
* turns the edge mask and level mask registers into CPU0 edge
* mask/level mask registers, and adds CPU1 edge mask/level mask
* registers.
* - the armadaxp variant for Armada XP systems. This variant keeps
* the normal cause/edge mask/level mask registers when the global
* interrupts are used, but adds per-CPU cause/edge mask/level mask
* registers n a separate memory area for the per-CPU GPIO
* interrupts.
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/irqdomain.h>
#include <linux/io.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/pinctrl/consumer.h>
/*
* GPIO unit register offsets.
*/
#define GPIO_OUT_OFF 0x0000
#define GPIO_IO_CONF_OFF 0x0004
#define GPIO_BLINK_EN_OFF 0x0008
#define GPIO_IN_POL_OFF 0x000c
#define GPIO_DATA_IN_OFF 0x0010
#define GPIO_EDGE_CAUSE_OFF 0x0014
#define GPIO_EDGE_MASK_OFF 0x0018
#define GPIO_LEVEL_MASK_OFF 0x001c
/* The MV78200 has per-CPU registers for edge mask and level mask */
#define GPIO_EDGE_MASK_MV78200_OFF(cpu) ((cpu) ? 0x30 : 0x18)
#define GPIO_LEVEL_MASK_MV78200_OFF(cpu) ((cpu) ? 0x34 : 0x1C)
/* The Armada XP has per-CPU registers for interrupt cause, interrupt
* mask and interrupt level mask. Those are relative to the
* percpu_membase. */
#define GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu) ((cpu) * 0x4)
#define GPIO_EDGE_MASK_ARMADAXP_OFF(cpu) (0x10 + (cpu) * 0x4)
#define GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu) (0x20 + (cpu) * 0x4)
#define MVEBU_GPIO_SOC_VARIANT_ORION 0x1
#define MVEBU_GPIO_SOC_VARIANT_MV78200 0x2
#define MVEBU_GPIO_SOC_VARIANT_ARMADAXP 0x3
#define MVEBU_MAX_GPIO_PER_BANK 32
struct mvebu_gpio_chip {
struct gpio_chip chip;
spinlock_t lock;
void __iomem *membase;
void __iomem *percpu_membase;
unsigned int irqbase;
struct irq_domain *domain;
int soc_variant;
};
/*
* Functions returning addresses of individual registers for a given
* GPIO controller.
*/
static inline void __iomem *mvebu_gpioreg_out(struct mvebu_gpio_chip *mvchip)
{
return mvchip->membase + GPIO_OUT_OFF;
}
static inline void __iomem *mvebu_gpioreg_blink(struct mvebu_gpio_chip *mvchip)
{
return mvchip->membase + GPIO_BLINK_EN_OFF;
}
static inline void __iomem *mvebu_gpioreg_io_conf(struct mvebu_gpio_chip *mvchip)
{
return mvchip->membase + GPIO_IO_CONF_OFF;
}
static inline void __iomem *mvebu_gpioreg_in_pol(struct mvebu_gpio_chip *mvchip)
{
return mvchip->membase + GPIO_IN_POL_OFF;
}
static inline void __iomem *mvebu_gpioreg_data_in(struct mvebu_gpio_chip *mvchip)
{
return mvchip->membase + GPIO_DATA_IN_OFF;
}
static inline void __iomem *mvebu_gpioreg_edge_cause(struct mvebu_gpio_chip *mvchip)
{
int cpu;
switch (mvchip->soc_variant) {
case MVEBU_GPIO_SOC_VARIANT_ORION:
case MVEBU_GPIO_SOC_VARIANT_MV78200:
return mvchip->membase + GPIO_EDGE_CAUSE_OFF;
case MVEBU_GPIO_SOC_VARIANT_ARMADAXP:
cpu = smp_processor_id();
return mvchip->percpu_membase + GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu);
default:
BUG();
}
}
static inline void __iomem *mvebu_gpioreg_edge_mask(struct mvebu_gpio_chip *mvchip)
{
int cpu;
switch (mvchip->soc_variant) {
case MVEBU_GPIO_SOC_VARIANT_ORION:
return mvchip->membase + GPIO_EDGE_MASK_OFF;
case MVEBU_GPIO_SOC_VARIANT_MV78200:
cpu = smp_processor_id();
return mvchip->membase + GPIO_EDGE_MASK_MV78200_OFF(cpu);
case MVEBU_GPIO_SOC_VARIANT_ARMADAXP:
cpu = smp_processor_id();
return mvchip->percpu_membase + GPIO_EDGE_MASK_ARMADAXP_OFF(cpu);
default:
BUG();
}
}
static void __iomem *mvebu_gpioreg_level_mask(struct mvebu_gpio_chip *mvchip)
{
int cpu;
switch (mvchip->soc_variant) {
case MVEBU_GPIO_SOC_VARIANT_ORION:
return mvchip->membase + GPIO_LEVEL_MASK_OFF;
case MVEBU_GPIO_SOC_VARIANT_MV78200:
cpu = smp_processor_id();
return mvchip->membase + GPIO_LEVEL_MASK_MV78200_OFF(cpu);
case MVEBU_GPIO_SOC_VARIANT_ARMADAXP:
cpu = smp_processor_id();
return mvchip->percpu_membase + GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu);
default:
BUG();
}
}
/*
* Functions implementing the gpio_chip methods
*/
static int mvebu_gpio_request(struct gpio_chip *chip, unsigned pin)
{
return pinctrl_request_gpio(chip->base + pin);
}
static void mvebu_gpio_free(struct gpio_chip *chip, unsigned pin)
{
pinctrl_free_gpio(chip->base + pin);
}
static void mvebu_gpio_set(struct gpio_chip *chip, unsigned pin, int value)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
unsigned long flags;
u32 u;
spin_lock_irqsave(&mvchip->lock, flags);
u = readl_relaxed(mvebu_gpioreg_out(mvchip));
if (value)
u |= 1 << pin;
else
u &= ~(1 << pin);
writel_relaxed(u, mvebu_gpioreg_out(mvchip));
spin_unlock_irqrestore(&mvchip->lock, flags);
}
static int mvebu_gpio_get(struct gpio_chip *chip, unsigned pin)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
u32 u;
if (readl_relaxed(mvebu_gpioreg_io_conf(mvchip)) & (1 << pin)) {
u = readl_relaxed(mvebu_gpioreg_data_in(mvchip)) ^
readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
} else {
u = readl_relaxed(mvebu_gpioreg_out(mvchip));
}
return (u >> pin) & 1;
}
static void mvebu_gpio_blink(struct gpio_chip *chip, unsigned pin, int value)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
unsigned long flags;
u32 u;
spin_lock_irqsave(&mvchip->lock, flags);
u = readl_relaxed(mvebu_gpioreg_blink(mvchip));
if (value)
u |= 1 << pin;
else
u &= ~(1 << pin);
writel_relaxed(u, mvebu_gpioreg_blink(mvchip));
spin_unlock_irqrestore(&mvchip->lock, flags);
}
static int mvebu_gpio_direction_input(struct gpio_chip *chip, unsigned pin)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
unsigned long flags;
int ret;
u32 u;
/* Check with the pinctrl driver whether this pin is usable as
* an input GPIO */
ret = pinctrl_gpio_direction_input(chip->base + pin);
if (ret)
return ret;
spin_lock_irqsave(&mvchip->lock, flags);
u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip));
u |= 1 << pin;
writel_relaxed(u, mvebu_gpioreg_io_conf(mvchip));
spin_unlock_irqrestore(&mvchip->lock, flags);
return 0;
}
static int mvebu_gpio_direction_output(struct gpio_chip *chip, unsigned pin,
int value)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
unsigned long flags;
int ret;
u32 u;
/* Check with the pinctrl driver whether this pin is usable as
* an output GPIO */
ret = pinctrl_gpio_direction_output(chip->base + pin);
if (ret)
return ret;
mvebu_gpio_blink(chip, pin, 0);
mvebu_gpio_set(chip, pin, value);
spin_lock_irqsave(&mvchip->lock, flags);
u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip));
u &= ~(1 << pin);
writel_relaxed(u, mvebu_gpioreg_io_conf(mvchip));
spin_unlock_irqrestore(&mvchip->lock, flags);
return 0;
}
static int mvebu_gpio_to_irq(struct gpio_chip *chip, unsigned pin)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
return irq_create_mapping(mvchip->domain, pin);
}
/*
* Functions implementing the irq_chip methods
*/
static void mvebu_gpio_irq_ack(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct mvebu_gpio_chip *mvchip = gc->private;
u32 mask = ~(1 << (d->irq - gc->irq_base));
irq_gc_lock(gc);
writel_relaxed(mask, mvebu_gpioreg_edge_cause(mvchip));
irq_gc_unlock(gc);
}
static void mvebu_gpio_edge_irq_mask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct mvebu_gpio_chip *mvchip = gc->private;
u32 mask = 1 << (d->irq - gc->irq_base);
irq_gc_lock(gc);
gc->mask_cache &= ~mask;
writel_relaxed(gc->mask_cache, mvebu_gpioreg_edge_mask(mvchip));
irq_gc_unlock(gc);
}
static void mvebu_gpio_edge_irq_unmask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct mvebu_gpio_chip *mvchip = gc->private;
u32 mask = 1 << (d->irq - gc->irq_base);
irq_gc_lock(gc);
gc->mask_cache |= mask;
writel_relaxed(gc->mask_cache, mvebu_gpioreg_edge_mask(mvchip));
irq_gc_unlock(gc);
}
static void mvebu_gpio_level_irq_mask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct mvebu_gpio_chip *mvchip = gc->private;
u32 mask = 1 << (d->irq - gc->irq_base);
irq_gc_lock(gc);
gc->mask_cache &= ~mask;
writel_relaxed(gc->mask_cache, mvebu_gpioreg_level_mask(mvchip));
irq_gc_unlock(gc);
}
static void mvebu_gpio_level_irq_unmask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct mvebu_gpio_chip *mvchip = gc->private;
u32 mask = 1 << (d->irq - gc->irq_base);
irq_gc_lock(gc);
gc->mask_cache |= mask;
writel_relaxed(gc->mask_cache, mvebu_gpioreg_level_mask(mvchip));
irq_gc_unlock(gc);
}
/*****************************************************************************
* MVEBU GPIO IRQ
*
* GPIO_IN_POL register controls whether GPIO_DATA_IN will hold the same
* value of the line or the opposite value.
*
* Level IRQ handlers: DATA_IN is used directly as cause register.
* Interrupt are masked by LEVEL_MASK registers.
* Edge IRQ handlers: Change in DATA_IN are latched in EDGE_CAUSE.
* Interrupt are masked by EDGE_MASK registers.
* Both-edge handlers: Similar to regular Edge handlers, but also swaps
* the polarity to catch the next line transaction.
* This is a race condition that might not perfectly
* work on some use cases.
*
* Every eight GPIO lines are grouped (OR'ed) before going up to main
* cause register.
*
* EDGE cause mask
* data-in /--------| |-----| |----\
* -----| |----- ---- to main cause reg
* X \----------------| |----/
* polarity LEVEL mask
*
****************************************************************************/
static int mvebu_gpio_irq_set_type(struct irq_data *d, unsigned int type)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct irq_chip_type *ct = irq_data_get_chip_type(d);
struct mvebu_gpio_chip *mvchip = gc->private;
int pin;
u32 u;
pin = d->hwirq;
u = readl_relaxed(mvebu_gpioreg_io_conf(mvchip)) & (1 << pin);
if (!u) {
return -EINVAL;
}
type &= IRQ_TYPE_SENSE_MASK;
if (type == IRQ_TYPE_NONE)
return -EINVAL;
/* Check if we need to change chip and handler */
if (!(ct->type & type))
if (irq_setup_alt_chip(d, type))
return -EINVAL;
/*
* Configure interrupt polarity.
*/
switch (type) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_LEVEL_HIGH:
u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
u &= ~(1 << pin);
writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip));
break;
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_LEVEL_LOW:
u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
u |= 1 << pin;
writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip));
break;
case IRQ_TYPE_EDGE_BOTH: {
u32 v;
v = readl_relaxed(mvebu_gpioreg_in_pol(mvchip)) ^
readl_relaxed(mvebu_gpioreg_data_in(mvchip));
/*
* set initial polarity based on current input level
*/
u = readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
if (v & (1 << pin))
u |= 1 << pin; /* falling */
else
u &= ~(1 << pin); /* rising */
writel_relaxed(u, mvebu_gpioreg_in_pol(mvchip));
break;
}
}
return 0;
}
static void mvebu_gpio_irq_handler(unsigned int irq, struct irq_desc *desc)
{
struct mvebu_gpio_chip *mvchip = irq_get_handler_data(irq);
u32 cause, type;
int i;
if (mvchip == NULL)
return;
cause = readl_relaxed(mvebu_gpioreg_data_in(mvchip)) &
readl_relaxed(mvebu_gpioreg_level_mask(mvchip));
cause |= readl_relaxed(mvebu_gpioreg_edge_cause(mvchip)) &
readl_relaxed(mvebu_gpioreg_edge_mask(mvchip));
for (i = 0; i < mvchip->chip.ngpio; i++) {
int irq;
irq = mvchip->irqbase + i;
if (!(cause & (1 << i)))
continue;
type = irq_get_trigger_type(irq);
if ((type & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) {
/* Swap polarity (race with GPIO line) */
u32 polarity;
polarity = readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
polarity ^= 1 << i;
writel_relaxed(polarity, mvebu_gpioreg_in_pol(mvchip));
}
generic_handle_irq(irq);
}
}
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
static void mvebu_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
{
struct mvebu_gpio_chip *mvchip =
container_of(chip, struct mvebu_gpio_chip, chip);
u32 out, io_conf, blink, in_pol, data_in, cause, edg_msk, lvl_msk;
int i;
out = readl_relaxed(mvebu_gpioreg_out(mvchip));
io_conf = readl_relaxed(mvebu_gpioreg_io_conf(mvchip));
blink = readl_relaxed(mvebu_gpioreg_blink(mvchip));
in_pol = readl_relaxed(mvebu_gpioreg_in_pol(mvchip));
data_in = readl_relaxed(mvebu_gpioreg_data_in(mvchip));
cause = readl_relaxed(mvebu_gpioreg_edge_cause(mvchip));
edg_msk = readl_relaxed(mvebu_gpioreg_edge_mask(mvchip));
lvl_msk = readl_relaxed(mvebu_gpioreg_level_mask(mvchip));
for (i = 0; i < chip->ngpio; i++) {
const char *label;
u32 msk;
bool is_out;
label = gpiochip_is_requested(chip, i);
if (!label)
continue;
msk = 1 << i;
is_out = !(io_conf & msk);
seq_printf(s, " gpio-%-3d (%-20.20s)", chip->base + i, label);
if (is_out) {
seq_printf(s, " out %s %s\n",
out & msk ? "hi" : "lo",
blink & msk ? "(blink )" : "");
continue;
}
seq_printf(s, " in %s (act %s) - IRQ",
(data_in ^ in_pol) & msk ? "hi" : "lo",
in_pol & msk ? "lo" : "hi");
if (!((edg_msk | lvl_msk) & msk)) {
seq_printf(s, " disabled\n");
continue;
}
if (edg_msk & msk)
seq_printf(s, " edge ");
if (lvl_msk & msk)
seq_printf(s, " level");
seq_printf(s, " (%s)\n", cause & msk ? "pending" : "clear ");
}
}
#else
#define mvebu_gpio_dbg_show NULL
#endif
static struct of_device_id mvebu_gpio_of_match[] = {
{
.compatible = "marvell,orion-gpio",
.data = (void *) MVEBU_GPIO_SOC_VARIANT_ORION,
},
{
.compatible = "marvell,mv78200-gpio",
.data = (void *) MVEBU_GPIO_SOC_VARIANT_MV78200,
},
{
.compatible = "marvell,armadaxp-gpio",
.data = (void *) MVEBU_GPIO_SOC_VARIANT_ARMADAXP,
},
{
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, mvebu_gpio_of_match);
static int mvebu_gpio_probe(struct platform_device *pdev)
{
struct mvebu_gpio_chip *mvchip;
const struct of_device_id *match;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
struct clk *clk;
unsigned int ngpios;
int soc_variant;
int i, cpu, id;
match = of_match_device(mvebu_gpio_of_match, &pdev->dev);
if (match)
soc_variant = (int) match->data;
else
soc_variant = MVEBU_GPIO_SOC_VARIANT_ORION;
mvchip = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_gpio_chip), GFP_KERNEL);
if (!mvchip) {
dev_err(&pdev->dev, "Cannot allocate memory\n");
return -ENOMEM;
}
if (of_property_read_u32(pdev->dev.of_node, "ngpios", &ngpios)) {
dev_err(&pdev->dev, "Missing ngpios OF property\n");
return -ENODEV;
}
id = of_alias_get_id(pdev->dev.of_node, "gpio");
if (id < 0) {
dev_err(&pdev->dev, "Couldn't get OF id\n");
return id;
}
clk = devm_clk_get(&pdev->dev, NULL);
/* Not all SoCs require a clock.*/
if (!IS_ERR(clk))
clk_prepare_enable(clk);
mvchip->soc_variant = soc_variant;
mvchip->chip.label = dev_name(&pdev->dev);
mvchip->chip.dev = &pdev->dev;
mvchip->chip.request = mvebu_gpio_request;
mvchip->chip.free = mvebu_gpio_free;
mvchip->chip.direction_input = mvebu_gpio_direction_input;
mvchip->chip.get = mvebu_gpio_get;
mvchip->chip.direction_output = mvebu_gpio_direction_output;
mvchip->chip.set = mvebu_gpio_set;
mvchip->chip.to_irq = mvebu_gpio_to_irq;
mvchip->chip.base = id * MVEBU_MAX_GPIO_PER_BANK;
mvchip->chip.ngpio = ngpios;
mvchip->chip.can_sleep = 0;
mvchip->chip.of_node = np;
mvchip->chip.dbg_show = mvebu_gpio_dbg_show;
spin_lock_init(&mvchip->lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mvchip->membase = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mvchip->membase))
return PTR_ERR(mvchip->membase);
/* The Armada XP has a second range of registers for the
* per-CPU registers */
if (soc_variant == MVEBU_GPIO_SOC_VARIANT_ARMADAXP) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
mvchip->percpu_membase = devm_ioremap_resource(&pdev->dev,
res);
if (IS_ERR(mvchip->percpu_membase))
return PTR_ERR(mvchip->percpu_membase);
}
/*
* Mask and clear GPIO interrupts.
*/
switch (soc_variant) {
case MVEBU_GPIO_SOC_VARIANT_ORION:
writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF);
writel_relaxed(0, mvchip->membase + GPIO_EDGE_MASK_OFF);
writel_relaxed(0, mvchip->membase + GPIO_LEVEL_MASK_OFF);
break;
case MVEBU_GPIO_SOC_VARIANT_MV78200:
writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF);
for (cpu = 0; cpu < 2; cpu++) {
writel_relaxed(0, mvchip->membase +
GPIO_EDGE_MASK_MV78200_OFF(cpu));
writel_relaxed(0, mvchip->membase +
GPIO_LEVEL_MASK_MV78200_OFF(cpu));
}
break;
case MVEBU_GPIO_SOC_VARIANT_ARMADAXP:
writel_relaxed(0, mvchip->membase + GPIO_EDGE_CAUSE_OFF);
writel_relaxed(0, mvchip->membase + GPIO_EDGE_MASK_OFF);
writel_relaxed(0, mvchip->membase + GPIO_LEVEL_MASK_OFF);
for (cpu = 0; cpu < 4; cpu++) {
writel_relaxed(0, mvchip->percpu_membase +
GPIO_EDGE_CAUSE_ARMADAXP_OFF(cpu));
writel_relaxed(0, mvchip->percpu_membase +
GPIO_EDGE_MASK_ARMADAXP_OFF(cpu));
writel_relaxed(0, mvchip->percpu_membase +
GPIO_LEVEL_MASK_ARMADAXP_OFF(cpu));
}
break;
default:
BUG();
}
gpiochip_add(&mvchip->chip);
/* Some gpio controllers do not provide irq support */
if (!of_irq_count(np))
return 0;
/* Setup the interrupt handlers. Each chip can have up to 4
* interrupt handlers, with each handler dealing with 8 GPIO
* pins. */
for (i = 0; i < 4; i++) {
int irq;
irq = platform_get_irq(pdev, i);
if (irq < 0)
continue;
irq_set_handler_data(irq, mvchip);
irq_set_chained_handler(irq, mvebu_gpio_irq_handler);
}
mvchip->irqbase = irq_alloc_descs(-1, 0, ngpios, -1);
if (mvchip->irqbase < 0) {
dev_err(&pdev->dev, "no irqs\n");
return -ENOMEM;
}
gc = irq_alloc_generic_chip("mvebu_gpio_irq", 2, mvchip->irqbase,
mvchip->membase, handle_level_irq);
if (!gc) {
dev_err(&pdev->dev, "Cannot allocate generic irq_chip\n");
return -ENOMEM;
}
gc->private = mvchip;
ct = &gc->chip_types[0];
ct->type = IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW;
ct->chip.irq_mask = mvebu_gpio_level_irq_mask;
ct->chip.irq_unmask = mvebu_gpio_level_irq_unmask;
ct->chip.irq_set_type = mvebu_gpio_irq_set_type;
ct->chip.name = mvchip->chip.label;
ct = &gc->chip_types[1];
ct->type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
ct->chip.irq_ack = mvebu_gpio_irq_ack;
ct->chip.irq_mask = mvebu_gpio_edge_irq_mask;
ct->chip.irq_unmask = mvebu_gpio_edge_irq_unmask;
ct->chip.irq_set_type = mvebu_gpio_irq_set_type;
ct->handler = handle_edge_irq;
ct->chip.name = mvchip->chip.label;
irq_setup_generic_chip(gc, IRQ_MSK(ngpios), 0,
IRQ_NOREQUEST, IRQ_LEVEL | IRQ_NOPROBE);
/* Setup irq domain on top of the generic chip. */
mvchip->domain = irq_domain_add_simple(np, mvchip->chip.ngpio,
mvchip->irqbase,
&irq_domain_simple_ops,
mvchip);
if (!mvchip->domain) {
dev_err(&pdev->dev, "couldn't allocate irq domain %s (DT).\n",
mvchip->chip.label);
irq_remove_generic_chip(gc, IRQ_MSK(ngpios), IRQ_NOREQUEST,
IRQ_LEVEL | IRQ_NOPROBE);
kfree(gc);
return -ENODEV;
}
return 0;
}
static struct platform_driver mvebu_gpio_driver = {
.driver = {
.name = "mvebu-gpio",
.owner = THIS_MODULE,
.of_match_table = mvebu_gpio_of_match,
},
.probe = mvebu_gpio_probe,
};
static int __init mvebu_gpio_init(void)
{
return platform_driver_register(&mvebu_gpio_driver);
}
postcore_initcall(mvebu_gpio_init);