WSL2-Linux-Kernel/net/ipv4/fib_trie.c

2671 строка
64 KiB
C
Исходник Обычный вид История

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
* & Swedish University of Agricultural Sciences.
*
* Jens Laas <jens.laas@data.slu.se> Swedish University of
* Agricultural Sciences.
*
* Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
*
* This work is based on the LPC-trie which is originally described in:
*
* An experimental study of compression methods for dynamic tries
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
* http://www.csc.kth.se/~snilsson/software/dyntrie2/
*
*
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
*
*
* Code from fib_hash has been reused which includes the following header:
*
*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* IPv4 FIB: lookup engine and maintenance routines.
*
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Substantial contributions to this work comes from:
*
* David S. Miller, <davem@davemloft.net>
* Stephen Hemminger <shemminger@osdl.org>
* Paul E. McKenney <paulmck@us.ibm.com>
* Patrick McHardy <kaber@trash.net>
*/
#define VERSION "0.409"
#include <asm/uaccess.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <net/net_namespace.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include <net/switchdev.h>
#include <trace/events/fib.h>
#include "fib_lookup.h"
#define MAX_STAT_DEPTH 32
#define KEYLENGTH (8*sizeof(t_key))
#define KEY_MAX ((t_key)~0)
typedef unsigned int t_key;
#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
struct key_vector {
t_key key;
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
unsigned char bits; /* 2log(KEYLENGTH) bits needed */
unsigned char slen;
union {
/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
struct hlist_head leaf;
/* This array is valid if (pos | bits) > 0 (TNODE) */
struct key_vector __rcu *tnode[0];
};
};
struct tnode {
struct rcu_head rcu;
t_key empty_children; /* KEYLENGTH bits needed */
t_key full_children; /* KEYLENGTH bits needed */
struct key_vector __rcu *parent;
struct key_vector kv[1];
#define tn_bits kv[0].bits
};
#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
#define LEAF_SIZE TNODE_SIZE(1)
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
unsigned int gets;
unsigned int backtrack;
unsigned int semantic_match_passed;
unsigned int semantic_match_miss;
unsigned int null_node_hit;
unsigned int resize_node_skipped;
};
#endif
struct trie_stat {
unsigned int totdepth;
unsigned int maxdepth;
unsigned int tnodes;
unsigned int leaves;
unsigned int nullpointers;
unsigned int prefixes;
unsigned int nodesizes[MAX_STAT_DEPTH];
};
struct trie {
struct key_vector kv[1];
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats __percpu *stats;
#endif
};
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
static size_t tnode_free_size;
/*
* synchronize_rcu after call_rcu for that many pages; it should be especially
* useful before resizing the root node with PREEMPT_NONE configs; the value was
* obtained experimentally, aiming to avoid visible slowdown.
*/
static const int sync_pages = 128;
static struct kmem_cache *fn_alias_kmem __read_mostly;
static struct kmem_cache *trie_leaf_kmem __read_mostly;
static inline struct tnode *tn_info(struct key_vector *kv)
{
return container_of(kv, struct tnode, kv[0]);
}
/* caller must hold RTNL */
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
/* wrapper for rcu_assign_pointer */
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
{
if (n)
rcu_assign_pointer(tn_info(n)->parent, tp);
}
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
/* This provides us with the number of children in this node, in the case of a
* leaf this will return 0 meaning none of the children are accessible.
*/
static inline unsigned long child_length(const struct key_vector *tn)
{
return (1ul << tn->bits) & ~(1ul);
}
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
unsigned long index = key ^ kv->key;
if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
return 0;
return index >> kv->pos;
}
/* To understand this stuff, an understanding of keys and all their bits is
* necessary. Every node in the trie has a key associated with it, but not
* all of the bits in that key are significant.
*
* Consider a node 'n' and its parent 'tp'.
*
* If n is a leaf, every bit in its key is significant. Its presence is
* necessitated by path compression, since during a tree traversal (when
* searching for a leaf - unless we are doing an insertion) we will completely
* ignore all skipped bits we encounter. Thus we need to verify, at the end of
* a potentially successful search, that we have indeed been walking the
* correct key path.
*
* Note that we can never "miss" the correct key in the tree if present by
* following the wrong path. Path compression ensures that segments of the key
* that are the same for all keys with a given prefix are skipped, but the
* skipped part *is* identical for each node in the subtrie below the skipped
* bit! trie_insert() in this implementation takes care of that.
*
* if n is an internal node - a 'tnode' here, the various parts of its key
* have many different meanings.
*
* Example:
* _________________________________________________________________
* | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
* -----------------------------------------------------------------
* 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
*
* _________________________________________________________________
* | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
* -----------------------------------------------------------------
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
*
* tp->pos = 22
* tp->bits = 3
* n->pos = 13
* n->bits = 4
*
* First, let's just ignore the bits that come before the parent tp, that is
* the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
* point we do not use them for anything.
*
* The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
* index into the parent's child array. That is, they will be used to find
* 'n' among tp's children.
*
* The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
* for the node n.
*
* All the bits we have seen so far are significant to the node n. The rest
* of the bits are really not needed or indeed known in n->key.
*
* The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
* n's child array, and will of course be different for each child.
*
* The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
* at this point.
*/
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
ipv4: Fix fib_trie rebalancing, part 4 (root thresholds) Pawel Staszewski wrote: <blockquote> Some time ago i report this: http://bugzilla.kernel.org/show_bug.cgi?id=6648 and now with 2.6.29 / 2.6.29.1 / 2.6.29.3 and 2.6.30 it back dmesg output: oprofile: using NMI interrupt. Fix inflate_threshold_root. Now=15 size=11 bits ... Fix inflate_threshold_root. Now=15 size=11 bits cat /proc/net/fib_triestat Basic info: size of leaf: 40 bytes, size of tnode: 56 bytes. Main: Aver depth: 2.28 Max depth: 6 Leaves: 276539 Prefixes: 289922 Internal nodes: 66762 1: 35046 2: 13824 3: 9508 4: 4897 5: 2331 6: 1149 7: 5 9: 1 18: 1 Pointers: 691228 Null ptrs: 347928 Total size: 35709 kB </blockquote> It seems, the current threshold for root resizing is too aggressive, and it causes misleading warnings during big updates, but it might be also responsible for memory problems, especially with non-preempt configs, when RCU freeing is delayed long after call_rcu. It should be also mentioned that because of non-atomic changes during resizing/rebalancing the current lookup algorithm can miss valid leaves so it's additional argument to shorten these activities even at a cost of a minimally longer searching. This patch restores values before the patch "[IPV4]: fib_trie root node settings", commit: 965ffea43d4ebe8cd7b9fee78d651268dd7d23c5 from v2.6.22. Pawel's report: <blockquote> I dont see any big change of (cpu load or faster/slower routing/propagating routes from bgpd or something else) - in avg there is from 2% to 3% more of CPU load i dont know why but it is - i change from "preempt" to "no preempt" 3 times and check this my "mpstat -P ALL 1 30" always avg cpu load was from 2 to 3% more compared to "no preempt" [...] cat /proc/net/fib_triestat Basic info: size of leaf: 20 bytes, size of tnode: 36 bytes. Main: Aver depth: 2.44 Max depth: 6 Leaves: 277814 Prefixes: 291306 Internal nodes: 66420 1: 32737 2: 14850 3: 10332 4: 4871 5: 2313 6: 942 7: 371 8: 3 17: 1 Pointers: 599098 Null ptrs: 254865 Total size: 18067 kB </blockquote> According to this and other similar reports average depth is slightly increased (~0.2), and root nodes are shorter (log 17 vs. 18), but there is no visible performance decrease. So, until memory handling is improved or added parameters for changing this individually, this patch resets to safer defaults. Reported-by: Pawel Staszewski <pstaszewski@itcare.pl> Reported-by: Jorge Boncompte [DTI2] <jorge@dti2.net> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Tested-by: Pawel Staszewski <pstaszewski@itcare.pl> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-08 06:39:16 +04:00
static const int halve_threshold_root = 15;
static const int inflate_threshold_root = 30;
static void __alias_free_mem(struct rcu_head *head)
{
struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
kmem_cache_free(fn_alias_kmem, fa);
}
static inline void alias_free_mem_rcu(struct fib_alias *fa)
{
call_rcu(&fa->rcu, __alias_free_mem);
}
#define TNODE_KMALLOC_MAX \
ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
#define TNODE_VMALLOC_MAX \
ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
static void __node_free_rcu(struct rcu_head *head)
{
struct tnode *n = container_of(head, struct tnode, rcu);
if (!n->tn_bits)
kmem_cache_free(trie_leaf_kmem, n);
else
kvfree(n);
}
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
static struct tnode *tnode_alloc(int bits)
{
size_t size;
/* verify bits is within bounds */
if (bits > TNODE_VMALLOC_MAX)
return NULL;
/* determine size and verify it is non-zero and didn't overflow */
size = TNODE_SIZE(1ul << bits);
if (size <= PAGE_SIZE)
return kzalloc(size, GFP_KERNEL);
else
return vzalloc(size);
}
static inline void empty_child_inc(struct key_vector *n)
{
++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
}
static inline void empty_child_dec(struct key_vector *n)
{
tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
}
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
{
struct key_vector *l;
struct tnode *kv;
kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
if (!kv)
return NULL;
/* initialize key vector */
l = kv->kv;
l->key = key;
l->pos = 0;
l->bits = 0;
l->slen = fa->fa_slen;
/* link leaf to fib alias */
INIT_HLIST_HEAD(&l->leaf);
hlist_add_head(&fa->fa_list, &l->leaf);
return l;
}
static struct key_vector *tnode_new(t_key key, int pos, int bits)
{
unsigned int shift = pos + bits;
struct key_vector *tn;
struct tnode *tnode;
/* verify bits and pos their msb bits clear and values are valid */
BUG_ON(!bits || (shift > KEYLENGTH));
tnode = tnode_alloc(bits);
if (!tnode)
return NULL;
pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
sizeof(struct key_vector *) << bits);
if (bits == KEYLENGTH)
tnode->full_children = 1;
else
tnode->empty_children = 1ul << bits;
tn = tnode->kv;
tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
tn->pos = pos;
tn->bits = bits;
tn->slen = pos;
return tn;
}
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
* and no bits are skipped. See discussion in dyntree paper p. 6
*/
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
{
return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
}
/* Add a child at position i overwriting the old value.
* Update the value of full_children and empty_children.
*/
static void put_child(struct key_vector *tn, unsigned long i,
struct key_vector *n)
{
struct key_vector *chi = get_child(tn, i);
int isfull, wasfull;
BUG_ON(i >= child_length(tn));
/* update emptyChildren, overflow into fullChildren */
if (!n && chi)
empty_child_inc(tn);
if (n && !chi)
empty_child_dec(tn);
/* update fullChildren */
wasfull = tnode_full(tn, chi);
isfull = tnode_full(tn, n);
if (wasfull && !isfull)
tn_info(tn)->full_children--;
else if (!wasfull && isfull)
tn_info(tn)->full_children++;
if (n && (tn->slen < n->slen))
tn->slen = n->slen;
rcu_assign_pointer(tn->tnode[i], n);
}
static void update_children(struct key_vector *tn)
{
unsigned long i;
/* update all of the child parent pointers */
for (i = child_length(tn); i;) {
struct key_vector *inode = get_child(tn, --i);
if (!inode)
continue;
/* Either update the children of a tnode that
* already belongs to us or update the child
* to point to ourselves.
*/
if (node_parent(inode) == tn)
update_children(inode);
else
node_set_parent(inode, tn);
}
}
static inline void put_child_root(struct key_vector *tp, t_key key,
struct key_vector *n)
{
if (IS_TRIE(tp))
rcu_assign_pointer(tp->tnode[0], n);
else
put_child(tp, get_index(key, tp), n);
}
static inline void tnode_free_init(struct key_vector *tn)
{
tn_info(tn)->rcu.next = NULL;
}
static inline void tnode_free_append(struct key_vector *tn,
struct key_vector *n)
{
tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
tn_info(tn)->rcu.next = &tn_info(n)->rcu;
}
static void tnode_free(struct key_vector *tn)
{
struct callback_head *head = &tn_info(tn)->rcu;
while (head) {
head = head->next;
tnode_free_size += TNODE_SIZE(1ul << tn->bits);
node_free(tn);
tn = container_of(head, struct tnode, rcu)->kv;
}
if (tnode_free_size >= PAGE_SIZE * sync_pages) {
tnode_free_size = 0;
synchronize_rcu();
}
}
static struct key_vector *replace(struct trie *t,
struct key_vector *oldtnode,
struct key_vector *tn)
{
struct key_vector *tp = node_parent(oldtnode);
unsigned long i;
/* setup the parent pointer out of and back into this node */
NODE_INIT_PARENT(tn, tp);
put_child_root(tp, tn->key, tn);
/* update all of the child parent pointers */
update_children(tn);
/* all pointers should be clean so we are done */
tnode_free(oldtnode);
/* resize children now that oldtnode is freed */
for (i = child_length(tn); i;) {
struct key_vector *inode = get_child(tn, --i);
/* resize child node */
if (tnode_full(tn, inode))
tn = resize(t, inode);
}
return tp;
}
static struct key_vector *inflate(struct trie *t,
struct key_vector *oldtnode)
{
struct key_vector *tn;
unsigned long i;
t_key m;
pr_debug("In inflate\n");
tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
if (!tn)
goto notnode;
/* prepare oldtnode to be freed */
tnode_free_init(oldtnode);
/* Assemble all of the pointers in our cluster, in this case that
* represents all of the pointers out of our allocated nodes that
* point to existing tnodes and the links between our allocated
* nodes.
*/
for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
struct key_vector *inode = get_child(oldtnode, --i);
struct key_vector *node0, *node1;
unsigned long j, k;
/* An empty child */
if (!inode)
continue;
/* A leaf or an internal node with skipped bits */
if (!tnode_full(oldtnode, inode)) {
put_child(tn, get_index(inode->key, tn), inode);
continue;
}
/* drop the node in the old tnode free list */
tnode_free_append(oldtnode, inode);
/* An internal node with two children */
if (inode->bits == 1) {
put_child(tn, 2 * i + 1, get_child(inode, 1));
put_child(tn, 2 * i, get_child(inode, 0));
continue;
}
/* We will replace this node 'inode' with two new
* ones, 'node0' and 'node1', each with half of the
* original children. The two new nodes will have
* a position one bit further down the key and this
* means that the "significant" part of their keys
* (see the discussion near the top of this file)
* will differ by one bit, which will be "0" in
* node0's key and "1" in node1's key. Since we are
* moving the key position by one step, the bit that
* we are moving away from - the bit at position
* (tn->pos) - is the one that will differ between
* node0 and node1. So... we synthesize that bit in the
* two new keys.
*/
node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
if (!node1)
goto nomem;
node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
tnode_free_append(tn, node1);
if (!node0)
goto nomem;
tnode_free_append(tn, node0);
/* populate child pointers in new nodes */
for (k = child_length(inode), j = k / 2; j;) {
put_child(node1, --j, get_child(inode, --k));
put_child(node0, j, get_child(inode, j));
put_child(node1, --j, get_child(inode, --k));
put_child(node0, j, get_child(inode, j));
}
/* link new nodes to parent */
NODE_INIT_PARENT(node1, tn);
NODE_INIT_PARENT(node0, tn);
/* link parent to nodes */
put_child(tn, 2 * i + 1, node1);
put_child(tn, 2 * i, node0);
}
/* setup the parent pointers into and out of this node */
return replace(t, oldtnode, tn);
nomem:
/* all pointers should be clean so we are done */
tnode_free(tn);
notnode:
return NULL;
}
static struct key_vector *halve(struct trie *t,
struct key_vector *oldtnode)
{
struct key_vector *tn;
unsigned long i;
pr_debug("In halve\n");
tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
if (!tn)
goto notnode;
/* prepare oldtnode to be freed */
tnode_free_init(oldtnode);
/* Assemble all of the pointers in our cluster, in this case that
* represents all of the pointers out of our allocated nodes that
* point to existing tnodes and the links between our allocated
* nodes.
*/
for (i = child_length(oldtnode); i;) {
struct key_vector *node1 = get_child(oldtnode, --i);
struct key_vector *node0 = get_child(oldtnode, --i);
struct key_vector *inode;
/* At least one of the children is empty */
if (!node1 || !node0) {
put_child(tn, i / 2, node1 ? : node0);
continue;
}
/* Two nonempty children */
inode = tnode_new(node0->key, oldtnode->pos, 1);
if (!inode)
goto nomem;
tnode_free_append(tn, inode);
/* initialize pointers out of node */
put_child(inode, 1, node1);
put_child(inode, 0, node0);
NODE_INIT_PARENT(inode, tn);
/* link parent to node */
put_child(tn, i / 2, inode);
}
/* setup the parent pointers into and out of this node */
return replace(t, oldtnode, tn);
nomem:
/* all pointers should be clean so we are done */
tnode_free(tn);
notnode:
return NULL;
}
static struct key_vector *collapse(struct trie *t,
struct key_vector *oldtnode)
{
struct key_vector *n, *tp;
unsigned long i;
/* scan the tnode looking for that one child that might still exist */
for (n = NULL, i = child_length(oldtnode); !n && i;)
n = get_child(oldtnode, --i);
/* compress one level */
tp = node_parent(oldtnode);
put_child_root(tp, oldtnode->key, n);
node_set_parent(n, tp);
/* drop dead node */
node_free(oldtnode);
return tp;
}
static unsigned char update_suffix(struct key_vector *tn)
{
unsigned char slen = tn->pos;
unsigned long stride, i;
/* search though the list of children looking for nodes that might
* have a suffix greater than the one we currently have. This is
* why we start with a stride of 2 since a stride of 1 would
* represent the nodes with suffix length equal to tn->pos
*/
for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
struct key_vector *n = get_child(tn, i);
if (!n || (n->slen <= slen))
continue;
/* update stride and slen based on new value */
stride <<= (n->slen - slen);
slen = n->slen;
i &= ~(stride - 1);
/* if slen covers all but the last bit we can stop here
* there will be nothing longer than that since only node
* 0 and 1 << (bits - 1) could have that as their suffix
* length.
*/
if ((slen + 1) >= (tn->pos + tn->bits))
break;
}
tn->slen = slen;
return slen;
}
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
* the Helsinki University of Technology and Matti Tikkanen of Nokia
* Telecommunications, page 6:
* "A node is doubled if the ratio of non-empty children to all
* children in the *doubled* node is at least 'high'."
*
* 'high' in this instance is the variable 'inflate_threshold'. It
* is expressed as a percentage, so we multiply it with
* child_length() and instead of multiplying by 2 (since the
* child array will be doubled by inflate()) and multiplying
* the left-hand side by 100 (to handle the percentage thing) we
* multiply the left-hand side by 50.
*
* The left-hand side may look a bit weird: child_length(tn)
* - tn->empty_children is of course the number of non-null children
* in the current node. tn->full_children is the number of "full"
* children, that is non-null tnodes with a skip value of 0.
* All of those will be doubled in the resulting inflated tnode, so
* we just count them one extra time here.
*
* A clearer way to write this would be:
*
* to_be_doubled = tn->full_children;
* not_to_be_doubled = child_length(tn) - tn->empty_children -
* tn->full_children;
*
* new_child_length = child_length(tn) * 2;
*
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
* new_child_length;
* if (new_fill_factor >= inflate_threshold)
*
* ...and so on, tho it would mess up the while () loop.
*
* anyway,
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
* inflate_threshold
*
* avoid a division:
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
* inflate_threshold * new_child_length
*
* expand not_to_be_doubled and to_be_doubled, and shorten:
* 100 * (child_length(tn) - tn->empty_children +
* tn->full_children) >= inflate_threshold * new_child_length
*
* expand new_child_length:
* 100 * (child_length(tn) - tn->empty_children +
* tn->full_children) >=
* inflate_threshold * child_length(tn) * 2
*
* shorten again:
* 50 * (tn->full_children + child_length(tn) -
* tn->empty_children) >= inflate_threshold *
* child_length(tn)
*
*/
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
{
unsigned long used = child_length(tn);
unsigned long threshold = used;
/* Keep root node larger */
threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
used -= tn_info(tn)->empty_children;
used += tn_info(tn)->full_children;
/* if bits == KEYLENGTH then pos = 0, and will fail below */
return (used > 1) && tn->pos && ((50 * used) >= threshold);
}
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
{
unsigned long used = child_length(tn);
unsigned long threshold = used;
/* Keep root node larger */
threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
used -= tn_info(tn)->empty_children;
/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}
static inline bool should_collapse(struct key_vector *tn)
{
unsigned long used = child_length(tn);
used -= tn_info(tn)->empty_children;
/* account for bits == KEYLENGTH case */
if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
used -= KEY_MAX;
/* One child or none, time to drop us from the trie */
return used < 2;
}
#define MAX_WORK 10
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
{
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats __percpu *stats = t->stats;
#endif
struct key_vector *tp = node_parent(tn);
unsigned long cindex = get_index(tn->key, tp);
int max_work = MAX_WORK;
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
tn, inflate_threshold, halve_threshold);
/* track the tnode via the pointer from the parent instead of
* doing it ourselves. This way we can let RCU fully do its
* thing without us interfering
*/
BUG_ON(tn != get_child(tp, cindex));
/* Double as long as the resulting node has a number of
* nonempty nodes that are above the threshold.
*/
while (should_inflate(tp, tn) && max_work) {
tp = inflate(t, tn);
if (!tp) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->resize_node_skipped);
#endif
break;
}
max_work--;
tn = get_child(tp, cindex);
}
/* update parent in case inflate failed */
tp = node_parent(tn);
/* Return if at least one inflate is run */
if (max_work != MAX_WORK)
return tp;
/* Halve as long as the number of empty children in this
* node is above threshold.
*/
while (should_halve(tp, tn) && max_work) {
tp = halve(t, tn);
if (!tp) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->resize_node_skipped);
#endif
break;
}
max_work--;
tn = get_child(tp, cindex);
}
/* Only one child remains */
if (should_collapse(tn))
return collapse(t, tn);
/* update parent in case halve failed */
tp = node_parent(tn);
/* Return if at least one deflate was run */
if (max_work != MAX_WORK)
return tp;
/* push the suffix length to the parent node */
if (tn->slen > tn->pos) {
unsigned char slen = update_suffix(tn);
if (slen > tp->slen)
tp->slen = slen;
}
return tp;
}
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
{
while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
if (update_suffix(tp) > l->slen)
break;
tp = node_parent(tp);
}
}
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
{
/* if this is a new leaf then tn will be NULL and we can sort
* out parent suffix lengths as a part of trie_rebalance
*/
while (tn->slen < l->slen) {
tn->slen = l->slen;
tn = node_parent(tn);
}
}
/* rcu_read_lock needs to be hold by caller from readside */
static struct key_vector *fib_find_node(struct trie *t,
struct key_vector **tp, u32 key)
{
struct key_vector *pn, *n = t->kv;
unsigned long index = 0;
do {
pn = n;
n = get_child_rcu(n, index);
if (!n)
break;
index = get_cindex(key, n);
/* This bit of code is a bit tricky but it combines multiple
* checks into a single check. The prefix consists of the
* prefix plus zeros for the bits in the cindex. The index
* is the difference between the key and this value. From
* this we can actually derive several pieces of data.
* if (index >= (1ul << bits))
* we have a mismatch in skip bits and failed
* else
* we know the value is cindex
*
* This check is safe even if bits == KEYLENGTH due to the
* fact that we can only allocate a node with 32 bits if a
* long is greater than 32 bits.
*/
if (index >= (1ul << n->bits)) {
n = NULL;
break;
}
/* keep searching until we find a perfect match leaf or NULL */
} while (IS_TNODE(n));
*tp = pn;
return n;
}
/* Return the first fib alias matching TOS with
* priority less than or equal to PRIO.
*/
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
u8 tos, u32 prio, u32 tb_id)
{
struct fib_alias *fa;
if (!fah)
return NULL;
hlist_for_each_entry(fa, fah, fa_list) {
if (fa->fa_slen < slen)
continue;
if (fa->fa_slen != slen)
break;
if (fa->tb_id > tb_id)
continue;
if (fa->tb_id != tb_id)
break;
if (fa->fa_tos > tos)
continue;
if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
return fa;
}
return NULL;
}
static void trie_rebalance(struct trie *t, struct key_vector *tn)
{
while (!IS_TRIE(tn))
tn = resize(t, tn);
}
static int fib_insert_node(struct trie *t, struct key_vector *tp,
struct fib_alias *new, t_key key)
{
struct key_vector *n, *l;
l = leaf_new(key, new);
if (!l)
goto noleaf;
/* retrieve child from parent node */
n = get_child(tp, get_index(key, tp));
/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
*
* Add a new tnode here
* first tnode need some special handling
* leaves us in position for handling as case 3
*/
if (n) {
struct key_vector *tn;
tn = tnode_new(key, __fls(key ^ n->key), 1);
if (!tn)
goto notnode;
/* initialize routes out of node */
NODE_INIT_PARENT(tn, tp);
put_child(tn, get_index(key, tn) ^ 1, n);
/* start adding routes into the node */
put_child_root(tp, key, tn);
node_set_parent(n, tn);
/* parent now has a NULL spot where the leaf can go */
tp = tn;
}
/* Case 3: n is NULL, and will just insert a new leaf */
NODE_INIT_PARENT(l, tp);
put_child_root(tp, key, l);
trie_rebalance(t, tp);
return 0;
notnode:
node_free(l);
noleaf:
return -ENOMEM;
}
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
struct key_vector *l, struct fib_alias *new,
struct fib_alias *fa, t_key key)
{
if (!l)
return fib_insert_node(t, tp, new, key);
if (fa) {
hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
} else {
struct fib_alias *last;
hlist_for_each_entry(last, &l->leaf, fa_list) {
if (new->fa_slen < last->fa_slen)
break;
if ((new->fa_slen == last->fa_slen) &&
(new->tb_id > last->tb_id))
break;
fa = last;
}
if (fa)
hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
else
hlist_add_head_rcu(&new->fa_list, &l->leaf);
}
/* if we added to the tail node then we need to update slen */
if (l->slen < new->fa_slen) {
l->slen = new->fa_slen;
leaf_push_suffix(tp, l);
}
return 0;
}
/* Caller must hold RTNL. */
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
{
struct trie *t = (struct trie *)tb->tb_data;
struct fib_alias *fa, *new_fa;
struct key_vector *l, *tp;
unsigned int nlflags = 0;
struct fib_info *fi;
u8 plen = cfg->fc_dst_len;
u8 slen = KEYLENGTH - plen;
u8 tos = cfg->fc_tos;
u32 key;
int err;
if (plen > KEYLENGTH)
return -EINVAL;
key = ntohl(cfg->fc_dst);
pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
if ((plen < KEYLENGTH) && (key << plen))
return -EINVAL;
fi = fib_create_info(cfg);
if (IS_ERR(fi)) {
err = PTR_ERR(fi);
goto err;
}
l = fib_find_node(t, &tp, key);
fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
tb->tb_id) : NULL;
/* Now fa, if non-NULL, points to the first fib alias
* with the same keys [prefix,tos,priority], if such key already
* exists or to the node before which we will insert new one.
*
* If fa is NULL, we will need to allocate a new one and
* insert to the tail of the section matching the suffix length
* of the new alias.
*/
if (fa && fa->fa_tos == tos &&
fa->fa_info->fib_priority == fi->fib_priority) {
struct fib_alias *fa_first, *fa_match;
err = -EEXIST;
if (cfg->fc_nlflags & NLM_F_EXCL)
goto out;
/* We have 2 goals:
* 1. Find exact match for type, scope, fib_info to avoid
* duplicate routes
* 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
*/
fa_match = NULL;
fa_first = fa;
hlist_for_each_entry_from(fa, fa_list) {
if ((fa->fa_slen != slen) ||
(fa->tb_id != tb->tb_id) ||
(fa->fa_tos != tos))
break;
if (fa->fa_info->fib_priority != fi->fib_priority)
break;
if (fa->fa_type == cfg->fc_type &&
fa->fa_info == fi) {
fa_match = fa;
break;
}
}
if (cfg->fc_nlflags & NLM_F_REPLACE) {
struct fib_info *fi_drop;
u8 state;
fa = fa_first;
if (fa_match) {
if (fa == fa_match)
err = 0;
goto out;
}
err = -ENOBUFS;
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
if (!new_fa)
goto out;
fi_drop = fa->fa_info;
new_fa->fa_tos = fa->fa_tos;
new_fa->fa_info = fi;
new_fa->fa_type = cfg->fc_type;
state = fa->fa_state;
new_fa->fa_state = state & ~FA_S_ACCESSED;
new_fa->fa_slen = fa->fa_slen;
new_fa->tb_id = tb->tb_id;
new_fa->fa_default = -1;
err = switchdev_fib_ipv4_add(key, plen, fi,
new_fa->fa_tos,
cfg->fc_type,
cfg->fc_nlflags,
tb->tb_id);
if (err) {
switchdev_fib_ipv4_abort(fi);
kmem_cache_free(fn_alias_kmem, new_fa);
goto out;
}
hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
alias_free_mem_rcu(fa);
fib_release_info(fi_drop);
if (state & FA_S_ACCESSED)
rt_cache_flush(cfg->fc_nlinfo.nl_net);
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
goto succeeded;
}
/* Error if we find a perfect match which
* uses the same scope, type, and nexthop
* information.
*/
if (fa_match)
goto out;
if (cfg->fc_nlflags & NLM_F_APPEND)
nlflags = NLM_F_APPEND;
else
fa = fa_first;
}
err = -ENOENT;
if (!(cfg->fc_nlflags & NLM_F_CREATE))
goto out;
err = -ENOBUFS;
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
if (!new_fa)
goto out;
new_fa->fa_info = fi;
new_fa->fa_tos = tos;
new_fa->fa_type = cfg->fc_type;
new_fa->fa_state = 0;
new_fa->fa_slen = slen;
new_fa->tb_id = tb->tb_id;
new_fa->fa_default = -1;
/* (Optionally) offload fib entry to switch hardware. */
err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
cfg->fc_nlflags, tb->tb_id);
if (err) {
switchdev_fib_ipv4_abort(fi);
goto out_free_new_fa;
}
/* Insert new entry to the list. */
err = fib_insert_alias(t, tp, l, new_fa, fa, key);
if (err)
goto out_sw_fib_del;
if (!plen)
tb->tb_num_default++;
rt_cache_flush(cfg->fc_nlinfo.nl_net);
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
&cfg->fc_nlinfo, nlflags);
succeeded:
return 0;
out_sw_fib_del:
switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
out_free_new_fa:
kmem_cache_free(fn_alias_kmem, new_fa);
out:
fib_release_info(fi);
err:
return err;
}
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
{
t_key prefix = n->key;
return (key ^ prefix) & (prefix | -prefix);
}
/* should be called with rcu_read_lock */
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
fib: RCU conversion of fib_lookup() fib_lookup() converted to be called in RCU protected context, no reference taken and released on a contended cache line (fib_clntref) fib_table_lookup() and fib_semantic_match() get an additional parameter. struct fib_info gets an rcu_head field, and is freed after an rcu grace period. Stress test : (Sending 160.000.000 UDP frames on same neighbour, IP route cache disabled, dual E5540 @2.53GHz, 32bit kernel, FIB_HASH) (about same results for FIB_TRIE) Before patch : real 1m31.199s user 0m13.761s sys 23m24.780s After patch: real 1m5.375s user 0m14.997s sys 15m50.115s Before patch Profile : 13044.00 15.4% __ip_route_output_key vmlinux 8438.00 10.0% dst_destroy vmlinux 5983.00 7.1% fib_semantic_match vmlinux 5410.00 6.4% fib_rules_lookup vmlinux 4803.00 5.7% neigh_lookup vmlinux 4420.00 5.2% _raw_spin_lock vmlinux 3883.00 4.6% rt_set_nexthop vmlinux 3261.00 3.9% _raw_read_lock vmlinux 2794.00 3.3% fib_table_lookup vmlinux 2374.00 2.8% neigh_resolve_output vmlinux 2153.00 2.5% dst_alloc vmlinux 1502.00 1.8% _raw_read_lock_bh vmlinux 1484.00 1.8% kmem_cache_alloc vmlinux 1407.00 1.7% eth_header vmlinux 1406.00 1.7% ipv4_dst_destroy vmlinux 1298.00 1.5% __copy_from_user_ll vmlinux 1174.00 1.4% dev_queue_xmit vmlinux 1000.00 1.2% ip_output vmlinux After patch Profile : 13712.00 15.8% dst_destroy vmlinux 8548.00 9.9% __ip_route_output_key vmlinux 7017.00 8.1% neigh_lookup vmlinux 4554.00 5.3% fib_semantic_match vmlinux 4067.00 4.7% _raw_read_lock vmlinux 3491.00 4.0% dst_alloc vmlinux 3186.00 3.7% neigh_resolve_output vmlinux 3103.00 3.6% fib_table_lookup vmlinux 2098.00 2.4% _raw_read_lock_bh vmlinux 2081.00 2.4% kmem_cache_alloc vmlinux 2013.00 2.3% _raw_spin_lock vmlinux 1763.00 2.0% __copy_from_user_ll vmlinux 1763.00 2.0% ip_output vmlinux 1761.00 2.0% ipv4_dst_destroy vmlinux 1631.00 1.9% eth_header vmlinux 1440.00 1.7% _raw_read_unlock_bh vmlinux Reference results, if IP route cache is enabled : real 0m29.718s user 0m10.845s sys 7m37.341s 25213.00 29.5% __ip_route_output_key vmlinux 9011.00 10.5% dst_release vmlinux 4817.00 5.6% ip_push_pending_frames vmlinux 4232.00 5.0% ip_finish_output vmlinux 3940.00 4.6% udp_sendmsg vmlinux 3730.00 4.4% __copy_from_user_ll vmlinux 3716.00 4.4% ip_route_output_flow vmlinux 2451.00 2.9% __xfrm_lookup vmlinux 2221.00 2.6% ip_append_data vmlinux 1718.00 2.0% _raw_spin_lock_bh vmlinux 1655.00 1.9% __alloc_skb vmlinux 1572.00 1.8% sock_wfree vmlinux 1345.00 1.6% kfree vmlinux Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-05 14:41:36 +04:00
struct fib_result *res, int fib_flags)
{
struct trie *t = (struct trie *) tb->tb_data;
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats __percpu *stats = t->stats;
#endif
const t_key key = ntohl(flp->daddr);
struct key_vector *n, *pn;
struct fib_alias *fa;
unsigned long index;
t_key cindex;
trace_fib_table_lookup(tb->tb_id, flp);
pn = t->kv;
cindex = 0;
n = get_child_rcu(pn, cindex);
if (!n)
return -EAGAIN;
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->gets);
#endif
/* Step 1: Travel to the longest prefix match in the trie */
for (;;) {
index = get_cindex(key, n);
/* This bit of code is a bit tricky but it combines multiple
* checks into a single check. The prefix consists of the
* prefix plus zeros for the "bits" in the prefix. The index
* is the difference between the key and this value. From
* this we can actually derive several pieces of data.
* if (index >= (1ul << bits))
* we have a mismatch in skip bits and failed
* else
* we know the value is cindex
*
* This check is safe even if bits == KEYLENGTH due to the
* fact that we can only allocate a node with 32 bits if a
* long is greater than 32 bits.
*/
if (index >= (1ul << n->bits))
break;
/* we have found a leaf. Prefixes have already been compared */
if (IS_LEAF(n))
goto found;
/* only record pn and cindex if we are going to be chopping
* bits later. Otherwise we are just wasting cycles.
*/
if (n->slen > n->pos) {
pn = n;
cindex = index;
}
n = get_child_rcu(n, index);
if (unlikely(!n))
goto backtrace;
}
/* Step 2: Sort out leaves and begin backtracing for longest prefix */
for (;;) {
/* record the pointer where our next node pointer is stored */
struct key_vector __rcu **cptr = n->tnode;
/* This test verifies that none of the bits that differ
* between the key and the prefix exist in the region of
* the lsb and higher in the prefix.
*/
if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
goto backtrace;
/* exit out and process leaf */
if (unlikely(IS_LEAF(n)))
break;
/* Don't bother recording parent info. Since we are in
* prefix match mode we will have to come back to wherever
* we started this traversal anyway
*/
while ((n = rcu_dereference(*cptr)) == NULL) {
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
if (!n)
this_cpu_inc(stats->null_node_hit);
#endif
/* If we are at cindex 0 there are no more bits for
* us to strip at this level so we must ascend back
* up one level to see if there are any more bits to
* be stripped there.
*/
while (!cindex) {
t_key pkey = pn->key;
/* If we don't have a parent then there is
* nothing for us to do as we do not have any
* further nodes to parse.
*/
if (IS_TRIE(pn))
return -EAGAIN;
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->backtrack);
#endif
/* Get Child's index */
pn = node_parent_rcu(pn);
cindex = get_index(pkey, pn);
}
/* strip the least significant bit from the cindex */
cindex &= cindex - 1;
/* grab pointer for next child node */
cptr = &pn->tnode[cindex];
}
}
found:
/* this line carries forward the xor from earlier in the function */
index = key ^ n->key;
/* Step 3: Process the leaf, if that fails fall back to backtracing */
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
struct fib_info *fi = fa->fa_info;
int nhsel, err;
if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
if (index >= (1ul << fa->fa_slen))
continue;
}
if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
continue;
if (fi->fib_dead)
continue;
if (fa->fa_info->fib_scope < flp->flowi4_scope)
continue;
fib_alias_accessed(fa);
err = fib_props[fa->fa_type].error;
if (unlikely(err < 0)) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->semantic_match_passed);
#endif
return err;
}
if (fi->fib_flags & RTNH_F_DEAD)
continue;
for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
const struct fib_nh *nh = &fi->fib_nh[nhsel];
net: ipv4 sysctl option to ignore routes when nexthop link is down This feature is only enabled with the new per-interface or ipv4 global sysctls called 'ignore_routes_with_linkdown'. net.ipv4.conf.all.ignore_routes_with_linkdown = 0 net.ipv4.conf.default.ignore_routes_with_linkdown = 0 net.ipv4.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, will report to userspace that a route is dead and will no longer resolve to this nexthop when performing a fib lookup. This will signal to userspace that the route will not be selected. The signalling of a RTNH_F_DEAD is only passed to userspace if the sysctl is enabled and link is down. This was done as without it the netlink listeners would have no idea whether or not a nexthop would be selected. The kernel only sets RTNH_F_DEAD internally if the interface has IFF_UP cleared. With the new sysctl set, the following behavior can be observed (interface p8p1 is link-down): default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 dead linkdown 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 dead linkdown 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 90.0.0.1 via 70.0.0.2 dev p7p1 src 70.0.0.1 cache local 80.0.0.1 dev lo src 80.0.0.1 cache <local> 80.0.0.2 via 10.0.5.2 dev p9p1 src 10.0.5.15 cache While the route does remain in the table (so it can be modified if needed rather than being wiped away as it would be if IFF_UP was cleared), the proper next-hop is chosen automatically when the link is down. Now interface p8p1 is linked-up: default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 192.168.56.0/24 dev p2p1 proto kernel scope link src 192.168.56.2 90.0.0.1 via 80.0.0.2 dev p8p1 src 80.0.0.1 cache local 80.0.0.1 dev lo src 80.0.0.1 cache <local> 80.0.0.2 dev p8p1 src 80.0.0.1 cache and the output changes to what one would expect. If the sysctl is not set, the following output would be expected when p8p1 is down: default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 linkdown 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 linkdown 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 Since the dead flag does not appear, there should be no expectation that the kernel would skip using this route due to link being down. v2: Split kernel changes into 2 patches, this actually makes a behavioral change if the sysctl is set. Also took suggestion from Alex to simplify code by only checking sysctl during fib lookup and suggestion from Scott to add a per-interface sysctl. v3: Code clean-ups to make it more readable and efficient as well as a reverse path check fix. v4: Drop binary sysctl v5: Whitespace fixups from Dave v6: Style changes from Dave and checkpatch suggestions v7: One more checkpatch fixup Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Acked-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-23 20:45:37 +03:00
struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
if (nh->nh_flags & RTNH_F_DEAD)
continue;
net: ipv4 sysctl option to ignore routes when nexthop link is down This feature is only enabled with the new per-interface or ipv4 global sysctls called 'ignore_routes_with_linkdown'. net.ipv4.conf.all.ignore_routes_with_linkdown = 0 net.ipv4.conf.default.ignore_routes_with_linkdown = 0 net.ipv4.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, will report to userspace that a route is dead and will no longer resolve to this nexthop when performing a fib lookup. This will signal to userspace that the route will not be selected. The signalling of a RTNH_F_DEAD is only passed to userspace if the sysctl is enabled and link is down. This was done as without it the netlink listeners would have no idea whether or not a nexthop would be selected. The kernel only sets RTNH_F_DEAD internally if the interface has IFF_UP cleared. With the new sysctl set, the following behavior can be observed (interface p8p1 is link-down): default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 dead linkdown 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 dead linkdown 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 90.0.0.1 via 70.0.0.2 dev p7p1 src 70.0.0.1 cache local 80.0.0.1 dev lo src 80.0.0.1 cache <local> 80.0.0.2 via 10.0.5.2 dev p9p1 src 10.0.5.15 cache While the route does remain in the table (so it can be modified if needed rather than being wiped away as it would be if IFF_UP was cleared), the proper next-hop is chosen automatically when the link is down. Now interface p8p1 is linked-up: default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 192.168.56.0/24 dev p2p1 proto kernel scope link src 192.168.56.2 90.0.0.1 via 80.0.0.2 dev p8p1 src 80.0.0.1 cache local 80.0.0.1 dev lo src 80.0.0.1 cache <local> 80.0.0.2 dev p8p1 src 80.0.0.1 cache and the output changes to what one would expect. If the sysctl is not set, the following output would be expected when p8p1 is down: default via 10.0.5.2 dev p9p1 10.0.5.0/24 dev p9p1 proto kernel scope link src 10.0.5.15 70.0.0.0/24 dev p7p1 proto kernel scope link src 70.0.0.1 80.0.0.0/24 dev p8p1 proto kernel scope link src 80.0.0.1 linkdown 90.0.0.0/24 via 80.0.0.2 dev p8p1 metric 1 linkdown 90.0.0.0/24 via 70.0.0.2 dev p7p1 metric 2 Since the dead flag does not appear, there should be no expectation that the kernel would skip using this route due to link being down. v2: Split kernel changes into 2 patches, this actually makes a behavioral change if the sysctl is set. Also took suggestion from Alex to simplify code by only checking sysctl during fib lookup and suggestion from Scott to add a per-interface sysctl. v3: Code clean-ups to make it more readable and efficient as well as a reverse path check fix. v4: Drop binary sysctl v5: Whitespace fixups from Dave v6: Style changes from Dave and checkpatch suggestions v7: One more checkpatch fixup Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Acked-by: Scott Feldman <sfeldma@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-23 20:45:37 +03:00
if (in_dev &&
IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
nh->nh_flags & RTNH_F_LINKDOWN &&
!(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
continue;
if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
if (flp->flowi4_oif &&
flp->flowi4_oif != nh->nh_oif)
continue;
}
if (!(fib_flags & FIB_LOOKUP_NOREF))
atomic_inc(&fi->fib_clntref);
res->prefixlen = KEYLENGTH - fa->fa_slen;
res->nh_sel = nhsel;
res->type = fa->fa_type;
res->scope = fi->fib_scope;
res->fi = fi;
res->table = tb;
res->fa_head = &n->leaf;
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->semantic_match_passed);
#endif
trace_fib_table_lookup_nh(nh);
return err;
}
}
#ifdef CONFIG_IP_FIB_TRIE_STATS
this_cpu_inc(stats->semantic_match_miss);
#endif
goto backtrace;
}
EXPORT_SYMBOL_GPL(fib_table_lookup);
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
struct key_vector *l, struct fib_alias *old)
{
/* record the location of the previous list_info entry */
struct hlist_node **pprev = old->fa_list.pprev;
struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
/* remove the fib_alias from the list */
hlist_del_rcu(&old->fa_list);
/* if we emptied the list this leaf will be freed and we can sort
* out parent suffix lengths as a part of trie_rebalance
*/
if (hlist_empty(&l->leaf)) {
put_child_root(tp, l->key, NULL);
node_free(l);
trie_rebalance(t, tp);
return;
}
/* only access fa if it is pointing at the last valid hlist_node */
if (*pprev)
return;
/* update the trie with the latest suffix length */
l->slen = fa->fa_slen;
leaf_pull_suffix(tp, l);
}
/* Caller must hold RTNL. */
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
{
struct trie *t = (struct trie *) tb->tb_data;
struct fib_alias *fa, *fa_to_delete;
struct key_vector *l, *tp;
u8 plen = cfg->fc_dst_len;
u8 slen = KEYLENGTH - plen;
u8 tos = cfg->fc_tos;
u32 key;
if (plen > KEYLENGTH)
return -EINVAL;
key = ntohl(cfg->fc_dst);
if ((plen < KEYLENGTH) && (key << plen))
return -EINVAL;
l = fib_find_node(t, &tp, key);
if (!l)
return -ESRCH;
fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
if (!fa)
return -ESRCH;
pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
fa_to_delete = NULL;
hlist_for_each_entry_from(fa, fa_list) {
struct fib_info *fi = fa->fa_info;
if ((fa->fa_slen != slen) ||
(fa->tb_id != tb->tb_id) ||
(fa->fa_tos != tos))
break;
if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
(cfg->fc_scope == RT_SCOPE_NOWHERE ||
fa->fa_info->fib_scope == cfg->fc_scope) &&
(!cfg->fc_prefsrc ||
fi->fib_prefsrc == cfg->fc_prefsrc) &&
(!cfg->fc_protocol ||
fi->fib_protocol == cfg->fc_protocol) &&
fib_nh_match(cfg, fi) == 0) {
fa_to_delete = fa;
break;
}
}
if (!fa_to_delete)
return -ESRCH;
switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
cfg->fc_type, tb->tb_id);
rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
&cfg->fc_nlinfo, 0);
if (!plen)
tb->tb_num_default--;
fib_remove_alias(t, tp, l, fa_to_delete);
if (fa_to_delete->fa_state & FA_S_ACCESSED)
rt_cache_flush(cfg->fc_nlinfo.nl_net);
fib_release_info(fa_to_delete->fa_info);
alias_free_mem_rcu(fa_to_delete);
return 0;
}
/* Scan for the next leaf starting at the provided key value */
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
{
struct key_vector *pn, *n = *tn;
unsigned long cindex;
/* this loop is meant to try and find the key in the trie */
do {
/* record parent and next child index */
pn = n;
cindex = (key > pn->key) ? get_index(key, pn) : 0;
if (cindex >> pn->bits)
break;
/* descend into the next child */
n = get_child_rcu(pn, cindex++);
if (!n)
break;
/* guarantee forward progress on the keys */
if (IS_LEAF(n) && (n->key >= key))
goto found;
} while (IS_TNODE(n));
/* this loop will search for the next leaf with a greater key */
while (!IS_TRIE(pn)) {
/* if we exhausted the parent node we will need to climb */
if (cindex >= (1ul << pn->bits)) {
t_key pkey = pn->key;
pn = node_parent_rcu(pn);
cindex = get_index(pkey, pn) + 1;
continue;
}
/* grab the next available node */
n = get_child_rcu(pn, cindex++);
if (!n)
continue;
/* no need to compare keys since we bumped the index */
if (IS_LEAF(n))
goto found;
/* Rescan start scanning in new node */
pn = n;
cindex = 0;
}
*tn = pn;
return NULL; /* Root of trie */
found:
/* if we are at the limit for keys just return NULL for the tnode */
*tn = pn;
return n;
}
static void fib_trie_free(struct fib_table *tb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct key_vector *pn = t->kv;
unsigned long cindex = 1;
struct hlist_node *tmp;
struct fib_alias *fa;
/* walk trie in reverse order and free everything */
for (;;) {
struct key_vector *n;
if (!(cindex--)) {
t_key pkey = pn->key;
if (IS_TRIE(pn))
break;
n = pn;
pn = node_parent(pn);
/* drop emptied tnode */
put_child_root(pn, n->key, NULL);
node_free(n);
cindex = get_index(pkey, pn);
continue;
}
/* grab the next available node */
n = get_child(pn, cindex);
if (!n)
continue;
if (IS_TNODE(n)) {
/* record pn and cindex for leaf walking */
pn = n;
cindex = 1ul << n->bits;
continue;
}
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
hlist_del_rcu(&fa->fa_list);
alias_free_mem_rcu(fa);
}
put_child_root(pn, n->key, NULL);
node_free(n);
}
#ifdef CONFIG_IP_FIB_TRIE_STATS
free_percpu(t->stats);
#endif
kfree(tb);
}
struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
struct trie *ot = (struct trie *)oldtb->tb_data;
struct key_vector *l, *tp = ot->kv;
struct fib_table *local_tb;
struct fib_alias *fa;
struct trie *lt;
t_key key = 0;
if (oldtb->tb_data == oldtb->__data)
return oldtb;
local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
if (!local_tb)
return NULL;
lt = (struct trie *)local_tb->tb_data;
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
struct key_vector *local_l = NULL, *local_tp;
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
struct fib_alias *new_fa;
if (local_tb->tb_id != fa->tb_id)
continue;
/* clone fa for new local table */
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
if (!new_fa)
goto out;
memcpy(new_fa, fa, sizeof(*fa));
/* insert clone into table */
if (!local_l)
local_l = fib_find_node(lt, &local_tp, l->key);
if (fib_insert_alias(lt, local_tp, local_l, new_fa,
NULL, l->key))
goto out;
}
/* stop loop if key wrapped back to 0 */
key = l->key + 1;
if (key < l->key)
break;
}
return local_tb;
out:
fib_trie_free(local_tb);
return NULL;
}
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct key_vector *pn = t->kv;
unsigned long cindex = 1;
struct hlist_node *tmp;
struct fib_alias *fa;
/* walk trie in reverse order */
for (;;) {
unsigned char slen = 0;
struct key_vector *n;
if (!(cindex--)) {
t_key pkey = pn->key;
/* cannot resize the trie vector */
if (IS_TRIE(pn))
break;
/* resize completed node */
pn = resize(t, pn);
cindex = get_index(pkey, pn);
continue;
}
/* grab the next available node */
n = get_child(pn, cindex);
if (!n)
continue;
if (IS_TNODE(n)) {
/* record pn and cindex for leaf walking */
pn = n;
cindex = 1ul << n->bits;
continue;
}
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
struct fib_info *fi = fa->fa_info;
/* if alias was cloned to local then we just
* need to remove the local copy from main
*/
if (tb->tb_id != fa->tb_id) {
hlist_del_rcu(&fa->fa_list);
alias_free_mem_rcu(fa);
continue;
}
/* record local slen */
slen = fa->fa_slen;
if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
continue;
switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
fi, fa->fa_tos, fa->fa_type,
tb->tb_id);
}
/* update leaf slen */
n->slen = slen;
if (hlist_empty(&n->leaf)) {
put_child_root(pn, n->key, NULL);
node_free(n);
}
}
}
/* Caller must hold RTNL. */
int fib_table_flush(struct fib_table *tb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct key_vector *pn = t->kv;
unsigned long cindex = 1;
struct hlist_node *tmp;
struct fib_alias *fa;
int found = 0;
/* walk trie in reverse order */
for (;;) {
unsigned char slen = 0;
struct key_vector *n;
if (!(cindex--)) {
t_key pkey = pn->key;
/* cannot resize the trie vector */
if (IS_TRIE(pn))
break;
/* resize completed node */
pn = resize(t, pn);
cindex = get_index(pkey, pn);
continue;
}
/* grab the next available node */
n = get_child(pn, cindex);
if (!n)
continue;
if (IS_TNODE(n)) {
/* record pn and cindex for leaf walking */
pn = n;
cindex = 1ul << n->bits;
continue;
}
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
struct fib_info *fi = fa->fa_info;
if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
slen = fa->fa_slen;
continue;
}
switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
fi, fa->fa_tos, fa->fa_type,
tb->tb_id);
hlist_del_rcu(&fa->fa_list);
fib_release_info(fa->fa_info);
alias_free_mem_rcu(fa);
found++;
}
/* update leaf slen */
n->slen = slen;
if (hlist_empty(&n->leaf)) {
put_child_root(pn, n->key, NULL);
node_free(n);
}
}
pr_debug("trie_flush found=%d\n", found);
return found;
}
static void __trie_free_rcu(struct rcu_head *head)
{
struct fib_table *tb = container_of(head, struct fib_table, rcu);
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie *t = (struct trie *)tb->tb_data;
if (tb->tb_data == tb->__data)
free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
kfree(tb);
}
void fib_free_table(struct fib_table *tb)
{
call_rcu(&tb->rcu, __trie_free_rcu);
}
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
struct sk_buff *skb, struct netlink_callback *cb)
{
__be32 xkey = htonl(l->key);
struct fib_alias *fa;
int i, s_i;
s_i = cb->args[4];
i = 0;
/* rcu_read_lock is hold by caller */
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
if (i < s_i) {
i++;
continue;
}
if (tb->tb_id != fa->tb_id) {
i++;
continue;
}
if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWROUTE,
tb->tb_id,
fa->fa_type,
xkey,
KEYLENGTH - fa->fa_slen,
fa->fa_tos,
fa->fa_info, NLM_F_MULTI) < 0) {
cb->args[4] = i;
return -1;
}
i++;
}
cb->args[4] = i;
return skb->len;
}
/* rcu_read_lock needs to be hold by caller from readside */
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
struct netlink_callback *cb)
{
struct trie *t = (struct trie *)tb->tb_data;
struct key_vector *l, *tp = t->kv;
/* Dump starting at last key.
* Note: 0.0.0.0/0 (ie default) is first key.
*/
int count = cb->args[2];
t_key key = cb->args[3];
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
cb->args[3] = key;
cb->args[2] = count;
return -1;
}
++count;
key = l->key + 1;
memset(&cb->args[4], 0,
sizeof(cb->args) - 4*sizeof(cb->args[0]));
/* stop loop if key wrapped back to 0 */
if (key < l->key)
break;
}
cb->args[3] = key;
cb->args[2] = count;
return skb->len;
}
void __init fib_trie_init(void)
{
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
sizeof(struct fib_alias),
0, SLAB_PANIC, NULL);
trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
LEAF_SIZE,
0, SLAB_PANIC, NULL);
}
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
{
struct fib_table *tb;
struct trie *t;
size_t sz = sizeof(*tb);
if (!alias)
sz += sizeof(struct trie);
tb = kzalloc(sz, GFP_KERNEL);
if (!tb)
return NULL;
tb->tb_id = id;
tb->tb_num_default = 0;
tb->tb_data = (alias ? alias->__data : tb->__data);
if (alias)
return tb;
t = (struct trie *) tb->tb_data;
t->kv[0].pos = KEYLENGTH;
t->kv[0].slen = KEYLENGTH;
#ifdef CONFIG_IP_FIB_TRIE_STATS
t->stats = alloc_percpu(struct trie_use_stats);
if (!t->stats) {
kfree(tb);
tb = NULL;
}
#endif
return tb;
}
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
struct seq_net_private p;
struct fib_table *tb;
struct key_vector *tnode;
unsigned int index;
unsigned int depth;
};
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
{
unsigned long cindex = iter->index;
struct key_vector *pn = iter->tnode;
t_key pkey;
pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
iter->tnode, iter->index, iter->depth);
while (!IS_TRIE(pn)) {
while (cindex < child_length(pn)) {
struct key_vector *n = get_child_rcu(pn, cindex++);
if (!n)
continue;
if (IS_LEAF(n)) {
iter->tnode = pn;
iter->index = cindex;
} else {
/* push down one level */
iter->tnode = n;
iter->index = 0;
++iter->depth;
}
return n;
}
/* Current node exhausted, pop back up */
pkey = pn->key;
pn = node_parent_rcu(pn);
cindex = get_index(pkey, pn) + 1;
--iter->depth;
}
/* record root node so further searches know we are done */
iter->tnode = pn;
iter->index = 0;
return NULL;
}
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
struct trie *t)
{
struct key_vector *n, *pn;
if (!t)
return NULL;
pn = t->kv;
n = rcu_dereference(pn->tnode[0]);
if (!n)
return NULL;
if (IS_TNODE(n)) {
iter->tnode = n;
iter->index = 0;
iter->depth = 1;
} else {
iter->tnode = pn;
iter->index = 0;
iter->depth = 0;
}
return n;
}
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
struct key_vector *n;
struct fib_trie_iter iter;
memset(s, 0, sizeof(*s));
rcu_read_lock();
for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
if (IS_LEAF(n)) {
struct fib_alias *fa;
s->leaves++;
s->totdepth += iter.depth;
if (iter.depth > s->maxdepth)
s->maxdepth = iter.depth;
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
++s->prefixes;
} else {
s->tnodes++;
if (n->bits < MAX_STAT_DEPTH)
s->nodesizes[n->bits]++;
s->nullpointers += tn_info(n)->empty_children;
}
}
rcu_read_unlock();
}
/*
* This outputs /proc/net/fib_triestats
*/
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
{
unsigned int i, max, pointers, bytes, avdepth;
if (stat->leaves)
avdepth = stat->totdepth*100 / stat->leaves;
else
avdepth = 0;
seq_printf(seq, "\tAver depth: %u.%02d\n",
avdepth / 100, avdepth % 100);
seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
bytes = LEAF_SIZE * stat->leaves;
seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
bytes += sizeof(struct fib_alias) * stat->prefixes;
seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
bytes += TNODE_SIZE(0) * stat->tnodes;
max = MAX_STAT_DEPTH;
while (max > 0 && stat->nodesizes[max-1] == 0)
max--;
pointers = 0;
for (i = 1; i < max; i++)
if (stat->nodesizes[i] != 0) {
seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
pointers += (1<<i) * stat->nodesizes[i];
}
seq_putc(seq, '\n');
seq_printf(seq, "\tPointers: %u\n", pointers);
bytes += sizeof(struct key_vector *) * pointers;
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
}
#ifdef CONFIG_IP_FIB_TRIE_STATS
static void trie_show_usage(struct seq_file *seq,
const struct trie_use_stats __percpu *stats)
{
struct trie_use_stats s = { 0 };
int cpu;
/* loop through all of the CPUs and gather up the stats */
for_each_possible_cpu(cpu) {
const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
s.gets += pcpu->gets;
s.backtrack += pcpu->backtrack;
s.semantic_match_passed += pcpu->semantic_match_passed;
s.semantic_match_miss += pcpu->semantic_match_miss;
s.null_node_hit += pcpu->null_node_hit;
s.resize_node_skipped += pcpu->resize_node_skipped;
}
seq_printf(seq, "\nCounters:\n---------\n");
seq_printf(seq, "gets = %u\n", s.gets);
seq_printf(seq, "backtracks = %u\n", s.backtrack);
seq_printf(seq, "semantic match passed = %u\n",
s.semantic_match_passed);
seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
}
#endif /* CONFIG_IP_FIB_TRIE_STATS */
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
{
if (tb->tb_id == RT_TABLE_LOCAL)
seq_puts(seq, "Local:\n");
else if (tb->tb_id == RT_TABLE_MAIN)
seq_puts(seq, "Main:\n");
else
seq_printf(seq, "Id %d:\n", tb->tb_id);
}
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
struct net *net = (struct net *)seq->private;
unsigned int h;
seq_printf(seq,
"Basic info: size of leaf:"
" %Zd bytes, size of tnode: %Zd bytes.\n",
LEAF_SIZE, TNODE_SIZE(0));
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
struct fib_table *tb;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:06:00 +04:00
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
struct trie *t = (struct trie *) tb->tb_data;
struct trie_stat stat;
if (!t)
continue;
fib_table_print(seq, tb);
trie_collect_stats(t, &stat);
trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(seq, t->stats);
#endif
}
}
return 0;
}
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
{
return single_open_net(inode, file, fib_triestat_seq_show);
}
static const struct file_operations fib_triestat_fops = {
.owner = THIS_MODULE,
.open = fib_triestat_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release_net,
};
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
{
struct fib_trie_iter *iter = seq->private;
struct net *net = seq_file_net(seq);
loff_t idx = 0;
unsigned int h;
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
struct fib_table *tb;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:06:00 +04:00
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
struct key_vector *n;
for (n = fib_trie_get_first(iter,
(struct trie *) tb->tb_data);
n; n = fib_trie_get_next(iter))
if (pos == idx++) {
iter->tb = tb;
return n;
}
}
}
return NULL;
}
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
rcu_read_lock();
return fib_trie_get_idx(seq, *pos);
}
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct fib_trie_iter *iter = seq->private;
struct net *net = seq_file_net(seq);
struct fib_table *tb = iter->tb;
struct hlist_node *tb_node;
unsigned int h;
struct key_vector *n;
++*pos;
/* next node in same table */
n = fib_trie_get_next(iter);
if (n)
return n;
/* walk rest of this hash chain */
h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
if (n)
goto found;
}
/* new hash chain */
while (++h < FIB_TABLE_HASHSZ) {
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:06:00 +04:00
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
if (n)
goto found;
}
}
return NULL;
found:
iter->tb = tb;
return n;
}
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
__releases(RCU)
{
rcu_read_unlock();
}
static void seq_indent(struct seq_file *seq, int n)
{
while (n-- > 0)
seq_puts(seq, " ");
}
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
{
switch (s) {
case RT_SCOPE_UNIVERSE: return "universe";
case RT_SCOPE_SITE: return "site";
case RT_SCOPE_LINK: return "link";
case RT_SCOPE_HOST: return "host";
case RT_SCOPE_NOWHERE: return "nowhere";
default:
snprintf(buf, len, "scope=%d", s);
return buf;
}
}
static const char *const rtn_type_names[__RTN_MAX] = {
[RTN_UNSPEC] = "UNSPEC",
[RTN_UNICAST] = "UNICAST",
[RTN_LOCAL] = "LOCAL",
[RTN_BROADCAST] = "BROADCAST",
[RTN_ANYCAST] = "ANYCAST",
[RTN_MULTICAST] = "MULTICAST",
[RTN_BLACKHOLE] = "BLACKHOLE",
[RTN_UNREACHABLE] = "UNREACHABLE",
[RTN_PROHIBIT] = "PROHIBIT",
[RTN_THROW] = "THROW",
[RTN_NAT] = "NAT",
[RTN_XRESOLVE] = "XRESOLVE",
};
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
{
if (t < __RTN_MAX && rtn_type_names[t])
return rtn_type_names[t];
snprintf(buf, len, "type %u", t);
return buf;
}
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
{
const struct fib_trie_iter *iter = seq->private;
struct key_vector *n = v;
if (IS_TRIE(node_parent_rcu(n)))
fib_table_print(seq, iter->tb);
if (IS_TNODE(n)) {
__be32 prf = htonl(n->key);
seq_indent(seq, iter->depth-1);
seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
&prf, KEYLENGTH - n->pos - n->bits, n->bits,
tn_info(n)->full_children,
tn_info(n)->empty_children);
} else {
__be32 val = htonl(n->key);
struct fib_alias *fa;
seq_indent(seq, iter->depth);
seq_printf(seq, " |-- %pI4\n", &val);
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
char buf1[32], buf2[32];
seq_indent(seq, iter->depth + 1);
seq_printf(seq, " /%zu %s %s",
KEYLENGTH - fa->fa_slen,
rtn_scope(buf1, sizeof(buf1),
fa->fa_info->fib_scope),
rtn_type(buf2, sizeof(buf2),
fa->fa_type));
if (fa->fa_tos)
seq_printf(seq, " tos=%d", fa->fa_tos);
seq_putc(seq, '\n');
}
}
return 0;
}
static const struct seq_operations fib_trie_seq_ops = {
.start = fib_trie_seq_start,
.next = fib_trie_seq_next,
.stop = fib_trie_seq_stop,
.show = fib_trie_seq_show,
};
static int fib_trie_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &fib_trie_seq_ops,
sizeof(struct fib_trie_iter));
}
static const struct file_operations fib_trie_fops = {
.owner = THIS_MODULE,
.open = fib_trie_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
struct fib_route_iter {
struct seq_net_private p;
struct fib_table *main_tb;
struct key_vector *tnode;
loff_t pos;
t_key key;
};
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
loff_t pos)
{
struct key_vector *l, **tp = &iter->tnode;
t_key key;
/* use cache location of next-to-find key */
if (iter->pos > 0 && pos >= iter->pos) {
pos -= iter->pos;
key = iter->key;
} else {
iter->pos = 0;
key = 0;
}
while ((l = leaf_walk_rcu(tp, key)) != NULL) {
key = l->key + 1;
iter->pos++;
if (--pos <= 0)
break;
l = NULL;
/* handle unlikely case of a key wrap */
if (!key)
break;
}
if (l)
iter->key = key; /* remember it */
else
iter->pos = 0; /* forget it */
return l;
}
static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
struct fib_route_iter *iter = seq->private;
struct fib_table *tb;
struct trie *t;
rcu_read_lock();
tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
if (!tb)
return NULL;
iter->main_tb = tb;
ipv4: panic in leaf_walk_rcu due to stale node pointer Panic occurs when issuing "cat /proc/net/route" whilst populating FIB with > 1M routes. Use of cached node pointer in fib_route_get_idx is unsafe. BUG: unable to handle kernel paging request at ffffc90001630024 IP: [<ffffffff814cf6a0>] leaf_walk_rcu+0x10/0xe0 PGD 11b08d067 PUD 11b08e067 PMD dac4b067 PTE 0 Oops: 0000 [#1] SMP Modules linked in: nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscac snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep virti acpi_cpufreq button parport_pc ppdev lp parport autofs4 ext4 crc16 mbcache jbd tio_ring virtio floppy uhci_hcd ehci_hcd usbcore usb_common libata scsi_mod CPU: 1 PID: 785 Comm: cat Not tainted 4.2.0-rc8+ #4 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 task: ffff8800da1c0bc0 ti: ffff88011a05c000 task.ti: ffff88011a05c000 RIP: 0010:[<ffffffff814cf6a0>] [<ffffffff814cf6a0>] leaf_walk_rcu+0x10/0xe0 RSP: 0018:ffff88011a05fda0 EFLAGS: 00010202 RAX: ffff8800d8a40c00 RBX: ffff8800da4af940 RCX: ffff88011a05ff20 RDX: ffffc90001630020 RSI: 0000000001013531 RDI: ffff8800da4af950 RBP: 0000000000000000 R08: ffff8800da1f9a00 R09: 0000000000000000 R10: ffff8800db45b7e4 R11: 0000000000000246 R12: ffff8800da4af950 R13: ffff8800d97a74c0 R14: 0000000000000000 R15: ffff8800d97a7480 FS: 00007fd3970e0700(0000) GS:ffff88011fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: ffffc90001630024 CR3: 000000011a7e4000 CR4: 00000000000006e0 Stack: ffffffff814d00d3 0000000000000000 ffff88011a05ff20 ffff8800da1f9a00 ffffffff811dd8b9 0000000000000800 0000000000020000 00007fd396f35000 ffffffff811f8714 0000000000003431 ffffffff8138dce0 0000000000000f80 Call Trace: [<ffffffff814d00d3>] ? fib_route_seq_start+0x93/0xc0 [<ffffffff811dd8b9>] ? seq_read+0x149/0x380 [<ffffffff811f8714>] ? fsnotify+0x3b4/0x500 [<ffffffff8138dce0>] ? process_echoes+0x70/0x70 [<ffffffff8121cfa7>] ? proc_reg_read+0x47/0x70 [<ffffffff811bb823>] ? __vfs_read+0x23/0xd0 [<ffffffff811bbd42>] ? rw_verify_area+0x52/0xf0 [<ffffffff811bbe61>] ? vfs_read+0x81/0x120 [<ffffffff811bcbc2>] ? SyS_read+0x42/0xa0 [<ffffffff81549ab2>] ? entry_SYSCALL_64_fastpath+0x16/0x75 Code: 48 85 c0 75 d8 f3 c3 31 c0 c3 f3 c3 66 66 66 66 66 66 2e 0f 1f 84 00 00 a 04 89 f0 33 02 44 89 c9 48 d3 e8 0f b6 4a 05 49 89 RIP [<ffffffff814cf6a0>] leaf_walk_rcu+0x10/0xe0 RSP <ffff88011a05fda0> CR2: ffffc90001630024 Signed-off-by: Dave Forster <dforster@brocade.com> Acked-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 17:13:01 +03:00
t = (struct trie *)tb->tb_data;
iter->tnode = t->kv;
if (*pos != 0)
return fib_route_get_idx(iter, *pos);
iter->pos = 0;
iter->key = 0;
return SEQ_START_TOKEN;
}
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct fib_route_iter *iter = seq->private;
struct key_vector *l = NULL;
t_key key = iter->key;
++*pos;
/* only allow key of 0 for start of sequence */
if ((v == SEQ_START_TOKEN) || key)
l = leaf_walk_rcu(&iter->tnode, key);
if (l) {
iter->key = l->key + 1;
iter->pos++;
} else {
iter->pos = 0;
}
return l;
}
static void fib_route_seq_stop(struct seq_file *seq, void *v)
__releases(RCU)
{
rcu_read_unlock();
}
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
{
unsigned int flags = 0;
if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
flags = RTF_REJECT;
if (fi && fi->fib_nh->nh_gw)
flags |= RTF_GATEWAY;
if (mask == htonl(0xFFFFFFFF))
flags |= RTF_HOST;
flags |= RTF_UP;
return flags;
}
/*
* This outputs /proc/net/route.
* The format of the file is not supposed to be changed
* and needs to be same as fib_hash output to avoid breaking
* legacy utilities
*/
static int fib_route_seq_show(struct seq_file *seq, void *v)
{
struct fib_route_iter *iter = seq->private;
struct fib_table *tb = iter->main_tb;
struct fib_alias *fa;
struct key_vector *l = v;
__be32 prefix;
if (v == SEQ_START_TOKEN) {
seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
"\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
"\tWindow\tIRTT");
return 0;
}
prefix = htonl(l->key);
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
const struct fib_info *fi = fa->fa_info;
__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
if ((fa->fa_type == RTN_BROADCAST) ||
(fa->fa_type == RTN_MULTICAST))
continue;
if (fa->tb_id != tb->tb_id)
continue;
seq_setwidth(seq, 127);
if (fi)
seq_printf(seq,
"%s\t%08X\t%08X\t%04X\t%d\t%u\t"
"%d\t%08X\t%d\t%u\t%u",
fi->fib_dev ? fi->fib_dev->name : "*",
prefix,
fi->fib_nh->nh_gw, flags, 0, 0,
fi->fib_priority,
mask,
(fi->fib_advmss ?
fi->fib_advmss + 40 : 0),
fi->fib_window,
fi->fib_rtt >> 3);
else
seq_printf(seq,
"*\t%08X\t%08X\t%04X\t%d\t%u\t"
"%d\t%08X\t%d\t%u\t%u",
prefix, 0, flags, 0, 0, 0,
mask, 0, 0, 0);
seq_pad(seq, '\n');
}
return 0;
}
static const struct seq_operations fib_route_seq_ops = {
.start = fib_route_seq_start,
.next = fib_route_seq_next,
.stop = fib_route_seq_stop,
.show = fib_route_seq_show,
};
static int fib_route_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &fib_route_seq_ops,
sizeof(struct fib_route_iter));
}
static const struct file_operations fib_route_fops = {
.owner = THIS_MODULE,
.open = fib_route_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
int __net_init fib_proc_init(struct net *net)
{
if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
goto out1;
if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
&fib_triestat_fops))
goto out2;
if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
goto out3;
return 0;
out3:
remove_proc_entry("fib_triestat", net->proc_net);
out2:
remove_proc_entry("fib_trie", net->proc_net);
out1:
return -ENOMEM;
}
void __net_exit fib_proc_exit(struct net *net)
{
remove_proc_entry("fib_trie", net->proc_net);
remove_proc_entry("fib_triestat", net->proc_net);
remove_proc_entry("route", net->proc_net);
}
#endif /* CONFIG_PROC_FS */