WSL2-Linux-Kernel/arch/arm/include/debug/brcmstb.S

183 строки
5.8 KiB
ArmAsm
Исходник Обычный вид История

/*
* Copyright (C) 2016 Broadcom
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/serial_reg.h>
#include <asm/cputype.h>
/* Physical register offset and virtual register offset */
#define REG_PHYS_BASE 0xf0000000
#define REG_PHYS_BASE_V7 0x08000000
#define REG_VIRT_BASE 0xfc000000
#define REG_PHYS_ADDR(x) ((x) + REG_PHYS_BASE)
#define REG_PHYS_ADDR_V7(x) ((x) + REG_PHYS_BASE_V7)
/* Product id can be read from here */
#define SUN_TOP_CTRL_BASE REG_PHYS_ADDR(0x404000)
#define SUN_TOP_CTRL_BASE_V7 REG_PHYS_ADDR_V7(0x404000)
#define UARTA_3390 REG_PHYS_ADDR(0x40a900)
#define UARTA_72116 UARTA_7255
#define UARTA_7250 REG_PHYS_ADDR(0x40b400)
#define UARTA_7255 REG_PHYS_ADDR(0x40c000)
#define UARTA_7260 UARTA_7255
#define UARTA_7268 UARTA_7255
#define UARTA_7271 UARTA_7268
#define UARTA_7278 REG_PHYS_ADDR_V7(0x40c000)
#define UARTA_7216 UARTA_7278
#define UARTA_72164 UARTA_7278
#define UARTA_72165 UARTA_7278
#define UARTA_7364 REG_PHYS_ADDR(0x40b000)
#define UARTA_7366 UARTA_7364
#define UARTA_74371 REG_PHYS_ADDR(0x406b00)
#define UARTA_7439 REG_PHYS_ADDR(0x40a900)
#define UARTA_7445 REG_PHYS_ADDR(0x40ab00)
#define UART_SHIFT 2
#define checkuart(rp, rv, family_id, family) \
/* Load family id */ \
ldr rp, =family_id ; \
/* Compare SUN_TOP_CTRL value against it */ \
cmp rp, rv ; \
/* Passed test, load address */ \
ldreq rp, =UARTA_##family ; \
/* Jump to save UART address */ \
beq 91f
.macro addruart, rp, rv, tmp
adr \rp, 99f @ actual addr of 99f
ldr \rv, [\rp] @ linked addr is stored there
sub \rv, \rv, \rp @ offset between the two
ldr \rp, [\rp, #4] @ linked brcmstb_uart_config
sub \tmp, \rp, \rv @ actual brcmstb_uart_config
ldr \rp, [\tmp] @ Load brcmstb_uart_config
cmp \rp, #1 @ needs initialization?
bne 100f @ no; go load the addresses
mov \rv, #0 @ yes; record init is done
str \rv, [\tmp]
/* Check for V7 memory map if B53 */
mrc p15, 0, \rv, c0, c0, 0 @ get Main ID register
ldr \rp, =ARM_CPU_PART_MASK
and \rv, \rv, \rp
ldr \rp, =ARM_CPU_PART_BRAHMA_B53 @ check for B53 CPU
cmp \rv, \rp
bne 10f
/* if PERIPHBASE doesn't overlap REG_PHYS_BASE use V7 map */
mrc p15, 1, \rv, c15, c3, 0 @ get PERIPHBASE from CBAR
ands \rv, \rv, #REG_PHYS_BASE
ldreq \rp, =SUN_TOP_CTRL_BASE_V7
/* Check SUN_TOP_CTRL base */
10: ldrne \rp, =SUN_TOP_CTRL_BASE @ load SUN_TOP_CTRL PA
ldr \rv, [\rp, #0] @ get register contents
ARM_BE8( rev \rv, \rv )
and \rv, \rv, #0xffffff00 @ strip revision bits [7:0]
/* Chip specific detection starts here */
20: checkuart(\rp, \rv, 0x33900000, 3390)
21: checkuart(\rp, \rv, 0x07211600, 72116)
22: checkuart(\rp, \rv, 0x72160000, 7216)
23: checkuart(\rp, \rv, 0x07216400, 72164)
24: checkuart(\rp, \rv, 0x07216500, 72165)
25: checkuart(\rp, \rv, 0x72500000, 7250)
26: checkuart(\rp, \rv, 0x72550000, 7255)
27: checkuart(\rp, \rv, 0x72600000, 7260)
28: checkuart(\rp, \rv, 0x72680000, 7268)
29: checkuart(\rp, \rv, 0x72710000, 7271)
30: checkuart(\rp, \rv, 0x72780000, 7278)
31: checkuart(\rp, \rv, 0x73640000, 7364)
32: checkuart(\rp, \rv, 0x73660000, 7366)
33: checkuart(\rp, \rv, 0x07437100, 74371)
34: checkuart(\rp, \rv, 0x74390000, 7439)
35: checkuart(\rp, \rv, 0x74450000, 7445)
/* No valid UART found */
90: mov \rp, #0
/* fall through */
/* Record whichever UART we chose */
91: str \rp, [\tmp, #4] @ Store in brcmstb_uart_phys
cmp \rp, #0 @ Valid UART address?
bne 92f @ Yes, go process it
str \rp, [\tmp, #8] @ Store 0 in brcmstb_uart_virt
b 100f @ Done
92: and \rv, \rp, #0xffffff @ offset within 16MB section
add \rv, \rv, #REG_VIRT_BASE
str \rv, [\tmp, #8] @ Store in brcmstb_uart_virt
b 100f
.align
99: .word .
.word brcmstb_uart_config
.ltorg
/* Load previously selected UART address */
100: ldr \rp, [\tmp, #4] @ Load brcmstb_uart_phys
ldr \rv, [\tmp, #8] @ Load brcmstb_uart_virt
.endm
.macro store, rd, rx:vararg
ARM_BE8( rev \rd, \rd )
str \rd, \rx
.endm
.macro load, rd, rx:vararg
ldr \rd, \rx
ARM_BE8( rev \rd, \rd )
.endm
.macro senduart,rd,rx
store \rd, [\rx, #UART_TX << UART_SHIFT]
.endm
.macro busyuart,rd,rx
1002: load \rd, [\rx, #UART_LSR << UART_SHIFT]
and \rd, \rd, #UART_LSR_TEMT | UART_LSR_THRE
teq \rd, #UART_LSR_TEMT | UART_LSR_THRE
bne 1002b
.endm
ARM: 9004/1: debug: Split waituart to CTS and TXRDY This patch was triggered by a remark from Russell that introducing a call to the waituart (needed to fix debug prints on the Qualcomm platforms) was dangerous because in some cases this will involve waiting for a modem CTS (clear to send) signal, and debug messages would maybe not work on platforms with no modem connected to the UART port: they will just hang waiting for the modem to assert CTS and this might never happen. Looking through all UART debug drivers implementing the waituart macro I discovered that all users except two actually use this macro to check if the UART is ready for TX, let's call this TXRDY. Only two debug UART drivers actually check for CTS: - arch/arm/include/debug/8250.S - arch/arm/include/debug/tegra.S The former is very significant since the 8250 is possibly the most common UART on the planet. We have the following problem: the semantics of waituart are ambiguous making it dangerous to introduce the macro to debug code fixing debug prints for Qualcomm. To start to pry this problem apart, this patch does the following: - Convert all debug UART drivers to define two macros: - waituartcts with the clear semantic to wait for CTS to be asserted - waituarttxrdy with the clear semantic to wait for the TX capability of the UART to be ready - When doing this take care to assign the right function to each drivers macro, so they now do exactly the above. - Update the three sites in the kernel invoking the waituart macro to call waituartcts/waituarttxrdy in sequence, so that the functional impact on the kernel should be zero. After this we can start to change the code sites using this code to do the right thing. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2020-08-28 01:25:37 +03:00
.macro waituarttxrdy,rd,rx
.endm
.macro waituartcts,rd,rx
.endm
/*
* Storage for the state maintained by the macros above.
*
* In the kernel proper, this data is located in arch/arm/mach-bcm/brcmstb.c.
* That's because this header is included from multiple files, and we only
* want a single copy of the data. In particular, the UART probing code above
* assumes it's running using physical addresses. This is true when this file
* is included from head.o, but not when included from debug.o. So we need
* to share the probe results between the two copies, rather than having
* to re-run the probing again later.
*
* In the decompressor, we put the symbol/storage right here, since common.c
* isn't included in the decompressor build. This symbol gets put in .text
* even though it's really data, since .data is discarded from the
* decompressor. Luckily, .text is writeable in the decompressor, unless
* CONFIG_ZBOOT_ROM. That dependency is handled in arch/arm/Kconfig.debug.
*/
#if defined(ZIMAGE)
brcmstb_uart_config:
/* Debug UART initialization required */
.word 1
/* Debug UART physical address */
.word 0
/* Debug UART virtual address */
.word 0
#endif