WSL2-Linux-Kernel/drivers/net/wan/dscc4.c

2074 строки
54 KiB
C
Исходник Обычный вид История

/*
* drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
*
* This software may be used and distributed according to the terms of the
* GNU General Public License.
*
* The author may be reached as romieu@cogenit.fr.
* Specific bug reports/asian food will be welcome.
*
* Special thanks to the nice people at CS-Telecom for the hardware and the
* access to the test/measure tools.
*
*
* Theory of Operation
*
* I. Board Compatibility
*
* This device driver is designed for the Siemens PEB20534 4 ports serial
* controller as found on Etinc PCISYNC cards. The documentation for the
* chipset is available at http://www.infineon.com:
* - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
* 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
* - Application Hint "Management of DSCC4 on-chip FIFO resources".
* - Errata sheet DS5 (courtesy of Michael Skerritt).
* Jens David has built an adapter based on the same chipset. Take a look
* at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
* driver.
* Sample code (2 revisions) is available at Infineon.
*
* II. Board-specific settings
*
* Pcisync can transmit some clock signal to the outside world on the
* *first two* ports provided you put a quartz and a line driver on it and
* remove the jumpers. The operation is described on Etinc web site. If you
* go DCE on these ports, don't forget to use an adequate cable.
*
* Sharing of the PCI interrupt line for this board is possible.
*
* III. Driver operation
*
* The rx/tx operations are based on a linked list of descriptors. The driver
* doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
* I tried to fix it, the more it started to look like (convoluted) software
* mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
* this a rfc2119 MUST.
*
* Tx direction
* When the tx ring is full, the xmit routine issues a call to netdev_stop.
* The device is supposed to be enabled again during an ALLS irq (we could
* use HI but as it's easy to lose events, it's fscked).
*
* Rx direction
* The received frames aren't supposed to span over multiple receiving areas.
* I may implement it some day but it isn't the highest ranked item.
*
* IV. Notes
* The current error (XDU, RFO) recovery code is untested.
* So far, RDO takes his RX channel down and the right sequence to enable it
* again is still a mistery. If RDO happens, plan a reboot. More details
* in the code (NB: as this happens, TX still works).
* Don't mess the cables during operation, especially on DTE ports. I don't
* suggest it for DCE either but at least one can get some messages instead
* of a complete instant freeze.
* Tests are done on Rev. 20 of the silicium. The RDO handling changes with
* the documentation/chipset releases.
*
* TODO:
* - test X25.
* - use polling at high irq/s,
* - performance analysis,
* - endianness.
*
* 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
* - Contribution to support the new generic HDLC layer.
*
* 2002/01 Ueimor
* - old style interface removal
* - dscc4_release_ring fix (related to DMA mapping)
* - hard_start_xmit fix (hint: TxSizeMax)
* - misc crapectomy.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/hdlc.h>
#include <linux/mutex.h>
/* Version */
static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
static int debug;
static int quartz;
#ifdef CONFIG_DSCC4_PCI_RST
static DEFINE_MUTEX(dscc4_mutex);
static u32 dscc4_pci_config_store[16];
#endif
#define DRV_NAME "dscc4"
#undef DSCC4_POLLING
/* Module parameters */
MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
MODULE_LICENSE("GPL");
module_param(debug, int, 0);
MODULE_PARM_DESC(debug,"Enable/disable extra messages");
module_param(quartz, int, 0);
MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
/* Structures */
struct thingie {
int define;
u32 bits;
};
struct TxFD {
__le32 state;
__le32 next;
__le32 data;
__le32 complete;
u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
/* FWIW, datasheet calls that "dummy" and says that card
* never looks at it; neither does the driver */
};
struct RxFD {
__le32 state1;
__le32 next;
__le32 data;
__le32 state2;
__le32 end;
};
#define DUMMY_SKB_SIZE 64
#define TX_LOW 8
#define TX_RING_SIZE 32
#define RX_RING_SIZE 32
#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
#define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
#define TX_TIMEOUT (HZ/10)
#define DSCC4_HZ_MAX 33000000
#define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
#define dev_per_card 4
#define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
#define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
#define TO_SIZE(state) (((state) >> 16) & 0x1fff)
/*
* Given the operating range of Linux HDLC, the 2 defines below could be
* made simpler. However they are a fine reminder for the limitations of
* the driver: it's better to stay < TxSizeMax and < RxSizeMax.
*/
#define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
#define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
#define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
#define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
struct dscc4_pci_priv {
__le32 *iqcfg;
int cfg_cur;
spinlock_t lock;
struct pci_dev *pdev;
struct dscc4_dev_priv *root;
dma_addr_t iqcfg_dma;
u32 xtal_hz;
};
struct dscc4_dev_priv {
struct sk_buff *rx_skbuff[RX_RING_SIZE];
struct sk_buff *tx_skbuff[TX_RING_SIZE];
struct RxFD *rx_fd;
struct TxFD *tx_fd;
__le32 *iqrx;
__le32 *iqtx;
/* FIXME: check all the volatile are required */
volatile u32 tx_current;
u32 rx_current;
u32 iqtx_current;
u32 iqrx_current;
volatile u32 tx_dirty;
volatile u32 ltda;
u32 rx_dirty;
u32 lrda;
dma_addr_t tx_fd_dma;
dma_addr_t rx_fd_dma;
dma_addr_t iqtx_dma;
dma_addr_t iqrx_dma;
u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
struct timer_list timer;
struct dscc4_pci_priv *pci_priv;
spinlock_t lock;
int dev_id;
volatile u32 flags;
u32 timer_help;
unsigned short encoding;
unsigned short parity;
struct net_device *dev;
sync_serial_settings settings;
void __iomem *base_addr;
u32 __pad __attribute__ ((aligned (4)));
};
/* GLOBAL registers definitions */
#define GCMDR 0x00
#define GSTAR 0x04
#define GMODE 0x08
#define IQLENR0 0x0C
#define IQLENR1 0x10
#define IQRX0 0x14
#define IQTX0 0x24
#define IQCFG 0x3c
#define FIFOCR1 0x44
#define FIFOCR2 0x48
#define FIFOCR3 0x4c
#define FIFOCR4 0x34
#define CH0CFG 0x50
#define CH0BRDA 0x54
#define CH0BTDA 0x58
#define CH0FRDA 0x98
#define CH0FTDA 0xb0
#define CH0LRDA 0xc8
#define CH0LTDA 0xe0
/* SCC registers definitions */
#define SCC_START 0x0100
#define SCC_OFFSET 0x80
#define CMDR 0x00
#define STAR 0x04
#define CCR0 0x08
#define CCR1 0x0c
#define CCR2 0x10
#define BRR 0x2C
#define RLCR 0x40
#define IMR 0x54
#define ISR 0x58
#define GPDIR 0x0400
#define GPDATA 0x0404
#define GPIM 0x0408
/* Bit masks */
#define EncodingMask 0x00700000
#define CrcMask 0x00000003
#define IntRxScc0 0x10000000
#define IntTxScc0 0x01000000
#define TxPollCmd 0x00000400
#define RxActivate 0x08000000
#define MTFi 0x04000000
#define Rdr 0x00400000
#define Rdt 0x00200000
#define Idr 0x00100000
#define Idt 0x00080000
#define TxSccRes 0x01000000
#define RxSccRes 0x00010000
#define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
#define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
#define Ccr0ClockMask 0x0000003f
#define Ccr1LoopMask 0x00000200
#define IsrMask 0x000fffff
#define BrrExpMask 0x00000f00
#define BrrMultMask 0x0000003f
#define EncodingMask 0x00700000
#define Hold cpu_to_le32(0x40000000)
#define SccBusy 0x10000000
#define PowerUp 0x80000000
#define Vis 0x00001000
#define FrameOk (FrameVfr | FrameCrc)
#define FrameVfr 0x80
#define FrameRdo 0x40
#define FrameCrc 0x20
#define FrameRab 0x10
#define FrameAborted cpu_to_le32(0x00000200)
#define FrameEnd cpu_to_le32(0x80000000)
#define DataComplete cpu_to_le32(0x40000000)
#define LengthCheck 0x00008000
#define SccEvt 0x02000000
#define NoAck 0x00000200
#define Action 0x00000001
#define HiDesc cpu_to_le32(0x20000000)
/* SCC events */
#define RxEvt 0xf0000000
#define TxEvt 0x0f000000
#define Alls 0x00040000
#define Xdu 0x00010000
#define Cts 0x00004000
#define Xmr 0x00002000
#define Xpr 0x00001000
#define Rdo 0x00000080
#define Rfs 0x00000040
#define Cd 0x00000004
#define Rfo 0x00000002
#define Flex 0x00000001
/* DMA core events */
#define Cfg 0x00200000
#define Hi 0x00040000
#define Fi 0x00020000
#define Err 0x00010000
#define Arf 0x00000002
#define ArAck 0x00000001
/* State flags */
#define Ready 0x00000000
#define NeedIDR 0x00000001
#define NeedIDT 0x00000002
#define RdoSet 0x00000004
#define FakeReset 0x00000008
/* Don't mask RDO. Ever. */
#ifdef DSCC4_POLLING
#define EventsMask 0xfffeef7f
#else
#define EventsMask 0xfffa8f7a
#endif
/* Functions prototypes */
static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
static int dscc4_open(struct net_device *);
static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
static int dscc4_close(struct net_device *);
static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int dscc4_init_ring(struct net_device *);
static void dscc4_release_ring(struct dscc4_dev_priv *);
static void dscc4_timer(unsigned long);
static void dscc4_tx_timeout(struct net_device *);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t dscc4_irq(int irq, void *dev_id);
static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
#endif
static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
{
return dev_to_hdlc(dev)->priv;
}
static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
{
return p->dev;
}
static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
struct net_device *dev, int offset)
{
u32 state;
/* Cf scc_writel for concern regarding thread-safety */
state = dpriv->scc_regs[offset >> 2];
state &= ~mask;
state |= value;
dpriv->scc_regs[offset >> 2] = state;
writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
}
static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
struct net_device *dev, int offset)
{
/*
* Thread-UNsafe.
* As of 2002/02/16, there are no thread racing for access.
*/
dpriv->scc_regs[offset >> 2] = bits;
writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
}
static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
{
return dpriv->scc_regs[offset >> 2];
}
static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
/* Cf errata DS5 p.4 */
readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
}
static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
dpriv->ltda = dpriv->tx_fd_dma +
((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
/* Flush posted writes *NOW* */
readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
}
static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
dpriv->lrda = dpriv->rx_fd_dma +
((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
}
static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
{
return dpriv->tx_current == dpriv->tx_dirty;
}
static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
}
static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
struct net_device *dev, const char *msg)
{
int ret = 0;
if (debug > 1) {
if (SOURCE_ID(state) != dpriv->dev_id) {
printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
dev->name, msg, SOURCE_ID(state), state );
ret = -1;
}
if (state & 0x0df80c00) {
printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
dev->name, msg, state);
ret = -1;
}
}
return ret;
}
static void dscc4_tx_print(struct net_device *dev,
struct dscc4_dev_priv *dpriv,
char *msg)
{
printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
}
static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
{
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct TxFD *tx_fd = dpriv->tx_fd;
struct RxFD *rx_fd = dpriv->rx_fd;
struct sk_buff **skbuff;
int i;
pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
skbuff = dpriv->tx_skbuff;
for (i = 0; i < TX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
(*skbuff)->len, PCI_DMA_TODEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
tx_fd++;
}
skbuff = dpriv->rx_skbuff;
for (i = 0; i < RX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
rx_fd++;
}
}
static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
struct RxFD *rx_fd = dpriv->rx_fd + dirty;
const int len = RX_MAX(HDLC_MAX_MRU);
struct sk_buff *skb;
int ret = 0;
skb = dev_alloc_skb(len);
dpriv->rx_skbuff[dirty] = skb;
if (skb) {
skb->protocol = hdlc_type_trans(skb, dev);
rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
skb->data, len, PCI_DMA_FROMDEVICE));
} else {
rx_fd->data = 0;
ret = -1;
}
return ret;
}
/*
* IRQ/thread/whatever safe
*/
static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
struct net_device *dev, char *msg)
{
s8 i = 0;
do {
if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
msg, i);
goto done;
}
schedule_timeout_uninterruptible(10);
rmb();
} while (++i > 0);
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
done:
return (i >= 0) ? i : -EAGAIN;
}
static int dscc4_do_action(struct net_device *dev, char *msg)
{
void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
s16 i = 0;
writel(Action, ioaddr + GCMDR);
ioaddr += GSTAR;
do {
u32 state = readl(ioaddr);
if (state & ArAck) {
printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
writel(ArAck, ioaddr);
goto done;
} else if (state & Arf) {
printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
writel(Arf, ioaddr);
i = -1;
goto done;
}
rmb();
} while (++i > 0);
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
done:
return i;
}
static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
{
int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
s8 i = 0;
do {
if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
(dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
break;
smp_rmb();
schedule_timeout_uninterruptible(10);
} while (++i > 0);
return (i >= 0 ) ? i : -EAGAIN;
}
#if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
unsigned long flags;
spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
/* Cf errata DS5 p.6 */
writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
writel(Action, dpriv->base_addr + GCMDR);
spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
}
#endif
#if 0
static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
u16 i = 0;
/* Cf errata DS5 p.7 */
scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
scc_writel(0x00050000, dpriv, dev, CCR2);
/*
* Must be longer than the time required to fill the fifo.
*/
while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
udelay(1);
wmb();
}
writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
if (dscc4_do_action(dev, "Rdt") < 0)
printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
}
#endif
/* TODO: (ab)use this function to refill a completely depleted RX ring. */
static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct sk_buff *skb;
int pkt_len;
skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
if (!skb) {
printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
goto refill;
}
pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
skb_put(skb, pkt_len);
if (netif_running(dev))
skb->protocol = hdlc_type_trans(skb, dev);
skb->dev->last_rx = jiffies;
netif_rx(skb);
} else {
if (skb->data[pkt_len] & FrameRdo)
dev->stats.rx_fifo_errors++;
else if (!(skb->data[pkt_len] | ~FrameCrc))
dev->stats.rx_crc_errors++;
else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
dev->stats.rx_length_errors++;
else
dev->stats.rx_errors++;
dev_kfree_skb_irq(skb);
}
refill:
while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
if (try_get_rx_skb(dpriv, dev) < 0)
break;
dpriv->rx_dirty++;
}
dscc4_rx_update(dpriv, dev);
rx_fd->state2 = 0x00000000;
rx_fd->end = cpu_to_le32(0xbabeface);
}
static void dscc4_free1(struct pci_dev *pdev)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
int i;
ppriv = pci_get_drvdata(pdev);
root = ppriv->root;
for (i = 0; i < dev_per_card; i++)
unregister_hdlc_device(dscc4_to_dev(root + i));
pci_set_drvdata(pdev, NULL);
for (i = 0; i < dev_per_card; i++)
free_netdev(root[i].dev);
kfree(root);
kfree(ppriv);
}
static int __devinit dscc4_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct dscc4_pci_priv *priv;
struct dscc4_dev_priv *dpriv;
void __iomem *ioaddr;
int i, rc;
printk(KERN_DEBUG "%s", version);
rc = pci_enable_device(pdev);
if (rc < 0)
goto out;
rc = pci_request_region(pdev, 0, "registers");
if (rc < 0) {
printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
DRV_NAME);
goto err_disable_0;
}
rc = pci_request_region(pdev, 1, "LBI interface");
if (rc < 0) {
printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
DRV_NAME);
goto err_free_mmio_region_1;
}
ioaddr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!ioaddr) {
printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
(unsigned long long)pci_resource_start(pdev, 0));
rc = -EIO;
goto err_free_mmio_regions_2;
}
printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
(unsigned long long)pci_resource_start(pdev, 0),
(unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
/* Cf errata DS5 p.2 */
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
pci_set_master(pdev);
rc = dscc4_found1(pdev, ioaddr);
if (rc < 0)
goto err_iounmap_3;
priv = pci_get_drvdata(pdev);
rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
if (rc < 0) {
printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
goto err_release_4;
}
/* power up/little endian/dma core controlled via lrda/ltda */
writel(0x00000001, ioaddr + GMODE);
/* Shared interrupt queue */
{
u32 bits;
bits = (IRQ_RING_SIZE >> 5) - 1;
bits |= bits << 4;
bits |= bits << 8;
bits |= bits << 16;
writel(bits, ioaddr + IQLENR0);
}
/* Global interrupt queue */
writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
if (!priv->iqcfg)
goto err_free_irq_5;
writel(priv->iqcfg_dma, ioaddr + IQCFG);
rc = -ENOMEM;
/*
* SCC 0-3 private rx/tx irq structures
* IQRX/TXi needs to be set soon. Learned it the hard way...
*/
for (i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
if (!dpriv->iqtx)
goto err_free_iqtx_6;
writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
}
for (i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
if (!dpriv->iqrx)
goto err_free_iqrx_7;
writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
}
/* Cf application hint. Beware of hard-lock condition on threshold. */
writel(0x42104000, ioaddr + FIFOCR1);
//writel(0x9ce69800, ioaddr + FIFOCR2);
writel(0xdef6d800, ioaddr + FIFOCR2);
//writel(0x11111111, ioaddr + FIFOCR4);
writel(0x18181818, ioaddr + FIFOCR4);
// FIXME: should depend on the chipset revision
writel(0x0000000e, ioaddr + FIFOCR3);
writel(0xff200001, ioaddr + GCMDR);
rc = 0;
out:
return rc;
err_free_iqrx_7:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
}
i = dev_per_card;
err_free_iqtx_6:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
priv->iqcfg_dma);
err_free_irq_5:
free_irq(pdev->irq, priv->root);
err_release_4:
dscc4_free1(pdev);
err_iounmap_3:
iounmap (ioaddr);
err_free_mmio_regions_2:
pci_release_region(pdev, 1);
err_free_mmio_region_1:
pci_release_region(pdev, 0);
err_disable_0:
pci_disable_device(pdev);
goto out;
};
/*
* Let's hope the default values are decent enough to protect my
* feet from the user's gun - Ueimor
*/
static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
/* No interrupts, SCC core disabled. Let's relax */
scc_writel(0x00000000, dpriv, dev, CCR0);
scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
/*
* No address recognition/crc-CCITT/cts enabled
* Shared flags transmission disabled - cf errata DS5 p.11
* Carrier detect disabled - cf errata p.14
* FIXME: carrier detection/polarity may be handled more gracefully.
*/
scc_writel(0x02408000, dpriv, dev, CCR1);
/* crc not forwarded - Cf errata DS5 p.11 */
scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
// crc forwarded
//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
}
static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
{
int ret = 0;
if ((hz < 0) || (hz > DSCC4_HZ_MAX))
ret = -EOPNOTSUPP;
else
dpriv->pci_priv->xtal_hz = hz;
return ret;
}
static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
int i, ret = -ENOMEM;
2007-07-19 12:49:03 +04:00
root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
if (!root) {
printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
goto err_out;
}
for (i = 0; i < dev_per_card; i++) {
root[i].dev = alloc_hdlcdev(root + i);
if (!root[i].dev)
goto err_free_dev;
}
2007-07-19 12:49:03 +04:00
ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
if (!ppriv) {
printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
goto err_free_dev;
}
ppriv->root = root;
spin_lock_init(&ppriv->lock);
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
struct net_device *d = dscc4_to_dev(dpriv);
hdlc_device *hdlc = dev_to_hdlc(d);
d->base_addr = (unsigned long)ioaddr;
d->init = NULL;
d->irq = pdev->irq;
d->open = dscc4_open;
d->stop = dscc4_close;
d->set_multicast_list = NULL;
d->do_ioctl = dscc4_ioctl;
d->tx_timeout = dscc4_tx_timeout;
d->watchdog_timeo = TX_TIMEOUT;
SET_NETDEV_DEV(d, &pdev->dev);
dpriv->dev_id = i;
dpriv->pci_priv = ppriv;
dpriv->base_addr = ioaddr;
spin_lock_init(&dpriv->lock);
hdlc->xmit = dscc4_start_xmit;
hdlc->attach = dscc4_hdlc_attach;
dscc4_init_registers(dpriv, d);
dpriv->parity = PARITY_CRC16_PR0_CCITT;
dpriv->encoding = ENCODING_NRZ;
ret = dscc4_init_ring(d);
if (ret < 0)
goto err_unregister;
ret = register_hdlc_device(d);
if (ret < 0) {
printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
dscc4_release_ring(dpriv);
goto err_unregister;
}
}
ret = dscc4_set_quartz(root, quartz);
if (ret < 0)
goto err_unregister;
pci_set_drvdata(pdev, ppriv);
return ret;
err_unregister:
while (i-- > 0) {
dscc4_release_ring(root + i);
unregister_hdlc_device(dscc4_to_dev(root + i));
}
kfree(ppriv);
i = dev_per_card;
err_free_dev:
while (i-- > 0)
free_netdev(root[i].dev);
kfree(root);
err_out:
return ret;
};
/* FIXME: get rid of the unneeded code */
static void dscc4_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
// struct dscc4_pci_priv *ppriv;
goto done;
done:
dpriv->timer.expires = jiffies + TX_TIMEOUT;
add_timer(&dpriv->timer);
}
static void dscc4_tx_timeout(struct net_device *dev)
{
/* FIXME: something is missing there */
}
static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
{
sync_serial_settings *settings = &dpriv->settings;
if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
struct net_device *dev = dscc4_to_dev(dpriv);
printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
return -1;
}
return 0;
}
#ifdef CONFIG_DSCC4_PCI_RST
/*
* Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
* so as to provide a safe way to reset the asic while not the whole machine
* rebooting.
*
* This code doesn't need to be efficient. Keep It Simple
*/
static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
{
int i;
mutex_lock(&dscc4_mutex);
for (i = 0; i < 16; i++)
pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
writel(0x001c0000, ioaddr + GMODE);
/* Configure GPIO port as output */
writel(0x0000ffff, ioaddr + GPDIR);
/* Disable interruption */
writel(0x0000ffff, ioaddr + GPIM);
writel(0x0000ffff, ioaddr + GPDATA);
writel(0x00000000, ioaddr + GPDATA);
/* Flush posted writes */
readl(ioaddr + GSTAR);
schedule_timeout_uninterruptible(10);
for (i = 0; i < 16; i++)
pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
mutex_unlock(&dscc4_mutex);
}
#else
#define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
#endif /* CONFIG_DSCC4_PCI_RST */
static int dscc4_open(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct dscc4_pci_priv *ppriv;
int ret = -EAGAIN;
if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
goto err;
if ((ret = hdlc_open(dev)))
goto err;
ppriv = dpriv->pci_priv;
/*
* Due to various bugs, there is no way to reliably reset a
* specific port (manufacturer's dependant special PCI #RST wiring
* apart: it affects all ports). Thus the device goes in the best
* silent mode possible at dscc4_close() time and simply claims to
* be up if it's opened again. It still isn't possible to change
* the HDLC configuration without rebooting but at least the ports
* can be up/down ifconfig'ed without killing the host.
*/
if (dpriv->flags & FakeReset) {
dpriv->flags &= ~FakeReset;
scc_patchl(0, PowerUp, dpriv, dev, CCR0);
scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
scc_writel(EventsMask, dpriv, dev, IMR);
printk(KERN_INFO "%s: up again.\n", dev->name);
goto done;
}
/* IDT+IDR during XPR */
dpriv->flags = NeedIDR | NeedIDT;
scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
/*
* The following is a bit paranoid...
*
* NB: the datasheet "...CEC will stay active if the SCC is in
* power-down mode or..." and CCR2.RAC = 1 are two different
* situations.
*/
if (scc_readl_star(dpriv, dev) & SccBusy) {
printk(KERN_ERR "%s busy. Try later\n", dev->name);
ret = -EAGAIN;
goto err_out;
} else
printk(KERN_INFO "%s: available. Good\n", dev->name);
scc_writel(EventsMask, dpriv, dev, IMR);
/* Posted write is flushed in the wait_ack loop */
scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
goto err_disable_scc_events;
/*
* I would expect XPR near CE completion (before ? after ?).
* At worst, this code won't see a late XPR and people
* will have to re-issue an ifconfig (this is harmless).
* WARNING, a really missing XPR usually means a hardware
* reset is needed. Suggestions anyone ?
*/
if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
goto err_disable_scc_events;
}
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Open");
done:
netif_start_queue(dev);
init_timer(&dpriv->timer);
dpriv->timer.expires = jiffies + 10*HZ;
dpriv->timer.data = (unsigned long)dev;
dpriv->timer.function = &dscc4_timer;
add_timer(&dpriv->timer);
netif_carrier_on(dev);
return 0;
err_disable_scc_events:
scc_writel(0xffffffff, dpriv, dev, IMR);
scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
err_out:
hdlc_close(dev);
err:
return ret;
}
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
/* FIXME: it's gonna be easy (TM), for sure */
}
#endif /* DSCC4_POLLING */
static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
struct TxFD *tx_fd;
int next;
next = dpriv->tx_current%TX_RING_SIZE;
dpriv->tx_skbuff[next] = skb;
tx_fd = dpriv->tx_fd + next;
tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE));
tx_fd->complete = 0x00000000;
tx_fd->jiffies = jiffies;
mb();
#ifdef DSCC4_POLLING
spin_lock(&dpriv->lock);
while (dscc4_tx_poll(dpriv, dev));
spin_unlock(&dpriv->lock);
#endif
dev->trans_start = jiffies;
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Xmit");
/* To be cleaned(unsigned int)/optimized. Later, ok ? */
if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
netif_stop_queue(dev);
if (dscc4_tx_quiescent(dpriv, dev))
dscc4_do_tx(dpriv, dev);
return 0;
}
static int dscc4_close(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
del_timer_sync(&dpriv->timer);
netif_stop_queue(dev);
scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
scc_writel(0xffffffff, dpriv, dev, IMR);
dpriv->flags |= FakeReset;
hdlc_close(dev);
return 0;
}
static inline int dscc4_check_clock_ability(int port)
{
int ret = 0;
#ifdef CONFIG_DSCC4_PCISYNC
if (port >= 2)
ret = -1;
#endif
return ret;
}
/*
* DS1 p.137: "There are a total of 13 different clocking modes..."
* ^^
* Design choices:
* - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
* Clock mode 3b _should_ work but the testing seems to make this point
* dubious (DIY testing requires setting CCR0 at 0x00000033).
* This is supposed to provide least surprise "DTE like" behavior.
* - if line rate is specified, clocks are assumed to be locally generated.
* A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
* between these it automagically done according on the required frequency
* scaling. Of course some rounding may take place.
* - no high speed mode (40Mb/s). May be trivial to do but I don't have an
* appropriate external clocking device for testing.
* - no time-slot/clock mode 5: shameless lazyness.
*
* The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
*
* BIG FAT WARNING: if the device isn't provided enough clocking signal, it
* won't pass the init sequence. For example, straight back-to-back DTE without
* external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
* called.
*
* Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
* DS0 for example)
*
* Clock mode related bits of CCR0:
* +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
* | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
* | | +-------- High Speed: say 0
* | | | +-+-+-- Clock Mode: 0..7
* | | | | | |
* -+-+-+-+-+-+-+-+
* x|x|5|4|3|2|1|0| lower bits
*
* Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
* +-+-+-+------------------ M (0..15)
* | | | | +-+-+-+-+-+-- N (0..63)
* 0 0 0 0 | | | | 0 0 | | | | | |
* ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
*
*/
static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
int ret = -1;
u32 brr;
*state &= ~Ccr0ClockMask;
if (*bps) { /* Clock generated - required for DCE */
u32 n = 0, m = 0, divider;
int xtal;
xtal = dpriv->pci_priv->xtal_hz;
if (!xtal)
goto done;
if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
goto done;
divider = xtal / *bps;
if (divider > BRR_DIVIDER_MAX) {
divider >>= 4;
*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
} else
*state |= 0x00000037; /* Clock mode 7b (BRG) */
if (divider >> 22) {
n = 63;
m = 15;
} else if (divider) {
/* Extraction of the 6 highest weighted bits */
m = 0;
while (0xffffffc0 & divider) {
m++;
divider >>= 1;
}
n = divider;
}
brr = (m << 8) | n;
divider = n << m;
if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
divider <<= 4;
*bps = xtal / divider;
} else {
/*
* External clock - DTE
* "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
* Nothing more to be done
*/
brr = 0;
}
scc_writel(brr, dpriv, dev, BRR);
ret = 0;
done:
return ret;
}
static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
const size_t size = sizeof(dpriv->settings);
int ret = 0;
if (dev->flags & IFF_UP)
return -EBUSY;
if (cmd != SIOCWANDEV)
return -EOPNOTSUPP;
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE:
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
if (copy_to_user(line, &dpriv->settings, size))
return -EFAULT;
break;
case IF_IFACE_SYNC_SERIAL:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (dpriv->flags & FakeReset) {
printk(KERN_INFO "%s: please reset the device"
" before this command\n", dev->name);
return -EPERM;
}
if (copy_from_user(&dpriv->settings, line, size))
return -EFAULT;
ret = dscc4_set_iface(dpriv, dev);
break;
default:
ret = hdlc_ioctl(dev, ifr, cmd);
break;
}
return ret;
}
static int dscc4_match(struct thingie *p, int value)
{
int i;
for (i = 0; p[i].define != -1; i++) {
if (value == p[i].define)
break;
}
if (p[i].define == -1)
return -1;
else
return i;
}
static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
sync_serial_settings *settings = &dpriv->settings;
int ret = -EOPNOTSUPP;
u32 bps, state;
bps = settings->clock_rate;
state = scc_readl(dpriv, CCR0);
if (dscc4_set_clock(dev, &bps, &state) < 0)
goto done;
if (bps) { /* DCE */
printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
if (settings->clock_rate != bps) {
printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
dev->name, settings->clock_rate, bps);
settings->clock_rate = bps;
}
} else { /* DTE */
state |= PowerUp | Vis;
printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
}
scc_writel(state, dpriv, dev, CCR0);
ret = 0;
done:
return ret;
}
static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct thingie encoding[] = {
{ ENCODING_NRZ, 0x00000000 },
{ ENCODING_NRZI, 0x00200000 },
{ ENCODING_FM_MARK, 0x00400000 },
{ ENCODING_FM_SPACE, 0x00500000 },
{ ENCODING_MANCHESTER, 0x00600000 },
{ -1, 0}
};
int i, ret = 0;
i = dscc4_match(encoding, dpriv->encoding);
if (i >= 0)
scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
sync_serial_settings *settings = &dpriv->settings;
u32 state;
state = scc_readl(dpriv, CCR1);
if (settings->loopback) {
printk(KERN_DEBUG "%s: loopback\n", dev->name);
state |= 0x00000100;
} else {
printk(KERN_DEBUG "%s: normal\n", dev->name);
state &= ~0x00000100;
}
scc_writel(state, dpriv, dev, CCR1);
return 0;
}
static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct thingie crc[] = {
{ PARITY_CRC16_PR0_CCITT, 0x00000010 },
{ PARITY_CRC16_PR1_CCITT, 0x00000000 },
{ PARITY_CRC32_PR0_CCITT, 0x00000011 },
{ PARITY_CRC32_PR1_CCITT, 0x00000001 }
};
int i, ret = 0;
i = dscc4_match(crc, dpriv->parity);
if (i >= 0)
scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
struct {
int (*action)(struct dscc4_dev_priv *, struct net_device *);
} *p, do_setting[] = {
{ dscc4_encoding_setting },
{ dscc4_clock_setting },
{ dscc4_loopback_setting },
{ dscc4_crc_setting },
{ NULL }
};
int ret = 0;
for (p = do_setting; p->action; p++) {
if ((ret = p->action(dpriv, dev)) < 0)
break;
}
return ret;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t dscc4_irq(int irq, void *token)
{
struct dscc4_dev_priv *root = token;
struct dscc4_pci_priv *priv;
struct net_device *dev;
void __iomem *ioaddr;
u32 state;
unsigned long flags;
int i, handled = 1;
priv = root->pci_priv;
dev = dscc4_to_dev(root);
spin_lock_irqsave(&priv->lock, flags);
ioaddr = root->base_addr;
state = readl(ioaddr + GSTAR);
if (!state) {
handled = 0;
goto out;
}
if (debug > 3)
printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
writel(state, ioaddr + GSTAR);
if (state & Arf) {
printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
dev->name);
goto out;
}
state &= ~ArAck;
if (state & Cfg) {
if (debug > 0)
printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
if (!(state &= ~Cfg))
goto out;
}
if (state & RxEvt) {
i = dev_per_card - 1;
do {
dscc4_rx_irq(priv, root + i);
} while (--i >= 0);
state &= ~RxEvt;
}
if (state & TxEvt) {
i = dev_per_card - 1;
do {
dscc4_tx_irq(priv, root + i);
} while (--i >= 0);
state &= ~TxEvt;
}
out:
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_RETVAL(handled);
}
static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = dscc4_to_dev(dpriv);
u32 state;
int cur, loop = 0;
try:
cur = dpriv->iqtx_current%IRQ_RING_SIZE;
state = le32_to_cpu(dpriv->iqtx[cur]);
if (!state) {
if (debug > 4)
printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
state);
if ((debug > 1) && (loop > 1))
printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
if (loop && netif_queue_stopped(dev))
if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
netif_wake_queue(dev);
if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
!dscc4_tx_done(dpriv))
dscc4_do_tx(dpriv, dev);
return;
}
loop++;
dpriv->iqtx[cur] = 0;
dpriv->iqtx_current++;
if (state_check(state, dpriv, dev, "Tx") < 0)
return;
if (state & SccEvt) {
if (state & Alls) {
struct sk_buff *skb;
struct TxFD *tx_fd;
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Alls");
/*
* DataComplete can't be trusted for Tx completion.
* Cf errata DS5 p.8
*/
cur = dpriv->tx_dirty%TX_RING_SIZE;
tx_fd = dpriv->tx_fd + cur;
skb = dpriv->tx_skbuff[cur];
if (skb) {
pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
skb->len, PCI_DMA_TODEVICE);
if (tx_fd->state & FrameEnd) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
}
dev_kfree_skb_irq(skb);
dpriv->tx_skbuff[cur] = NULL;
++dpriv->tx_dirty;
} else {
if (debug > 1)
printk(KERN_ERR "%s Tx: NULL skb %d\n",
dev->name, cur);
}
/*
* If the driver ends sending crap on the wire, it
* will be way easier to diagnose than the (not so)
* random freeze induced by null sized tx frames.
*/
tx_fd->data = tx_fd->next;
tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
tx_fd->complete = 0x00000000;
tx_fd->jiffies = 0;
if (!(state &= ~Alls))
goto try;
}
/*
* Transmit Data Underrun
*/
if (state & Xdu) {
printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
dpriv->flags = NeedIDT;
/* Tx reset */
writel(MTFi | Rdt,
dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
writel(Action, dpriv->base_addr + GCMDR);
return;
}
if (state & Cts) {
printk(KERN_INFO "%s: CTS transition\n", dev->name);
if (!(state &= ~Cts)) /* DEBUG */
goto try;
}
if (state & Xmr) {
/* Frame needs to be sent again - FIXME */
printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
if (!(state &= ~Xmr)) /* DEBUG */
goto try;
}
if (state & Xpr) {
void __iomem *scc_addr;
unsigned long ring;
int i;
/*
* - the busy condition happens (sometimes);
* - it doesn't seem to make the handler unreliable.
*/
for (i = 1; i; i <<= 1) {
if (!(scc_readl_star(dpriv, dev) & SccBusy))
break;
}
if (!i)
printk(KERN_INFO "%s busy in irq\n", dev->name);
scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
/* Keep this order: IDT before IDR */
if (dpriv->flags & NeedIDT) {
if (debug > 2)
dscc4_tx_print(dev, dpriv, "Xpr");
ring = dpriv->tx_fd_dma +
(dpriv->tx_dirty%TX_RING_SIZE)*
sizeof(struct TxFD);
writel(ring, scc_addr + CH0BTDA);
dscc4_do_tx(dpriv, dev);
writel(MTFi | Idt, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDT") < 0)
goto err_xpr;
dpriv->flags &= ~NeedIDT;
}
if (dpriv->flags & NeedIDR) {
ring = dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD);
writel(ring, scc_addr + CH0BRDA);
dscc4_rx_update(dpriv, dev);
writel(MTFi | Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDR") < 0)
goto err_xpr;
dpriv->flags &= ~NeedIDR;
smp_wmb();
/* Activate receiver and misc */
scc_writel(0x08050008, dpriv, dev, CCR2);
}
err_xpr:
if (!(state &= ~Xpr))
goto try;
}
if (state & Cd) {
if (debug > 0)
printk(KERN_INFO "%s: CD transition\n", dev->name);
if (!(state &= ~Cd)) /* DEBUG */
goto try;
}
} else { /* ! SccEvt */
if (state & Hi) {
#ifdef DSCC4_POLLING
while (!dscc4_tx_poll(dpriv, dev));
#endif
printk(KERN_INFO "%s: Tx Hi\n", dev->name);
state &= ~Hi;
}
if (state & Err) {
printk(KERN_INFO "%s: Tx ERR\n", dev->name);
dev->stats.tx_errors++;
state &= ~Err;
}
}
goto try;
}
static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = dscc4_to_dev(dpriv);
u32 state;
int cur;
try:
cur = dpriv->iqrx_current%IRQ_RING_SIZE;
state = le32_to_cpu(dpriv->iqrx[cur]);
if (!state)
return;
dpriv->iqrx[cur] = 0;
dpriv->iqrx_current++;
if (state_check(state, dpriv, dev, "Rx") < 0)
return;
if (!(state & SccEvt)){
struct RxFD *rx_fd;
if (debug > 4)
printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
state);
state &= 0x00ffffff;
if (state & Err) { /* Hold or reset */
printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
cur = dpriv->rx_current%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
/*
* Presume we're not facing a DMAC receiver reset.
* As We use the rx size-filtering feature of the
* DSCC4, the beginning of a new frame is waiting in
* the rx fifo. I bet a Receive Data Overflow will
* happen most of time but let's try and avoid it.
* Btw (as for RDO) if one experiences ERR whereas
* the system looks rather idle, there may be a
* problem with latency. In this case, increasing
* RX_RING_SIZE may help.
*/
//while (dpriv->rx_needs_refill) {
while (!(rx_fd->state1 & Hold)) {
rx_fd++;
cur++;
if (!(cur = cur%RX_RING_SIZE))
rx_fd = dpriv->rx_fd;
}
//dpriv->rx_needs_refill--;
try_get_rx_skb(dpriv, dev);
if (!rx_fd->data)
goto try;
rx_fd->state1 &= ~Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = cpu_to_le32(0xbabeface);
//}
goto try;
}
if (state & Fi) {
dscc4_rx_skb(dpriv, dev);
goto try;
}
if (state & Hi ) { /* HI bit */
printk(KERN_INFO "%s: Rx Hi\n", dev->name);
state &= ~Hi;
goto try;
}
} else { /* SccEvt */
if (debug > 1) {
//FIXME: verifier la presence de tous les evenements
static struct {
u32 mask;
const char *irq_name;
} evts[] = {
{ 0x00008000, "TIN"},
{ 0x00000020, "RSC"},
{ 0x00000010, "PCE"},
{ 0x00000008, "PLLA"},
{ 0, NULL}
}, *evt;
for (evt = evts; evt->irq_name; evt++) {
if (state & evt->mask) {
printk(KERN_DEBUG "%s: %s\n",
dev->name, evt->irq_name);
if (!(state &= ~evt->mask))
goto try;
}
}
} else {
if (!(state &= ~0x0000c03c))
goto try;
}
if (state & Cts) {
printk(KERN_INFO "%s: CTS transition\n", dev->name);
if (!(state &= ~Cts)) /* DEBUG */
goto try;
}
/*
* Receive Data Overflow (FIXME: fscked)
*/
if (state & Rdo) {
struct RxFD *rx_fd;
void __iomem *scc_addr;
int cur;
//if (debug)
// dscc4_rx_dump(dpriv);
scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
/*
* This has no effect. Why ?
* ORed with TxSccRes, one sees the CFG ack (for
* the TX part only).
*/
scc_writel(RxSccRes, dpriv, dev, CMDR);
dpriv->flags |= RdoSet;
/*
* Let's try and save something in the received data.
* rx_current must be incremented at least once to
* avoid HOLD in the BRDA-to-be-pointed desc.
*/
do {
cur = dpriv->rx_current++%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
if (!(rx_fd->state2 & DataComplete))
break;
if (rx_fd->state2 & FrameAborted) {
dev->stats.rx_over_errors++;
rx_fd->state1 |= Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = cpu_to_le32(0xbabeface);
} else
dscc4_rx_skb(dpriv, dev);
} while (1);
if (debug > 0) {
if (dpriv->flags & RdoSet)
printk(KERN_DEBUG
"%s: no RDO in Rx data\n", DRV_NAME);
}
#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
/*
* FIXME: must the reset be this violent ?
*/
#warning "FIXME: CH0BRDA"
writel(dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD), scc_addr + CH0BRDA);
writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "RDR") < 0) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "RDR");
goto rdo_end;
}
writel(MTFi|Idr, scc_addr + CH0CFG);
if (dscc4_do_action(dev, "IDR") < 0) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "IDR");
goto rdo_end;
}
rdo_end:
#endif
scc_patchl(0, RxActivate, dpriv, dev, CCR2);
goto try;
}
if (state & Cd) {
printk(KERN_INFO "%s: CD transition\n", dev->name);
if (!(state &= ~Cd)) /* DEBUG */
goto try;
}
if (state & Flex) {
printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
if (!(state &= ~Flex))
goto try;
}
}
}
/*
* I had expected the following to work for the first descriptor
* (tx_fd->state = 0xc0000000)
* - Hold=1 (don't try and branch to the next descripto);
* - No=0 (I want an empty data section, i.e. size=0);
* - Fe=1 (required by No=0 or we got an Err irq and must reset).
* It failed and locked solid. Thus the introduction of a dummy skb.
* Problem is acknowledged in errata sheet DS5. Joy :o/
*/
static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
{
struct sk_buff *skb;
skb = dev_alloc_skb(DUMMY_SKB_SIZE);
if (skb) {
int last = dpriv->tx_dirty%TX_RING_SIZE;
struct TxFD *tx_fd = dpriv->tx_fd + last;
skb->len = DUMMY_SKB_SIZE;
skb_copy_to_linear_data(skb, version,
strlen(version) % DUMMY_SKB_SIZE);
tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
skb->data, DUMMY_SKB_SIZE,
PCI_DMA_TODEVICE));
dpriv->tx_skbuff[last] = skb;
}
return skb;
}
static int dscc4_init_ring(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct TxFD *tx_fd;
struct RxFD *rx_fd;
void *ring;
int i;
ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
if (!ring)
goto err_out;
dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
if (!ring)
goto err_free_dma_rx;
dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
dpriv->tx_dirty = 0xffffffff;
i = dpriv->tx_current = 0;
do {
tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
tx_fd->complete = 0x00000000;
/* FIXME: NULL should be ok - to be tried */
tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
(tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
(++i%TX_RING_SIZE)*sizeof(*tx_fd));
} while (i < TX_RING_SIZE);
if (!dscc4_init_dummy_skb(dpriv))
goto err_free_dma_tx;
memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
i = dpriv->rx_dirty = dpriv->rx_current = 0;
do {
/* size set by the host. Multiple of 4 bytes please */
rx_fd->state1 = HiDesc;
rx_fd->state2 = 0x00000000;
rx_fd->end = cpu_to_le32(0xbabeface);
rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
// FIXME: return value verifiee mais traitement suspect
if (try_get_rx_skb(dpriv, dev) >= 0)
dpriv->rx_dirty++;
(rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
(++i%RX_RING_SIZE)*sizeof(*rx_fd));
} while (i < RX_RING_SIZE);
return 0;
err_free_dma_tx:
pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
err_free_dma_rx:
pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
err_out:
return -ENOMEM;
}
static void __devexit dscc4_remove_one(struct pci_dev *pdev)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
void __iomem *ioaddr;
int i;
ppriv = pci_get_drvdata(pdev);
root = ppriv->root;
ioaddr = root->base_addr;
dscc4_pci_reset(pdev, ioaddr);
free_irq(pdev->irq, root);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
ppriv->iqcfg_dma);
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
dscc4_release_ring(dpriv);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
dscc4_free1(pdev);
iounmap(ioaddr);
pci_release_region(pdev, 1);
pci_release_region(pdev, 0);
pci_disable_device(pdev);
}
static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
if (encoding != ENCODING_NRZ &&
encoding != ENCODING_NRZI &&
encoding != ENCODING_FM_MARK &&
encoding != ENCODING_FM_SPACE &&
encoding != ENCODING_MANCHESTER)
return -EINVAL;
if (parity != PARITY_NONE &&
parity != PARITY_CRC16_PR0_CCITT &&
parity != PARITY_CRC16_PR1_CCITT &&
parity != PARITY_CRC32_PR0_CCITT &&
parity != PARITY_CRC32_PR1_CCITT)
return -EINVAL;
dpriv->encoding = encoding;
dpriv->parity = parity;
return 0;
}
#ifndef MODULE
static int __init dscc4_setup(char *str)
{
int *args[] = { &debug, &quartz, NULL }, **p = args;
while (*p && (get_option(&str, *p) == 2))
p++;
return 1;
}
__setup("dscc4.setup=", dscc4_setup);
#endif
static struct pci_device_id dscc4_pci_tbl[] = {
{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
static struct pci_driver dscc4_driver = {
.name = DRV_NAME,
.id_table = dscc4_pci_tbl,
.probe = dscc4_init_one,
.remove = __devexit_p(dscc4_remove_one),
};
static int __init dscc4_init_module(void)
{
return pci_register_driver(&dscc4_driver);
}
static void __exit dscc4_cleanup_module(void)
{
pci_unregister_driver(&dscc4_driver);
}
module_init(dscc4_init_module);
module_exit(dscc4_cleanup_module);