WSL2-Linux-Kernel/net/sched/cls_flow.c

722 строки
16 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_flow.c Generic flow classifier
*
* Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/module.h>
#include <net/inet_sock.h>
#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
#include <net/flow_dissector.h>
#include <net/tc_wrapper.h>
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack.h>
#endif
struct flow_head {
struct list_head filters;
struct rcu_head rcu;
};
struct flow_filter {
struct list_head list;
struct tcf_exts exts;
struct tcf_ematch_tree ematches;
struct tcf_proto *tp;
struct timer_list perturb_timer;
u32 perturb_period;
u32 handle;
u32 nkeys;
u32 keymask;
u32 mode;
u32 mask;
u32 xor;
u32 rshift;
u32 addend;
u32 divisor;
u32 baseclass;
u32 hashrnd;
struct rcu_work rwork;
};
static inline u32 addr_fold(void *addr)
{
unsigned long a = (unsigned long)addr;
return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}
static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
{
__be32 src = flow_get_u32_src(flow);
if (src)
return ntohl(src);
return addr_fold(skb->sk);
}
static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
{
__be32 dst = flow_get_u32_dst(flow);
if (dst)
return ntohl(dst);
sched: consistently handle layer3 header accesses in the presence of VLANs There are a couple of places in net/sched/ that check skb->protocol and act on the value there. However, in the presence of VLAN tags, the value stored in skb->protocol can be inconsistent based on whether VLAN acceleration is enabled. The commit quoted in the Fixes tag below fixed the users of skb->protocol to use a helper that will always see the VLAN ethertype. However, most of the callers don't actually handle the VLAN ethertype, but expect to find the IP header type in the protocol field. This means that things like changing the ECN field, or parsing diffserv values, stops working if there's a VLAN tag, or if there are multiple nested VLAN tags (QinQ). To fix this, change the helper to take an argument that indicates whether the caller wants to skip the VLAN tags or not. When skipping VLAN tags, we make sure to skip all of them, so behaviour is consistent even in QinQ mode. To make the helper usable from the ECN code, move it to if_vlan.h instead of pkt_sched.h. v3: - Remove empty lines - Move vlan variable definitions inside loop in skb_protocol() - Also use skb_protocol() helper in IP{,6}_ECN_decapsulate() and bpf_skb_ecn_set_ce() v2: - Use eth_type_vlan() helper in skb_protocol() - Also fix code that reads skb->protocol directly - Change a couple of 'if/else if' statements to switch constructs to avoid calling the helper twice Reported-by: Ilya Ponetayev <i.ponetaev@ndmsystems.com> Fixes: d8b9605d2697 ("net: sched: fix skb->protocol use in case of accelerated vlan path") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-03 23:26:43 +03:00
return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true);
}
static u32 flow_get_proto(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return flow->basic.ip_proto;
}
static u32 flow_get_proto_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
if (flow->ports.ports)
return ntohs(flow->ports.src);
return addr_fold(skb->sk);
}
static u32 flow_get_proto_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
if (flow->ports.ports)
return ntohs(flow->ports.dst);
sched: consistently handle layer3 header accesses in the presence of VLANs There are a couple of places in net/sched/ that check skb->protocol and act on the value there. However, in the presence of VLAN tags, the value stored in skb->protocol can be inconsistent based on whether VLAN acceleration is enabled. The commit quoted in the Fixes tag below fixed the users of skb->protocol to use a helper that will always see the VLAN ethertype. However, most of the callers don't actually handle the VLAN ethertype, but expect to find the IP header type in the protocol field. This means that things like changing the ECN field, or parsing diffserv values, stops working if there's a VLAN tag, or if there are multiple nested VLAN tags (QinQ). To fix this, change the helper to take an argument that indicates whether the caller wants to skip the VLAN tags or not. When skipping VLAN tags, we make sure to skip all of them, so behaviour is consistent even in QinQ mode. To make the helper usable from the ECN code, move it to if_vlan.h instead of pkt_sched.h. v3: - Remove empty lines - Move vlan variable definitions inside loop in skb_protocol() - Also use skb_protocol() helper in IP{,6}_ECN_decapsulate() and bpf_skb_ecn_set_ce() v2: - Use eth_type_vlan() helper in skb_protocol() - Also fix code that reads skb->protocol directly - Change a couple of 'if/else if' statements to switch constructs to avoid calling the helper twice Reported-by: Ilya Ponetayev <i.ponetaev@ndmsystems.com> Fixes: d8b9605d2697 ("net: sched: fix skb->protocol use in case of accelerated vlan path") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-03 23:26:43 +03:00
return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true);
}
static u32 flow_get_iif(const struct sk_buff *skb)
{
return skb->skb_iif;
}
static u32 flow_get_priority(const struct sk_buff *skb)
{
return skb->priority;
}
static u32 flow_get_mark(const struct sk_buff *skb)
{
return skb->mark;
}
static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
return addr_fold(skb_nfct(skb));
#else
return 0;
#endif
}
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#define CTTUPLE(skb, member) \
({ \
enum ip_conntrack_info ctinfo; \
const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
if (ct == NULL) \
goto fallback; \
ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
})
#else
#define CTTUPLE(skb, member) \
({ \
goto fallback; \
0; \
})
#endif
static u32 flow_get_nfct_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
sched: consistently handle layer3 header accesses in the presence of VLANs There are a couple of places in net/sched/ that check skb->protocol and act on the value there. However, in the presence of VLAN tags, the value stored in skb->protocol can be inconsistent based on whether VLAN acceleration is enabled. The commit quoted in the Fixes tag below fixed the users of skb->protocol to use a helper that will always see the VLAN ethertype. However, most of the callers don't actually handle the VLAN ethertype, but expect to find the IP header type in the protocol field. This means that things like changing the ECN field, or parsing diffserv values, stops working if there's a VLAN tag, or if there are multiple nested VLAN tags (QinQ). To fix this, change the helper to take an argument that indicates whether the caller wants to skip the VLAN tags or not. When skipping VLAN tags, we make sure to skip all of them, so behaviour is consistent even in QinQ mode. To make the helper usable from the ECN code, move it to if_vlan.h instead of pkt_sched.h. v3: - Remove empty lines - Move vlan variable definitions inside loop in skb_protocol() - Also use skb_protocol() helper in IP{,6}_ECN_decapsulate() and bpf_skb_ecn_set_ce() v2: - Use eth_type_vlan() helper in skb_protocol() - Also fix code that reads skb->protocol directly - Change a couple of 'if/else if' statements to switch constructs to avoid calling the helper twice Reported-by: Ilya Ponetayev <i.ponetaev@ndmsystems.com> Fixes: d8b9605d2697 ("net: sched: fix skb->protocol use in case of accelerated vlan path") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-03 23:26:43 +03:00
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, src.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
}
fallback:
return flow_get_src(skb, flow);
}
static u32 flow_get_nfct_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
sched: consistently handle layer3 header accesses in the presence of VLANs There are a couple of places in net/sched/ that check skb->protocol and act on the value there. However, in the presence of VLAN tags, the value stored in skb->protocol can be inconsistent based on whether VLAN acceleration is enabled. The commit quoted in the Fixes tag below fixed the users of skb->protocol to use a helper that will always see the VLAN ethertype. However, most of the callers don't actually handle the VLAN ethertype, but expect to find the IP header type in the protocol field. This means that things like changing the ECN field, or parsing diffserv values, stops working if there's a VLAN tag, or if there are multiple nested VLAN tags (QinQ). To fix this, change the helper to take an argument that indicates whether the caller wants to skip the VLAN tags or not. When skipping VLAN tags, we make sure to skip all of them, so behaviour is consistent even in QinQ mode. To make the helper usable from the ECN code, move it to if_vlan.h instead of pkt_sched.h. v3: - Remove empty lines - Move vlan variable definitions inside loop in skb_protocol() - Also use skb_protocol() helper in IP{,6}_ECN_decapsulate() and bpf_skb_ecn_set_ce() v2: - Use eth_type_vlan() helper in skb_protocol() - Also fix code that reads skb->protocol directly - Change a couple of 'if/else if' statements to switch constructs to avoid calling the helper twice Reported-by: Ilya Ponetayev <i.ponetaev@ndmsystems.com> Fixes: d8b9605d2697 ("net: sched: fix skb->protocol use in case of accelerated vlan path") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-03 23:26:43 +03:00
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, dst.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
}
fallback:
return flow_get_dst(skb, flow);
}
static u32 flow_get_nfct_proto_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return ntohs(CTTUPLE(skb, src.u.all));
fallback:
return flow_get_proto_src(skb, flow);
}
static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
return flow_get_proto_dst(skb, flow);
}
static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
#ifdef CONFIG_IP_ROUTE_CLASSID
if (skb_dst(skb))
return skb_dst(skb)->tclassid;
#endif
return 0;
}
static u32 flow_get_skuid(const struct sk_buff *skb)
{
struct sock *sk = skb_to_full_sk(skb);
if (sk && sk->sk_socket && sk->sk_socket->file) {
kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
return from_kuid(&init_user_ns, skuid);
}
return 0;
}
static u32 flow_get_skgid(const struct sk_buff *skb)
{
struct sock *sk = skb_to_full_sk(skb);
if (sk && sk->sk_socket && sk->sk_socket->file) {
kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
return from_kgid(&init_user_ns, skgid);
}
return 0;
}
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
treewide: Remove uninitialized_var() usage Using uninitialized_var() is dangerous as it papers over real bugs[1] (or can in the future), and suppresses unrelated compiler warnings (e.g. "unused variable"). If the compiler thinks it is uninitialized, either simply initialize the variable or make compiler changes. In preparation for removing[2] the[3] macro[4], remove all remaining needless uses with the following script: git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \ xargs perl -pi -e \ 's/\buninitialized_var\(([^\)]+)\)/\1/g; s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;' drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid pathological white-space. No outstanding warnings were found building allmodconfig with GCC 9.3.0 for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64, alpha, and m68k. [1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/ [2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/ [3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/ [4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/ Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5 Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs Signed-off-by: Kees Cook <keescook@chromium.org>
2020-06-03 23:09:38 +03:00
u16 tag;
if (vlan_get_tag(skb, &tag) < 0)
return 0;
return tag & VLAN_VID_MASK;
}
static u32 flow_get_rxhash(struct sk_buff *skb)
{
return skb_get_hash(skb);
}
static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
{
switch (key) {
case FLOW_KEY_SRC:
return flow_get_src(skb, flow);
case FLOW_KEY_DST:
return flow_get_dst(skb, flow);
case FLOW_KEY_PROTO:
return flow_get_proto(skb, flow);
case FLOW_KEY_PROTO_SRC:
return flow_get_proto_src(skb, flow);
case FLOW_KEY_PROTO_DST:
return flow_get_proto_dst(skb, flow);
case FLOW_KEY_IIF:
return flow_get_iif(skb);
case FLOW_KEY_PRIORITY:
return flow_get_priority(skb);
case FLOW_KEY_MARK:
return flow_get_mark(skb);
case FLOW_KEY_NFCT:
return flow_get_nfct(skb);
case FLOW_KEY_NFCT_SRC:
return flow_get_nfct_src(skb, flow);
case FLOW_KEY_NFCT_DST:
return flow_get_nfct_dst(skb, flow);
case FLOW_KEY_NFCT_PROTO_SRC:
return flow_get_nfct_proto_src(skb, flow);
case FLOW_KEY_NFCT_PROTO_DST:
return flow_get_nfct_proto_dst(skb, flow);
case FLOW_KEY_RTCLASSID:
return flow_get_rtclassid(skb);
case FLOW_KEY_SKUID:
return flow_get_skuid(skb);
case FLOW_KEY_SKGID:
return flow_get_skgid(skb);
case FLOW_KEY_VLAN_TAG:
return flow_get_vlan_tag(skb);
case FLOW_KEY_RXHASH:
return flow_get_rxhash(skb);
default:
WARN_ON(1);
return 0;
}
}
#define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \
(1 << FLOW_KEY_DST) | \
(1 << FLOW_KEY_PROTO) | \
(1 << FLOW_KEY_PROTO_SRC) | \
(1 << FLOW_KEY_PROTO_DST) | \
(1 << FLOW_KEY_NFCT_SRC) | \
(1 << FLOW_KEY_NFCT_DST) | \
(1 << FLOW_KEY_NFCT_PROTO_SRC) | \
(1 << FLOW_KEY_NFCT_PROTO_DST))
TC_INDIRECT_SCOPE int flow_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct flow_head *head = rcu_dereference_bh(tp->root);
struct flow_filter *f;
u32 keymask;
u32 classid;
unsigned int n, key;
int r;
list_for_each_entry_rcu(f, &head->filters, list) {
u32 keys[FLOW_KEY_MAX + 1];
struct flow_keys flow_keys;
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
continue;
keymask = f->keymask;
if (keymask & FLOW_KEYS_NEEDED)
skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
for (n = 0; n < f->nkeys; n++) {
key = ffs(keymask) - 1;
keymask &= ~(1 << key);
keys[n] = flow_key_get(skb, key, &flow_keys);
}
if (f->mode == FLOW_MODE_HASH)
classid = jhash2(keys, f->nkeys, f->hashrnd);
else {
classid = keys[0];
classid = (classid & f->mask) ^ f->xor;
classid = (classid >> f->rshift) + f->addend;
}
if (f->divisor)
classid %= f->divisor;
res->class = 0;
res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
r = tcf_exts_exec(skb, &f->exts, res);
if (r < 0)
continue;
return r;
}
return -1;
}
static void flow_perturbation(struct timer_list *t)
{
struct flow_filter *f = from_timer(f, t, perturb_timer);
get_random_bytes(&f->hashrnd, 4);
if (f->perturb_period)
mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
[TCA_FLOW_KEYS] = { .type = NLA_U32 },
[TCA_FLOW_MODE] = { .type = NLA_U32 },
[TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
[TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
[TCA_FLOW_ADDEND] = { .type = NLA_U32 },
[TCA_FLOW_MASK] = { .type = NLA_U32 },
[TCA_FLOW_XOR] = { .type = NLA_U32 },
[TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
[TCA_FLOW_ACT] = { .type = NLA_NESTED },
[TCA_FLOW_POLICE] = { .type = NLA_NESTED },
[TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
[TCA_FLOW_PERTURB] = { .type = NLA_U32 },
};
static void __flow_destroy_filter(struct flow_filter *f)
{
timer_shutdown_sync(&f->perturb_timer);
tcf_exts_destroy(&f->exts);
tcf_em_tree_destroy(&f->ematches);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void flow_destroy_filter_work(struct work_struct *work)
{
struct flow_filter *f = container_of(to_rcu_work(work),
struct flow_filter,
rwork);
rtnl_lock();
__flow_destroy_filter(f);
rtnl_unlock();
}
static int flow_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *fold, *fnew;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_FLOW_MAX + 1];
unsigned int nkeys = 0;
unsigned int perturb_period = 0;
u32 baseclass = 0;
u32 keymask = 0;
u32 mode;
int err;
if (opt == NULL)
return -EINVAL;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nla_parse_nested_deprecated(tb, TCA_FLOW_MAX, opt, flow_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_FLOW_BASECLASS]) {
baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
if (TC_H_MIN(baseclass) == 0)
return -EINVAL;
}
if (tb[TCA_FLOW_KEYS]) {
keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
nkeys = hweight32(keymask);
if (nkeys == 0)
return -EINVAL;
if (fls(keymask) - 1 > FLOW_KEY_MAX)
return -EOPNOTSUPP;
if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
return -EOPNOTSUPP;
}
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
if (!fnew)
return -ENOBUFS;
err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches);
if (err < 0)
goto err1;
err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE);
if (err < 0)
goto err2;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, flags,
extack);
if (err < 0)
goto err2;
fold = *arg;
if (fold) {
err = -EINVAL;
if (fold->handle != handle && handle)
goto err2;
/* Copy fold into fnew */
fnew->tp = fold->tp;
fnew->handle = fold->handle;
fnew->nkeys = fold->nkeys;
fnew->keymask = fold->keymask;
fnew->mode = fold->mode;
fnew->mask = fold->mask;
fnew->xor = fold->xor;
fnew->rshift = fold->rshift;
fnew->addend = fold->addend;
fnew->divisor = fold->divisor;
fnew->baseclass = fold->baseclass;
fnew->hashrnd = fold->hashrnd;
mode = fold->mode;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (mode == FLOW_MODE_HASH)
perturb_period = fold->perturb_period;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
} else {
err = -EINVAL;
if (!handle)
goto err2;
if (!tb[TCA_FLOW_KEYS])
goto err2;
mode = FLOW_MODE_MAP;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
if (TC_H_MAJ(baseclass) == 0) {
struct Qdisc *q = tcf_block_q(tp->chain->block);
baseclass = TC_H_MAKE(q->handle, baseclass);
}
if (TC_H_MIN(baseclass) == 0)
baseclass = TC_H_MAKE(baseclass, 1);
fnew->handle = handle;
fnew->mask = ~0U;
fnew->tp = tp;
get_random_bytes(&fnew->hashrnd, 4);
}
timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE);
tcf_block_netif_keep_dst(tp->chain->block);
if (tb[TCA_FLOW_KEYS]) {
fnew->keymask = keymask;
fnew->nkeys = nkeys;
}
fnew->mode = mode;
if (tb[TCA_FLOW_MASK])
fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
if (tb[TCA_FLOW_XOR])
fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
if (tb[TCA_FLOW_RSHIFT])
fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
if (tb[TCA_FLOW_ADDEND])
fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
if (tb[TCA_FLOW_DIVISOR])
fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
if (baseclass)
fnew->baseclass = baseclass;
fnew->perturb_period = perturb_period;
if (perturb_period)
mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
if (!*arg)
list_add_tail_rcu(&fnew->list, &head->filters);
else
list_replace_rcu(&fold->list, &fnew->list);
*arg = fnew;
if (fold) {
tcf_exts_get_net(&fold->exts);
tcf_queue_work(&fold->rwork, flow_destroy_filter_work);
}
return 0;
err2:
tcf_exts_destroy(&fnew->exts);
tcf_em_tree_destroy(&fnew->ematches);
err1:
kfree(fnew);
return err;
}
static int flow_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f = arg;
list_del_rcu(&f->list);
tcf_exts_get_net(&f->exts);
tcf_queue_work(&f->rwork, flow_destroy_filter_work);
*last = list_empty(&head->filters);
return 0;
}
static int flow_init(struct tcf_proto *tp)
{
struct flow_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (head == NULL)
return -ENOBUFS;
INIT_LIST_HEAD(&head->filters);
rcu_assign_pointer(tp->root, head);
return 0;
}
static void flow_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f, *next;
list_for_each_entry_safe(f, next, &head->filters, list) {
list_del_rcu(&f->list);
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, flow_destroy_filter_work);
else
__flow_destroy_filter(f);
}
kfree_rcu(head, rcu);
}
static void *flow_get(struct tcf_proto *tp, u32 handle)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list)
if (f->handle == handle)
return f;
return NULL;
}
static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct flow_filter *f = fh;
struct nlattr *nest;
if (f == NULL)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
goto nla_put_failure;
if (f->mask != ~0 || f->xor != 0) {
if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
goto nla_put_failure;
}
if (f->rshift &&
nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
goto nla_put_failure;
if (f->addend &&
nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
goto nla_put_failure;
if (f->divisor &&
nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
goto nla_put_failure;
if (f->baseclass &&
nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
goto nla_put_failure;
if (f->perturb_period &&
nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0)
goto nla_put_failure;
#ifdef CONFIG_NET_EMATCH
if (f->ematches.hdr.nmatches &&
tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
goto nla_put_failure;
#endif
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list) {
if (!tc_cls_stats_dump(tp, arg, f))
break;
}
}
static struct tcf_proto_ops cls_flow_ops __read_mostly = {
.kind = "flow",
.classify = flow_classify,
.init = flow_init,
.destroy = flow_destroy,
.change = flow_change,
.delete = flow_delete,
.get = flow_get,
.dump = flow_dump,
.walk = flow_walk,
.owner = THIS_MODULE,
};
static int __init cls_flow_init(void)
{
return register_tcf_proto_ops(&cls_flow_ops);
}
static void __exit cls_flow_exit(void)
{
unregister_tcf_proto_ops(&cls_flow_ops);
}
module_init(cls_flow_init);
module_exit(cls_flow_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("TC flow classifier");