WSL2-Linux-Kernel/drivers/hwmon/adt7475.c

1619 строки
47 KiB
C
Исходник Обычный вид История

/*
* adt7475 - Thermal sensor driver for the ADT7475 chip and derivatives
* Copyright (C) 2007-2008, Advanced Micro Devices, Inc.
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* Copyright (C) 2008 Hans de Goede <hdegoede@redhat.com>
* Copyright (C) 2009 Jean Delvare <khali@linux-fr.org>
*
* Derived from the lm83 driver by Jean Delvare
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
/* Indexes for the sysfs hooks */
#define INPUT 0
#define MIN 1
#define MAX 2
#define CONTROL 3
#define OFFSET 3
#define AUTOMIN 4
#define THERM 5
#define HYSTERSIS 6
/* These are unique identifiers for the sysfs functions - unlike the
numbers above, these are not also indexes into an array
*/
#define ALARM 9
#define FAULT 10
/* 7475 Common Registers */
#define REG_DEVREV2 0x12 /* ADT7490 only */
#define REG_VTT 0x1E /* ADT7490 only */
#define REG_EXTEND3 0x1F /* ADT7490 only */
#define REG_VOLTAGE_BASE 0x20
#define REG_TEMP_BASE 0x25
#define REG_TACH_BASE 0x28
#define REG_PWM_BASE 0x30
#define REG_PWM_MAX_BASE 0x38
#define REG_DEVID 0x3D
#define REG_VENDID 0x3E
#define REG_DEVID2 0x3F
#define REG_STATUS1 0x41
#define REG_STATUS2 0x42
#define REG_VID 0x43 /* ADT7476 only */
#define REG_VOLTAGE_MIN_BASE 0x44
#define REG_VOLTAGE_MAX_BASE 0x45
#define REG_TEMP_MIN_BASE 0x4E
#define REG_TEMP_MAX_BASE 0x4F
#define REG_TACH_MIN_BASE 0x54
#define REG_PWM_CONFIG_BASE 0x5C
#define REG_TEMP_TRANGE_BASE 0x5F
#define REG_PWM_MIN_BASE 0x64
#define REG_TEMP_TMIN_BASE 0x67
#define REG_TEMP_THERM_BASE 0x6A
#define REG_REMOTE1_HYSTERSIS 0x6D
#define REG_REMOTE2_HYSTERSIS 0x6E
#define REG_TEMP_OFFSET_BASE 0x70
#define REG_CONFIG2 0x73
#define REG_EXTEND1 0x76
#define REG_EXTEND2 0x77
#define REG_CONFIG3 0x78
#define REG_CONFIG5 0x7C
#define REG_CONFIG4 0x7D
#define REG_STATUS4 0x81 /* ADT7490 only */
#define REG_VTT_MIN 0x84 /* ADT7490 only */
#define REG_VTT_MAX 0x86 /* ADT7490 only */
#define VID_VIDSEL 0x80 /* ADT7476 only */
#define CONFIG2_ATTN 0x20
#define CONFIG3_SMBALERT 0x01
#define CONFIG3_THERM 0x02
#define CONFIG4_PINFUNC 0x03
#define CONFIG4_MAXDUTY 0x08
#define CONFIG4_ATTN_IN10 0x30
#define CONFIG4_ATTN_IN43 0xC0
#define CONFIG5_TWOSCOMP 0x01
#define CONFIG5_TEMPOFFSET 0x02
#define CONFIG5_VIDGPIO 0x10 /* ADT7476 only */
/* ADT7475 Settings */
#define ADT7475_VOLTAGE_COUNT 5 /* Not counting Vtt */
#define ADT7475_TEMP_COUNT 3
#define ADT7475_TACH_COUNT 4
#define ADT7475_PWM_COUNT 3
/* Macro to read the registers */
#define adt7475_read(reg) i2c_smbus_read_byte_data(client, (reg))
/* Macros to easily index the registers */
#define TACH_REG(idx) (REG_TACH_BASE + ((idx) * 2))
#define TACH_MIN_REG(idx) (REG_TACH_MIN_BASE + ((idx) * 2))
#define PWM_REG(idx) (REG_PWM_BASE + (idx))
#define PWM_MAX_REG(idx) (REG_PWM_MAX_BASE + (idx))
#define PWM_MIN_REG(idx) (REG_PWM_MIN_BASE + (idx))
#define PWM_CONFIG_REG(idx) (REG_PWM_CONFIG_BASE + (idx))
#define VOLTAGE_REG(idx) (REG_VOLTAGE_BASE + (idx))
#define VOLTAGE_MIN_REG(idx) (REG_VOLTAGE_MIN_BASE + ((idx) * 2))
#define VOLTAGE_MAX_REG(idx) (REG_VOLTAGE_MAX_BASE + ((idx) * 2))
#define TEMP_REG(idx) (REG_TEMP_BASE + (idx))
#define TEMP_MIN_REG(idx) (REG_TEMP_MIN_BASE + ((idx) * 2))
#define TEMP_MAX_REG(idx) (REG_TEMP_MAX_BASE + ((idx) * 2))
#define TEMP_TMIN_REG(idx) (REG_TEMP_TMIN_BASE + (idx))
#define TEMP_THERM_REG(idx) (REG_TEMP_THERM_BASE + (idx))
#define TEMP_OFFSET_REG(idx) (REG_TEMP_OFFSET_BASE + (idx))
#define TEMP_TRANGE_REG(idx) (REG_TEMP_TRANGE_BASE + (idx))
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips { adt7473, adt7475, adt7476, adt7490 };
static const struct i2c_device_id adt7475_id[] = {
{ "adt7473", adt7473 },
{ "adt7475", adt7475 },
{ "adt7476", adt7476 },
{ "adt7490", adt7490 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adt7475_id);
struct adt7475_data {
struct device *hwmon_dev;
struct mutex lock;
unsigned long measure_updated;
unsigned long limits_updated;
char valid;
u8 config4;
u8 config5;
u8 has_voltage;
u8 bypass_attn; /* Bypass voltage attenuator */
u8 has_pwm2:1;
u8 has_fan4:1;
u8 has_vid:1;
u32 alarms;
u16 voltage[3][6];
u16 temp[7][3];
u16 tach[2][4];
u8 pwm[4][3];
u8 range[3];
u8 pwmctl[3];
u8 pwmchan[3];
u8 vid;
u8 vrm;
};
static struct i2c_driver adt7475_driver;
static struct adt7475_data *adt7475_update_device(struct device *dev);
static void adt7475_read_hystersis(struct i2c_client *client);
static void adt7475_read_pwm(struct i2c_client *client, int index);
/* Given a temp value, convert it to register value */
static inline u16 temp2reg(struct adt7475_data *data, long val)
{
u16 ret;
if (!(data->config5 & CONFIG5_TWOSCOMP)) {
val = SENSORS_LIMIT(val, -64000, 191000);
ret = (val + 64500) / 1000;
} else {
val = SENSORS_LIMIT(val, -128000, 127000);
if (val < -500)
ret = (256500 + val) / 1000;
else
ret = (val + 500) / 1000;
}
return ret << 2;
}
/* Given a register value, convert it to a real temp value */
static inline int reg2temp(struct adt7475_data *data, u16 reg)
{
if (data->config5 & CONFIG5_TWOSCOMP) {
if (reg >= 512)
return (reg - 1024) * 250;
else
return reg * 250;
} else
return (reg - 256) * 250;
}
static inline int tach2rpm(u16 tach)
{
if (tach == 0 || tach == 0xFFFF)
return 0;
return (90000 * 60) / tach;
}
static inline u16 rpm2tach(unsigned long rpm)
{
if (rpm == 0)
return 0;
return SENSORS_LIMIT((90000 * 60) / rpm, 1, 0xFFFF);
}
/* Scaling factors for voltage inputs, taken from the ADT7490 datasheet */
static const int adt7473_in_scaling[ADT7475_VOLTAGE_COUNT + 1][2] = {
{ 45, 94 }, /* +2.5V */
{ 175, 525 }, /* Vccp */
{ 68, 71 }, /* Vcc */
{ 93, 47 }, /* +5V */
{ 120, 20 }, /* +12V */
{ 45, 45 }, /* Vtt */
};
static inline int reg2volt(int channel, u16 reg, u8 bypass_attn)
{
const int *r = adt7473_in_scaling[channel];
if (bypass_attn & (1 << channel))
return DIV_ROUND_CLOSEST(reg * 2250, 1024);
return DIV_ROUND_CLOSEST(reg * (r[0] + r[1]) * 2250, r[1] * 1024);
}
static inline u16 volt2reg(int channel, long volt, u8 bypass_attn)
{
const int *r = adt7473_in_scaling[channel];
long reg;
if (bypass_attn & (1 << channel))
reg = (volt * 1024) / 2250;
else
reg = (volt * r[1] * 1024) / ((r[0] + r[1]) * 2250);
return SENSORS_LIMIT(reg, 0, 1023) & (0xff << 2);
}
static u16 adt7475_read_word(struct i2c_client *client, int reg)
{
u16 val;
val = i2c_smbus_read_byte_data(client, reg);
val |= (i2c_smbus_read_byte_data(client, reg + 1) << 8);
return val;
}
static void adt7475_write_word(struct i2c_client *client, int reg, u16 val)
{
i2c_smbus_write_byte_data(client, reg + 1, val >> 8);
i2c_smbus_write_byte_data(client, reg, val & 0xFF);
}
/* Find the nearest value in a table - used for pwm frequency and
auto temp range */
static int find_nearest(long val, const int *array, int size)
{
int i;
if (val < array[0])
return 0;
if (val > array[size - 1])
return size - 1;
for (i = 0; i < size - 1; i++) {
int a, b;
if (val > array[i + 1])
continue;
a = val - array[i];
b = array[i + 1] - val;
return (a <= b) ? i : i + 1;
}
return 0;
}
static ssize_t show_voltage(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
unsigned short val;
switch (sattr->nr) {
case ALARM:
return sprintf(buf, "%d\n",
(data->alarms >> sattr->index) & 1);
default:
val = data->voltage[sattr->nr][sattr->index];
return sprintf(buf, "%d\n",
reg2volt(sattr->index, val, data->bypass_attn));
}
}
static ssize_t set_voltage(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned char reg;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
data->voltage[sattr->nr][sattr->index] =
volt2reg(sattr->index, val, data->bypass_attn);
if (sattr->index < ADT7475_VOLTAGE_COUNT) {
if (sattr->nr == MIN)
reg = VOLTAGE_MIN_REG(sattr->index);
else
reg = VOLTAGE_MAX_REG(sattr->index);
} else {
if (sattr->nr == MIN)
reg = REG_VTT_MIN;
else
reg = REG_VTT_MAX;
}
i2c_smbus_write_byte_data(client, reg,
data->voltage[sattr->nr][sattr->index] >> 2);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out;
switch (sattr->nr) {
case HYSTERSIS:
mutex_lock(&data->lock);
out = data->temp[sattr->nr][sattr->index];
if (sattr->index != 1)
out = (out >> 4) & 0xF;
else
out = (out & 0xF);
/* Show the value as an absolute number tied to
* THERM */
out = reg2temp(data, data->temp[THERM][sattr->index]) -
out * 1000;
mutex_unlock(&data->lock);
break;
case OFFSET:
/* Offset is always 2's complement, regardless of the
* setting in CONFIG5 */
mutex_lock(&data->lock);
out = (s8)data->temp[sattr->nr][sattr->index];
if (data->config5 & CONFIG5_TEMPOFFSET)
out *= 1000;
else
out *= 500;
mutex_unlock(&data->lock);
break;
case ALARM:
out = (data->alarms >> (sattr->index + 4)) & 1;
break;
case FAULT:
/* Note - only for remote1 and remote2 */
out = !!(data->alarms & (sattr->index ? 0x8000 : 0x4000));
break;
default:
/* All other temp values are in the configured format */
out = reg2temp(data, data->temp[sattr->nr][sattr->index]);
}
return sprintf(buf, "%d\n", out);
}
static ssize_t set_temp(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned char reg = 0;
u8 out;
int temp;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* We need the config register in all cases for temp <-> reg conv. */
data->config5 = adt7475_read(REG_CONFIG5);
switch (sattr->nr) {
case OFFSET:
if (data->config5 & CONFIG5_TEMPOFFSET) {
val = SENSORS_LIMIT(val, -63000, 127000);
out = data->temp[OFFSET][sattr->index] = val / 1000;
} else {
val = SENSORS_LIMIT(val, -63000, 64000);
out = data->temp[OFFSET][sattr->index] = val / 500;
}
break;
case HYSTERSIS:
/* The value will be given as an absolute value, turn it
into an offset based on THERM */
/* Read fresh THERM and HYSTERSIS values from the chip */
data->temp[THERM][sattr->index] =
adt7475_read(TEMP_THERM_REG(sattr->index)) << 2;
adt7475_read_hystersis(client);
temp = reg2temp(data, data->temp[THERM][sattr->index]);
val = SENSORS_LIMIT(val, temp - 15000, temp);
val = (temp - val) / 1000;
if (sattr->index != 1) {
data->temp[HYSTERSIS][sattr->index] &= 0xF0;
data->temp[HYSTERSIS][sattr->index] |= (val & 0xF) << 4;
} else {
data->temp[HYSTERSIS][sattr->index] &= 0x0F;
data->temp[HYSTERSIS][sattr->index] |= (val & 0xF);
}
out = data->temp[HYSTERSIS][sattr->index];
break;
default:
data->temp[sattr->nr][sattr->index] = temp2reg(data, val);
/* We maintain an extra 2 digits of precision for simplicity
* - shift those back off before writing the value */
out = (u8) (data->temp[sattr->nr][sattr->index] >> 2);
}
switch (sattr->nr) {
case MIN:
reg = TEMP_MIN_REG(sattr->index);
break;
case MAX:
reg = TEMP_MAX_REG(sattr->index);
break;
case OFFSET:
reg = TEMP_OFFSET_REG(sattr->index);
break;
case AUTOMIN:
reg = TEMP_TMIN_REG(sattr->index);
break;
case THERM:
reg = TEMP_THERM_REG(sattr->index);
break;
case HYSTERSIS:
if (sattr->index != 2)
reg = REG_REMOTE1_HYSTERSIS;
else
reg = REG_REMOTE2_HYSTERSIS;
break;
}
i2c_smbus_write_byte_data(client, reg, out);
mutex_unlock(&data->lock);
return count;
}
/* Table of autorange values - the user will write the value in millidegrees,
and we'll convert it */
static const int autorange_table[] = {
2000, 2500, 3330, 4000, 5000, 6670, 8000,
10000, 13330, 16000, 20000, 26670, 32000, 40000,
53330, 80000
};
static ssize_t show_point2(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out, val;
mutex_lock(&data->lock);
out = (data->range[sattr->index] >> 4) & 0x0F;
val = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
mutex_unlock(&data->lock);
return sprintf(buf, "%d\n", val + autorange_table[out]);
}
static ssize_t set_point2(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int temp;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Get a fresh copy of the needed registers */
data->config5 = adt7475_read(REG_CONFIG5);
data->temp[AUTOMIN][sattr->index] =
adt7475_read(TEMP_TMIN_REG(sattr->index)) << 2;
data->range[sattr->index] =
adt7475_read(TEMP_TRANGE_REG(sattr->index));
/* The user will write an absolute value, so subtract the start point
to figure the range */
temp = reg2temp(data, data->temp[AUTOMIN][sattr->index]);
val = SENSORS_LIMIT(val, temp + autorange_table[0],
temp + autorange_table[ARRAY_SIZE(autorange_table) - 1]);
val -= temp;
/* Find the nearest table entry to what the user wrote */
val = find_nearest(val, autorange_table, ARRAY_SIZE(autorange_table));
data->range[sattr->index] &= ~0xF0;
data->range[sattr->index] |= val << 4;
i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
data->range[sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_tach(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int out;
if (sattr->nr == ALARM)
out = (data->alarms >> (sattr->index + 10)) & 1;
else
out = tach2rpm(data->tach[sattr->nr][sattr->index]);
return sprintf(buf, "%d\n", out);
}
static ssize_t set_tach(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
data->tach[MIN][sattr->index] = rpm2tach(val);
adt7475_write_word(client, TACH_MIN_REG(sattr->index),
data->tach[MIN][sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
return sprintf(buf, "%d\n", data->pwm[sattr->nr][sattr->index]);
}
static ssize_t show_pwmchan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
return sprintf(buf, "%d\n", data->pwmchan[sattr->index]);
}
static ssize_t show_pwmctrl(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
return sprintf(buf, "%d\n", data->pwmctl[sattr->index]);
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned char reg = 0;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
switch (sattr->nr) {
case INPUT:
/* Get a fresh value for CONTROL */
data->pwm[CONTROL][sattr->index] =
adt7475_read(PWM_CONFIG_REG(sattr->index));
/* If we are not in manual mode, then we shouldn't allow
* the user to set the pwm speed */
if (((data->pwm[CONTROL][sattr->index] >> 5) & 7) != 7) {
mutex_unlock(&data->lock);
return count;
}
reg = PWM_REG(sattr->index);
break;
case MIN:
reg = PWM_MIN_REG(sattr->index);
break;
case MAX:
reg = PWM_MAX_REG(sattr->index);
break;
}
data->pwm[sattr->nr][sattr->index] = SENSORS_LIMIT(val, 0, 0xFF);
i2c_smbus_write_byte_data(client, reg,
data->pwm[sattr->nr][sattr->index]);
mutex_unlock(&data->lock);
return count;
}
/* Called by set_pwmctrl and set_pwmchan */
static int hw_set_pwm(struct i2c_client *client, int index,
unsigned int pwmctl, unsigned int pwmchan)
{
struct adt7475_data *data = i2c_get_clientdata(client);
long val = 0;
switch (pwmctl) {
case 0:
val = 0x03; /* Run at full speed */
break;
case 1:
val = 0x07; /* Manual mode */
break;
case 2:
switch (pwmchan) {
case 1:
/* Remote1 controls PWM */
val = 0x00;
break;
case 2:
/* local controls PWM */
val = 0x01;
break;
case 4:
/* remote2 controls PWM */
val = 0x02;
break;
case 6:
/* local/remote2 control PWM */
val = 0x05;
break;
case 7:
/* All three control PWM */
val = 0x06;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
data->pwmctl[index] = pwmctl;
data->pwmchan[index] = pwmchan;
data->pwm[CONTROL][index] &= ~0xE0;
data->pwm[CONTROL][index] |= (val & 7) << 5;
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[CONTROL][index]);
return 0;
}
static ssize_t set_pwmchan(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
int r;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Read Modify Write PWM values */
adt7475_read_pwm(client, sattr->index);
r = hw_set_pwm(client, sattr->index, data->pwmctl[sattr->index], val);
if (r)
count = r;
mutex_unlock(&data->lock);
return count;
}
static ssize_t set_pwmctrl(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
int r;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->lock);
/* Read Modify Write PWM values */
adt7475_read_pwm(client, sattr->index);
r = hw_set_pwm(client, sattr->index, val, data->pwmchan[sattr->index]);
if (r)
count = r;
mutex_unlock(&data->lock);
return count;
}
/* List of frequencies for the PWM */
static const int pwmfreq_table[] = {
11, 14, 22, 29, 35, 44, 58, 88
};
static ssize_t show_pwmfreq(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
return sprintf(buf, "%d\n",
pwmfreq_table[data->range[sattr->index] & 7]);
}
static ssize_t set_pwmfreq(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
int out;
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
out = find_nearest(val, pwmfreq_table, ARRAY_SIZE(pwmfreq_table));
mutex_lock(&data->lock);
data->range[sattr->index] =
adt7475_read(TEMP_TRANGE_REG(sattr->index));
data->range[sattr->index] &= ~7;
data->range[sattr->index] |= out;
i2c_smbus_write_byte_data(client, TEMP_TRANGE_REG(sattr->index),
data->range[sattr->index]);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_at_crit(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
return sprintf(buf, "%d\n", !!(data->config4 & CONFIG4_MAXDUTY));
}
static ssize_t set_pwm_at_crit(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
mutex_lock(&data->lock);
data->config4 = i2c_smbus_read_byte_data(client, REG_CONFIG4);
if (val)
data->config4 |= CONFIG4_MAXDUTY;
else
data->config4 &= ~CONFIG4_MAXDUTY;
i2c_smbus_write_byte_data(client, REG_CONFIG4, data->config4);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_vrm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct adt7475_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", (int)data->vrm);
}
static ssize_t set_vrm(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adt7475_data *data = dev_get_drvdata(dev);
long val;
if (strict_strtol(buf, 10, &val))
return -EINVAL;
if (val < 0 || val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static ssize_t show_vid(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct adt7475_data *data = adt7475_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_voltage, NULL, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(in0_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 0);
static SENSOR_DEVICE_ATTR_2(in0_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 0);
static SENSOR_DEVICE_ATTR_2(in0_alarm, S_IRUGO, show_voltage, NULL, ALARM, 0);
static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_voltage, NULL, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(in1_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 1);
static SENSOR_DEVICE_ATTR_2(in1_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 1);
static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, show_voltage, NULL, ALARM, 1);
static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_voltage, NULL, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(in2_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 2);
static SENSOR_DEVICE_ATTR_2(in2_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 2);
static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, show_voltage, NULL, ALARM, 2);
static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_voltage, NULL, INPUT, 3);
static SENSOR_DEVICE_ATTR_2(in3_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 3);
static SENSOR_DEVICE_ATTR_2(in3_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 3);
static SENSOR_DEVICE_ATTR_2(in3_alarm, S_IRUGO, show_voltage, NULL, ALARM, 3);
static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_voltage, NULL, INPUT, 4);
static SENSOR_DEVICE_ATTR_2(in4_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 4);
static SENSOR_DEVICE_ATTR_2(in4_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 4);
static SENSOR_DEVICE_ATTR_2(in4_alarm, S_IRUGO, show_voltage, NULL, ALARM, 8);
static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_voltage, NULL, INPUT, 5);
static SENSOR_DEVICE_ATTR_2(in5_max, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MAX, 5);
static SENSOR_DEVICE_ATTR_2(in5_min, S_IRUGO | S_IWUSR, show_voltage,
set_voltage, MIN, 5);
static SENSOR_DEVICE_ATTR_2(in5_alarm, S_IRUGO, show_voltage, NULL, ALARM, 31);
static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, show_temp, NULL, ALARM, 0);
static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, show_temp, NULL, FAULT, 0);
static SENSOR_DEVICE_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, show_temp, set_temp,
MAX, 0);
static SENSOR_DEVICE_ATTR_2(temp1_min, S_IRUGO | S_IWUSR, show_temp, set_temp,
MIN, 0);
static SENSOR_DEVICE_ATTR_2(temp1_offset, S_IRUGO | S_IWUSR, show_temp,
set_temp, OFFSET, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_point1_temp, S_IRUGO | S_IWUSR,
show_temp, set_temp, AUTOMIN, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_point2_temp, S_IRUGO | S_IWUSR,
show_point2, set_point2, 0, 0);
static SENSOR_DEVICE_ATTR_2(temp1_crit, S_IRUGO | S_IWUSR, show_temp, set_temp,
THERM, 0);
static SENSOR_DEVICE_ATTR_2(temp1_crit_hyst, S_IRUGO | S_IWUSR, show_temp,
set_temp, HYSTERSIS, 0);
static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(temp2_alarm, S_IRUGO, show_temp, NULL, ALARM, 1);
static SENSOR_DEVICE_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, show_temp, set_temp,
MAX, 1);
static SENSOR_DEVICE_ATTR_2(temp2_min, S_IRUGO | S_IWUSR, show_temp, set_temp,
MIN, 1);
static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IRUGO | S_IWUSR, show_temp,
set_temp, OFFSET, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_point1_temp, S_IRUGO | S_IWUSR,
show_temp, set_temp, AUTOMIN, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_point2_temp, S_IRUGO | S_IWUSR,
show_point2, set_point2, 0, 1);
static SENSOR_DEVICE_ATTR_2(temp2_crit, S_IRUGO | S_IWUSR, show_temp, set_temp,
THERM, 1);
static SENSOR_DEVICE_ATTR_2(temp2_crit_hyst, S_IRUGO | S_IWUSR, show_temp,
set_temp, HYSTERSIS, 1);
static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp, NULL, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(temp3_alarm, S_IRUGO, show_temp, NULL, ALARM, 2);
static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_temp, NULL, FAULT, 2);
static SENSOR_DEVICE_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, show_temp, set_temp,
MAX, 2);
static SENSOR_DEVICE_ATTR_2(temp3_min, S_IRUGO | S_IWUSR, show_temp, set_temp,
MIN, 2);
static SENSOR_DEVICE_ATTR_2(temp3_offset, S_IRUGO | S_IWUSR, show_temp,
set_temp, OFFSET, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_point1_temp, S_IRUGO | S_IWUSR,
show_temp, set_temp, AUTOMIN, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_point2_temp, S_IRUGO | S_IWUSR,
show_point2, set_point2, 0, 2);
static SENSOR_DEVICE_ATTR_2(temp3_crit, S_IRUGO | S_IWUSR, show_temp, set_temp,
THERM, 2);
static SENSOR_DEVICE_ATTR_2(temp3_crit_hyst, S_IRUGO | S_IWUSR, show_temp,
set_temp, HYSTERSIS, 2);
static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_tach, NULL, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(fan1_min, S_IRUGO | S_IWUSR, show_tach, set_tach,
MIN, 0);
static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, show_tach, NULL, ALARM, 0);
static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_tach, NULL, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(fan2_min, S_IRUGO | S_IWUSR, show_tach, set_tach,
MIN, 1);
static SENSOR_DEVICE_ATTR_2(fan2_alarm, S_IRUGO, show_tach, NULL, ALARM, 1);
static SENSOR_DEVICE_ATTR_2(fan3_input, S_IRUGO, show_tach, NULL, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(fan3_min, S_IRUGO | S_IWUSR, show_tach, set_tach,
MIN, 2);
static SENSOR_DEVICE_ATTR_2(fan3_alarm, S_IRUGO, show_tach, NULL, ALARM, 2);
static SENSOR_DEVICE_ATTR_2(fan4_input, S_IRUGO, show_tach, NULL, INPUT, 3);
static SENSOR_DEVICE_ATTR_2(fan4_min, S_IRUGO | S_IWUSR, show_tach, set_tach,
MIN, 3);
static SENSOR_DEVICE_ATTR_2(fan4_alarm, S_IRUGO, show_tach, NULL, ALARM, 3);
static SENSOR_DEVICE_ATTR_2(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, INPUT,
0);
static SENSOR_DEVICE_ATTR_2(pwm1_freq, S_IRUGO | S_IWUSR, show_pwmfreq,
set_pwmfreq, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(pwm1_enable, S_IRUGO | S_IWUSR, show_pwmctrl,
set_pwmctrl, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(pwm1_auto_channels_temp, S_IRUGO | S_IWUSR,
show_pwmchan, set_pwmchan, INPUT, 0);
static SENSOR_DEVICE_ATTR_2(pwm1_auto_point1_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MIN, 0);
static SENSOR_DEVICE_ATTR_2(pwm1_auto_point2_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MAX, 0);
static SENSOR_DEVICE_ATTR_2(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, INPUT,
1);
static SENSOR_DEVICE_ATTR_2(pwm2_freq, S_IRUGO | S_IWUSR, show_pwmfreq,
set_pwmfreq, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(pwm2_enable, S_IRUGO | S_IWUSR, show_pwmctrl,
set_pwmctrl, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(pwm2_auto_channels_temp, S_IRUGO | S_IWUSR,
show_pwmchan, set_pwmchan, INPUT, 1);
static SENSOR_DEVICE_ATTR_2(pwm2_auto_point1_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MIN, 1);
static SENSOR_DEVICE_ATTR_2(pwm2_auto_point2_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MAX, 1);
static SENSOR_DEVICE_ATTR_2(pwm3, S_IRUGO | S_IWUSR, show_pwm, set_pwm, INPUT,
2);
static SENSOR_DEVICE_ATTR_2(pwm3_freq, S_IRUGO | S_IWUSR, show_pwmfreq,
set_pwmfreq, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(pwm3_enable, S_IRUGO | S_IWUSR, show_pwmctrl,
set_pwmctrl, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(pwm3_auto_channels_temp, S_IRUGO | S_IWUSR,
show_pwmchan, set_pwmchan, INPUT, 2);
static SENSOR_DEVICE_ATTR_2(pwm3_auto_point1_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MIN, 2);
static SENSOR_DEVICE_ATTR_2(pwm3_auto_point2_pwm, S_IRUGO | S_IWUSR, show_pwm,
set_pwm, MAX, 2);
/* Non-standard name, might need revisiting */
static DEVICE_ATTR(pwm_use_point2_pwm_at_crit, S_IWUSR | S_IRUGO,
show_pwm_at_crit, set_pwm_at_crit);
static DEVICE_ATTR(vrm, S_IWUSR | S_IRUGO, show_vrm, set_vrm);
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
static struct attribute *adt7475_attrs[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_offset.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_offset.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_freq.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm3_freq.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&dev_attr_pwm_use_point2_pwm_at_crit.attr,
NULL,
};
static struct attribute *fan4_attrs[] = {
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
NULL
};
static struct attribute *pwm2_attrs[] = {
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm2_freq.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
NULL
};
static struct attribute *in0_attrs[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
NULL
};
static struct attribute *in3_attrs[] = {
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
NULL
};
static struct attribute *in4_attrs[] = {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
};
static struct attribute *in5_attrs[] = {
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
NULL
};
static struct attribute *vid_attrs[] = {
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
NULL
};
static struct attribute_group adt7475_attr_group = { .attrs = adt7475_attrs };
static struct attribute_group fan4_attr_group = { .attrs = fan4_attrs };
static struct attribute_group pwm2_attr_group = { .attrs = pwm2_attrs };
static struct attribute_group in0_attr_group = { .attrs = in0_attrs };
static struct attribute_group in3_attr_group = { .attrs = in3_attrs };
static struct attribute_group in4_attr_group = { .attrs = in4_attrs };
static struct attribute_group in5_attr_group = { .attrs = in5_attrs };
static struct attribute_group vid_attr_group = { .attrs = vid_attrs };
static int adt7475_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int vendid, devid, devid2;
const char *name;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
vendid = adt7475_read(REG_VENDID);
devid2 = adt7475_read(REG_DEVID2);
if (vendid != 0x41 || /* Analog Devices */
(devid2 & 0xf8) != 0x68)
return -ENODEV;
devid = adt7475_read(REG_DEVID);
if (devid == 0x73)
name = "adt7473";
else if (devid == 0x75 && client->addr == 0x2e)
name = "adt7475";
else if (devid == 0x76)
name = "adt7476";
else if ((devid2 & 0xfc) == 0x6c)
name = "adt7490";
else {
dev_dbg(&adapter->dev,
"Couldn't detect an ADT7473/75/76/90 part at "
"0x%02x\n", (unsigned int)client->addr);
return -ENODEV;
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void adt7475_remove_files(struct i2c_client *client,
struct adt7475_data *data)
{
sysfs_remove_group(&client->dev.kobj, &adt7475_attr_group);
if (data->has_fan4)
sysfs_remove_group(&client->dev.kobj, &fan4_attr_group);
if (data->has_pwm2)
sysfs_remove_group(&client->dev.kobj, &pwm2_attr_group);
if (data->has_voltage & (1 << 0))
sysfs_remove_group(&client->dev.kobj, &in0_attr_group);
if (data->has_voltage & (1 << 3))
sysfs_remove_group(&client->dev.kobj, &in3_attr_group);
if (data->has_voltage & (1 << 4))
sysfs_remove_group(&client->dev.kobj, &in4_attr_group);
if (data->has_voltage & (1 << 5))
sysfs_remove_group(&client->dev.kobj, &in5_attr_group);
if (data->has_vid)
sysfs_remove_group(&client->dev.kobj, &vid_attr_group);
}
static int adt7475_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
static const char *names[] = {
[adt7473] = "ADT7473",
[adt7475] = "ADT7475",
[adt7476] = "ADT7476",
[adt7490] = "ADT7490",
};
struct adt7475_data *data;
int i, ret = 0, revision;
u8 config2, config3;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
mutex_init(&data->lock);
i2c_set_clientdata(client, data);
/* Initialize device-specific values */
switch (id->driver_data) {
case adt7476:
data->has_voltage = 0x0e; /* in1 to in3 */
revision = adt7475_read(REG_DEVID2) & 0x07;
break;
case adt7490:
data->has_voltage = 0x3e; /* in1 to in5 */
revision = adt7475_read(REG_DEVID2) & 0x03;
if (revision == 0x03)
revision += adt7475_read(REG_DEVREV2);
break;
default:
data->has_voltage = 0x06; /* in1, in2 */
revision = adt7475_read(REG_DEVID2) & 0x07;
}
config3 = adt7475_read(REG_CONFIG3);
/* Pin PWM2 may alternatively be used for ALERT output */
if (!(config3 & CONFIG3_SMBALERT))
data->has_pwm2 = 1;
/* Meaning of this bit is inverted for the ADT7473-1 */
if (id->driver_data == adt7473 && revision >= 1)
data->has_pwm2 = !data->has_pwm2;
data->config4 = adt7475_read(REG_CONFIG4);
/* Pin TACH4 may alternatively be used for THERM */
if ((data->config4 & CONFIG4_PINFUNC) == 0x0)
data->has_fan4 = 1;
/* THERM configuration is more complex on the ADT7476 and ADT7490,
because 2 different pins (TACH4 and +2.5 Vin) can be used for
this function */
if (id->driver_data == adt7490) {
if ((data->config4 & CONFIG4_PINFUNC) == 0x1 &&
!(config3 & CONFIG3_THERM))
data->has_fan4 = 1;
}
if (id->driver_data == adt7476 || id->driver_data == adt7490) {
if (!(config3 & CONFIG3_THERM) ||
(data->config4 & CONFIG4_PINFUNC) == 0x1)
data->has_voltage |= (1 << 0); /* in0 */
}
/* On the ADT7476, the +12V input pin may instead be used as VID5,
and VID pins may alternatively be used as GPIO */
if (id->driver_data == adt7476) {
u8 vid = adt7475_read(REG_VID);
if (!(vid & VID_VIDSEL))
data->has_voltage |= (1 << 4); /* in4 */
data->has_vid = !(adt7475_read(REG_CONFIG5) & CONFIG5_VIDGPIO);
}
/* Voltage attenuators can be bypassed, globally or individually */
config2 = adt7475_read(REG_CONFIG2);
if (config2 & CONFIG2_ATTN) {
data->bypass_attn = (0x3 << 3) | 0x3;
} else {
data->bypass_attn = ((data->config4 & CONFIG4_ATTN_IN10) >> 4) |
((data->config4 & CONFIG4_ATTN_IN43) >> 3);
}
data->bypass_attn &= data->has_voltage;
/* Call adt7475_read_pwm for all pwm's as this will reprogram any
pwm's which are disabled to manual mode with 0% duty cycle */
for (i = 0; i < ADT7475_PWM_COUNT; i++)
adt7475_read_pwm(client, i);
ret = sysfs_create_group(&client->dev.kobj, &adt7475_attr_group);
if (ret)
goto efree;
/* Features that can be disabled individually */
if (data->has_fan4) {
ret = sysfs_create_group(&client->dev.kobj, &fan4_attr_group);
if (ret)
goto eremove;
}
if (data->has_pwm2) {
ret = sysfs_create_group(&client->dev.kobj, &pwm2_attr_group);
if (ret)
goto eremove;
}
if (data->has_voltage & (1 << 0)) {
ret = sysfs_create_group(&client->dev.kobj, &in0_attr_group);
if (ret)
goto eremove;
}
if (data->has_voltage & (1 << 3)) {
ret = sysfs_create_group(&client->dev.kobj, &in3_attr_group);
if (ret)
goto eremove;
}
if (data->has_voltage & (1 << 4)) {
ret = sysfs_create_group(&client->dev.kobj, &in4_attr_group);
if (ret)
goto eremove;
}
if (data->has_voltage & (1 << 5)) {
ret = sysfs_create_group(&client->dev.kobj, &in5_attr_group);
if (ret)
goto eremove;
}
if (data->has_vid) {
data->vrm = vid_which_vrm();
ret = sysfs_create_group(&client->dev.kobj, &vid_attr_group);
if (ret)
goto eremove;
}
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
ret = PTR_ERR(data->hwmon_dev);
goto eremove;
}
dev_info(&client->dev, "%s device, revision %d\n",
names[id->driver_data], revision);
if ((data->has_voltage & 0x11) || data->has_fan4 || data->has_pwm2)
dev_info(&client->dev, "Optional features:%s%s%s%s%s\n",
(data->has_voltage & (1 << 0)) ? " in0" : "",
(data->has_voltage & (1 << 4)) ? " in4" : "",
data->has_fan4 ? " fan4" : "",
data->has_pwm2 ? " pwm2" : "",
data->has_vid ? " vid" : "");
if (data->bypass_attn)
dev_info(&client->dev, "Bypassing attenuators on:%s%s%s%s\n",
(data->bypass_attn & (1 << 0)) ? " in0" : "",
(data->bypass_attn & (1 << 1)) ? " in1" : "",
(data->bypass_attn & (1 << 3)) ? " in3" : "",
(data->bypass_attn & (1 << 4)) ? " in4" : "");
return 0;
eremove:
adt7475_remove_files(client, data);
efree:
kfree(data);
return ret;
}
static int adt7475_remove(struct i2c_client *client)
{
struct adt7475_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
adt7475_remove_files(client, data);
kfree(data);
return 0;
}
static struct i2c_driver adt7475_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adt7475",
},
.probe = adt7475_probe,
.remove = adt7475_remove,
.id_table = adt7475_id,
.detect = adt7475_detect,
.address_list = normal_i2c,
};
static void adt7475_read_hystersis(struct i2c_client *client)
{
struct adt7475_data *data = i2c_get_clientdata(client);
data->temp[HYSTERSIS][0] = (u16) adt7475_read(REG_REMOTE1_HYSTERSIS);
data->temp[HYSTERSIS][1] = data->temp[HYSTERSIS][0];
data->temp[HYSTERSIS][2] = (u16) adt7475_read(REG_REMOTE2_HYSTERSIS);
}
static void adt7475_read_pwm(struct i2c_client *client, int index)
{
struct adt7475_data *data = i2c_get_clientdata(client);
unsigned int v;
data->pwm[CONTROL][index] = adt7475_read(PWM_CONFIG_REG(index));
/* Figure out the internal value for pwmctrl and pwmchan
based on the current settings */
v = (data->pwm[CONTROL][index] >> 5) & 7;
if (v == 3)
data->pwmctl[index] = 0;
else if (v == 7)
data->pwmctl[index] = 1;
else if (v == 4) {
/* The fan is disabled - we don't want to
support that, so change to manual mode and
set the duty cycle to 0 instead
*/
data->pwm[INPUT][index] = 0;
data->pwm[CONTROL][index] &= ~0xE0;
data->pwm[CONTROL][index] |= (7 << 5);
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[INPUT][index]);
i2c_smbus_write_byte_data(client, PWM_CONFIG_REG(index),
data->pwm[CONTROL][index]);
data->pwmctl[index] = 1;
} else {
data->pwmctl[index] = 2;
switch (v) {
case 0:
data->pwmchan[index] = 1;
break;
case 1:
data->pwmchan[index] = 2;
break;
case 2:
data->pwmchan[index] = 4;
break;
case 5:
data->pwmchan[index] = 6;
break;
case 6:
data->pwmchan[index] = 7;
break;
}
}
}
static struct adt7475_data *adt7475_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7475_data *data = i2c_get_clientdata(client);
u16 ext;
int i;
mutex_lock(&data->lock);
/* Measurement values update every 2 seconds */
if (time_after(jiffies, data->measure_updated + HZ * 2) ||
!data->valid) {
data->alarms = adt7475_read(REG_STATUS2) << 8;
data->alarms |= adt7475_read(REG_STATUS1);
ext = (adt7475_read(REG_EXTEND2) << 8) |
adt7475_read(REG_EXTEND1);
for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
if (!(data->has_voltage & (1 << i)))
continue;
data->voltage[INPUT][i] =
(adt7475_read(VOLTAGE_REG(i)) << 2) |
((ext >> (i * 2)) & 3);
}
for (i = 0; i < ADT7475_TEMP_COUNT; i++)
data->temp[INPUT][i] =
(adt7475_read(TEMP_REG(i)) << 2) |
((ext >> ((i + 5) * 2)) & 3);
if (data->has_voltage & (1 << 5)) {
data->alarms |= adt7475_read(REG_STATUS4) << 24;
ext = adt7475_read(REG_EXTEND3);
data->voltage[INPUT][5] = adt7475_read(REG_VTT) << 2 |
((ext >> 4) & 3);
}
for (i = 0; i < ADT7475_TACH_COUNT; i++) {
if (i == 3 && !data->has_fan4)
continue;
data->tach[INPUT][i] =
adt7475_read_word(client, TACH_REG(i));
}
/* Updated by hw when in auto mode */
for (i = 0; i < ADT7475_PWM_COUNT; i++) {
if (i == 1 && !data->has_pwm2)
continue;
data->pwm[INPUT][i] = adt7475_read(PWM_REG(i));
}
if (data->has_vid)
data->vid = adt7475_read(REG_VID) & 0x3f;
data->measure_updated = jiffies;
}
/* Limits and settings, should never change update every 60 seconds */
if (time_after(jiffies, data->limits_updated + HZ * 60) ||
!data->valid) {
data->config4 = adt7475_read(REG_CONFIG4);
data->config5 = adt7475_read(REG_CONFIG5);
for (i = 0; i < ADT7475_VOLTAGE_COUNT; i++) {
if (!(data->has_voltage & (1 << i)))
continue;
/* Adjust values so they match the input precision */
data->voltage[MIN][i] =
adt7475_read(VOLTAGE_MIN_REG(i)) << 2;
data->voltage[MAX][i] =
adt7475_read(VOLTAGE_MAX_REG(i)) << 2;
}
if (data->has_voltage & (1 << 5)) {
data->voltage[MIN][5] = adt7475_read(REG_VTT_MIN) << 2;
data->voltage[MAX][5] = adt7475_read(REG_VTT_MAX) << 2;
}
for (i = 0; i < ADT7475_TEMP_COUNT; i++) {
/* Adjust values so they match the input precision */
data->temp[MIN][i] =
adt7475_read(TEMP_MIN_REG(i)) << 2;
data->temp[MAX][i] =
adt7475_read(TEMP_MAX_REG(i)) << 2;
data->temp[AUTOMIN][i] =
adt7475_read(TEMP_TMIN_REG(i)) << 2;
data->temp[THERM][i] =
adt7475_read(TEMP_THERM_REG(i)) << 2;
data->temp[OFFSET][i] =
adt7475_read(TEMP_OFFSET_REG(i));
}
adt7475_read_hystersis(client);
for (i = 0; i < ADT7475_TACH_COUNT; i++) {
if (i == 3 && !data->has_fan4)
continue;
data->tach[MIN][i] =
adt7475_read_word(client, TACH_MIN_REG(i));
}
for (i = 0; i < ADT7475_PWM_COUNT; i++) {
if (i == 1 && !data->has_pwm2)
continue;
data->pwm[MAX][i] = adt7475_read(PWM_MAX_REG(i));
data->pwm[MIN][i] = adt7475_read(PWM_MIN_REG(i));
/* Set the channel and control information */
adt7475_read_pwm(client, i);
}
data->range[0] = adt7475_read(TEMP_TRANGE_REG(0));
data->range[1] = adt7475_read(TEMP_TRANGE_REG(1));
data->range[2] = adt7475_read(TEMP_TRANGE_REG(2));
data->limits_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->lock);
return data;
}
static int __init sensors_adt7475_init(void)
{
return i2c_add_driver(&adt7475_driver);
}
static void __exit sensors_adt7475_exit(void)
{
i2c_del_driver(&adt7475_driver);
}
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("adt7475 driver");
MODULE_LICENSE("GPL");
module_init(sensors_adt7475_init);
module_exit(sensors_adt7475_exit);