WSL2-Linux-Kernel/net/ipv4/tcp_memcontrol.c

232 строки
5.7 KiB
C
Исходник Обычный вид История

#include <net/tcp.h>
#include <net/tcp_memcontrol.h>
#include <net/sock.h>
#include <net/ip.h>
#include <linux/nsproxy.h>
#include <linux/memcontrol.h>
#include <linux/module.h>
static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft);
static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer);
static struct cftype tcp_files[] = {
{
.name = "kmem.tcp.limit_in_bytes",
.write_string = tcp_cgroup_write,
.read_u64 = tcp_cgroup_read,
.private = RES_LIMIT,
},
{
.name = "kmem.tcp.usage_in_bytes",
.read_u64 = tcp_cgroup_read,
.private = RES_USAGE,
},
};
static inline struct tcp_memcontrol *tcp_from_cgproto(struct cg_proto *cg_proto)
{
return container_of(cg_proto, struct tcp_memcontrol, cg_proto);
}
static void memcg_tcp_enter_memory_pressure(struct sock *sk)
{
if (!sk->sk_cgrp->memory_pressure)
*sk->sk_cgrp->memory_pressure = 1;
}
EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
int tcp_init_cgroup(struct cgroup *cgrp, struct cgroup_subsys *ss)
{
/*
* The root cgroup does not use res_counters, but rather,
* rely on the data already collected by the network
* subsystem
*/
struct res_counter *res_parent = NULL;
struct cg_proto *cg_proto, *parent_cg;
struct tcp_memcontrol *tcp;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent = parent_mem_cgroup(memcg);
struct net *net = current->nsproxy->net_ns;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
goto create_files;
tcp = tcp_from_cgproto(cg_proto);
tcp->tcp_prot_mem[0] = net->ipv4.sysctl_tcp_mem[0];
tcp->tcp_prot_mem[1] = net->ipv4.sysctl_tcp_mem[1];
tcp->tcp_prot_mem[2] = net->ipv4.sysctl_tcp_mem[2];
tcp->tcp_memory_pressure = 0;
parent_cg = tcp_prot.proto_cgroup(parent);
if (parent_cg)
res_parent = parent_cg->memory_allocated;
res_counter_init(&tcp->tcp_memory_allocated, res_parent);
percpu_counter_init(&tcp->tcp_sockets_allocated, 0);
cg_proto->enter_memory_pressure = memcg_tcp_enter_memory_pressure;
cg_proto->memory_pressure = &tcp->tcp_memory_pressure;
cg_proto->sysctl_mem = tcp->tcp_prot_mem;
cg_proto->memory_allocated = &tcp->tcp_memory_allocated;
cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated;
cg_proto->memcg = memcg;
create_files:
return cgroup_add_files(cgrp, ss, tcp_files,
ARRAY_SIZE(tcp_files));
}
EXPORT_SYMBOL(tcp_init_cgroup);
void tcp_destroy_cgroup(struct cgroup *cgrp, struct cgroup_subsys *ss)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct cg_proto *cg_proto;
struct tcp_memcontrol *tcp;
u64 val;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return;
tcp = tcp_from_cgproto(cg_proto);
percpu_counter_destroy(&tcp->tcp_sockets_allocated);
val = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE);
if (val != RESOURCE_MAX)
jump_label_dec(&memcg_socket_limit_enabled);
}
EXPORT_SYMBOL(tcp_destroy_cgroup);
static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
{
struct net *net = current->nsproxy->net_ns;
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
u64 old_lim;
int i;
int ret;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return -EINVAL;
if (val > RESOURCE_MAX)
val = RESOURCE_MAX;
tcp = tcp_from_cgproto(cg_proto);
old_lim = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
ret = res_counter_set_limit(&tcp->tcp_memory_allocated, val);
if (ret)
return ret;
for (i = 0; i < 3; i++)
tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT,
net->ipv4.sysctl_tcp_mem[i]);
if (val == RESOURCE_MAX && old_lim != RESOURCE_MAX)
jump_label_dec(&memcg_socket_limit_enabled);
else if (old_lim == RESOURCE_MAX && val != RESOURCE_MAX)
jump_label_inc(&memcg_socket_limit_enabled);
return 0;
}
static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
unsigned long long val;
int ret = 0;
switch (cft->private) {
case RES_LIMIT:
/* see memcontrol.c */
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
ret = tcp_update_limit(memcg, val);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return default_val;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, type);
}
static u64 tcp_read_usage(struct mem_cgroup *memcg)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE);
}
static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
u64 val;
switch (cft->private) {
case RES_LIMIT:
val = tcp_read_stat(memcg, RES_LIMIT, RESOURCE_MAX);
break;
case RES_USAGE:
val = tcp_read_usage(memcg);
break;
default:
BUG();
}
return val;
}
unsigned long long tcp_max_memory(const struct mem_cgroup *memcg)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup((struct mem_cgroup *)memcg);
if (!cg_proto)
return 0;
tcp = tcp_from_cgproto(cg_proto);
return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
}
void tcp_prot_mem(struct mem_cgroup *memcg, long val, int idx)
{
struct tcp_memcontrol *tcp;
struct cg_proto *cg_proto;
cg_proto = tcp_prot.proto_cgroup(memcg);
if (!cg_proto)
return;
tcp = tcp_from_cgproto(cg_proto);
tcp->tcp_prot_mem[idx] = val;
}