WSL2-Linux-Kernel/arch/arm64/kvm/hyp/switch.c

876 строки
22 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/arm-smccc.h>
KVM: arm64: Move pmu hyp code under hyp's Makefile to avoid instrumentation KVM's pmu.c contains the __hyp_text needed to switch the pmu registers between host and guest. Because this isn't covered by the 'hyp' Makefile, it can be built with kasan and friends when these are enabled in Kconfig. When starting a guest, this results in: | Kernel panic - not syncing: HYP panic: | PS:a00003c9 PC:000083000028ada0 ESR:86000007 | FAR:000083000028ada0 HPFAR:0000000029df5300 PAR:0000000000000000 | VCPU:000000004e10b7d6 | CPU: 0 PID: 3088 Comm: qemu-system-aar Not tainted 5.2.0-rc1 #11026 | Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Plat | Call trace: | dump_backtrace+0x0/0x200 | show_stack+0x20/0x30 | dump_stack+0xec/0x158 | panic+0x1ec/0x420 | panic+0x0/0x420 | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x002,25006082 | Memory Limit: none | ---[ end Kernel panic - not syncing: HYP panic: This is caused by functions in pmu.c calling the instrumented code, which isn't mapped to hyp. From objdump -r: | RELOCATION RECORDS FOR [.hyp.text]: | OFFSET TYPE VALUE | 0000000000000010 R_AARCH64_CALL26 __sanitizer_cov_trace_pc | 0000000000000018 R_AARCH64_CALL26 __asan_load4_noabort | 0000000000000024 R_AARCH64_CALL26 __asan_load4_noabort Move the affected code to a new file under 'hyp's Makefile. Fixes: 3d91befbb3a0 ("arm64: KVM: Enable !VHE support for :G/:H perf event modifiers") Cc: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-22 20:47:04 +03:00
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
KVM: arm64: Forbid kprobing of the VHE world-switch code On systems with VHE the kernel and KVM's world-switch code run at the same exception level. Code that is only used on a VHE system does not need to be annotated as __hyp_text as it can reside anywhere in the kernel text. __hyp_text was also used to prevent kprobes from patching breakpoint instructions into this region, as this code runs at a different exception level. While this is no longer true with VHE, KVM still switches VBAR_EL1, meaning a kprobe's breakpoint executed in the world-switch code will cause a hyp-panic. echo "p:weasel sysreg_save_guest_state_vhe" > /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/events/kprobes/weasel/enable lkvm run -k /boot/Image --console serial -p "console=ttyS0 earlycon=uart,mmio,0x3f8" # lkvm run -k /boot/Image -m 384 -c 3 --name guest-1474 Info: Placing fdt at 0x8fe00000 - 0x8fffffff Info: virtio-mmio.devices=0x200@0x10000:36 Info: virtio-mmio.devices=0x200@0x10200:37 Info: virtio-mmio.devices=0x200@0x10400:38 [ 614.178186] Kernel panic - not syncing: HYP panic: [ 614.178186] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.178186] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.178186] VCPU:00000000f8de32f1 [ 614.178383] CPU: 2 PID: 1482 Comm: kvm-vcpu-0 Not tainted 5.0.0-rc2 #10799 [ 614.178446] Call trace: [ 614.178480] dump_backtrace+0x0/0x148 [ 614.178567] show_stack+0x24/0x30 [ 614.178658] dump_stack+0x90/0xb4 [ 614.178710] panic+0x13c/0x2d8 [ 614.178793] hyp_panic+0xac/0xd8 [ 614.178880] kvm_vcpu_run_vhe+0x9c/0xe0 [ 614.178958] kvm_arch_vcpu_ioctl_run+0x454/0x798 [ 614.179038] kvm_vcpu_ioctl+0x360/0x898 [ 614.179087] do_vfs_ioctl+0xc4/0x858 [ 614.179174] ksys_ioctl+0x84/0xb8 [ 614.179261] __arm64_sys_ioctl+0x28/0x38 [ 614.179348] el0_svc_common+0x94/0x108 [ 614.179401] el0_svc_handler+0x38/0x78 [ 614.179487] el0_svc+0x8/0xc [ 614.179558] SMP: stopping secondary CPUs [ 614.179661] Kernel Offset: disabled [ 614.179695] CPU features: 0x003,2a80aa38 [ 614.179758] Memory Limit: none [ 614.179858] ---[ end Kernel panic - not syncing: HYP panic: [ 614.179858] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.179858] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.179858] VCPU:00000000f8de32f1 ]--- Annotate the VHE world-switch functions that aren't marked __hyp_text using NOKPROBE_SYMBOL(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 3f5c90b890ac ("KVM: arm64: Introduce VHE-specific kvm_vcpu_run") Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-01-24 19:32:54 +03:00
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
#include <asm/thread_info.h>
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
{
arm64: nofpsmid: Handle TIF_FOREIGN_FPSTATE flag cleanly We detect the absence of FP/SIMD after an incapable CPU is brought up, and by then we have kernel threads running already with TIF_FOREIGN_FPSTATE set which could be set for early userspace applications (e.g, modprobe triggered from initramfs) and init. This could cause the applications to loop forever in do_nofity_resume() as we never clear the TIF flag, once we now know that we don't support FP. Fix this by making sure that we clear the TIF_FOREIGN_FPSTATE flag for tasks which may have them set, as we would have done in the normal case, but avoiding touching the hardware state (since we don't support any). Also to make sure we handle the cases seemlessly we categorise the helper functions to two : 1) Helpers for common core code, which calls into take appropriate actions without knowing the current FPSIMD state of the CPU/task. e.g fpsimd_restore_current_state(), fpsimd_flush_task_state(), fpsimd_save_and_flush_cpu_state(). We bail out early for these functions, taking any appropriate actions (e.g, clearing the TIF flag) where necessary to hide the handling from core code. 2) Helpers used when the presence of FP/SIMD is apparent. i.e, save/restore the FP/SIMD register state, modify the CPU/task FP/SIMD state. e.g, fpsimd_save(), task_fpsimd_load() - save/restore task FP/SIMD registers fpsimd_bind_task_to_cpu() \ - Update the "state" metadata for CPU/task. fpsimd_bind_state_to_cpu() / fpsimd_update_current_state() - Update the fp/simd state for the current task from memory. These must not be called in the absence of FP/SIMD. Put in a WARNING to make sure they are not invoked in the absence of FP/SIMD. KVM also uses the TIF_FOREIGN_FPSTATE flag to manage the FP/SIMD state on the CPU. However, without FP/SIMD support we trap all accesses and inject undefined instruction. Thus we should never "load" guest state. Add a sanity check to make sure this is valid. Fixes: 82e0191a1aa11abf ("arm64: Support systems without FP/ASIMD") Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2020-01-14 02:30:23 +03:00
/*
* When the system doesn't support FP/SIMD, we cannot rely on
* the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
* abort on the very first access to FP and thus we should never
* see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
* trap the accesses.
*/
if (!system_supports_fpsimd() ||
vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
KVM_ARM64_FP_HOST);
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
}
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
if (!vcpu_el1_is_32bit(vcpu))
return;
vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
/*
* We are about to set CPTR_EL2.TFP to trap all floating point
* register accesses to EL2, however, the ARM ARM clearly states that
* traps are only taken to EL2 if the operation would not otherwise
* trap to EL1. Therefore, always make sure that for 32-bit guests,
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
* it will cause an exception.
*/
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
write_sysreg(1 << 30, fpexc32_el2);
isb();
}
}
static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
write_sysreg(1 << 15, hstr_el2);
/*
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
* PMSELR_EL0 to make sure it never contains the cycle
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
* EL1 instead of being trapped to EL2.
*/
write_sysreg(0, pmselr_el0);
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}
static void __hyp_text __deactivate_traps_common(void)
{
write_sysreg(0, hstr_el2);
write_sysreg(0, pmuserenr_el0);
}
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
{
u64 val;
val = read_sysreg(cpacr_el1);
val |= CPACR_EL1_TTA;
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
val &= ~CPACR_EL1_ZEN;
/*
* With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
* CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
* except for some missing controls, such as TAM.
* In this case, CPTR_EL2.TAM has the same position with or without
* VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
* shift value for trapping the AMU accesses.
*/
val |= CPTR_EL2_TAM;
if (update_fp_enabled(vcpu)) {
if (vcpu_has_sve(vcpu))
val |= CPACR_EL1_ZEN;
} else {
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
val &= ~CPACR_EL1_FPEN;
__activate_traps_fpsimd32(vcpu);
}
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
write_sysreg(val, cpacr_el1);
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
}
KVM: arm64: Forbid kprobing of the VHE world-switch code On systems with VHE the kernel and KVM's world-switch code run at the same exception level. Code that is only used on a VHE system does not need to be annotated as __hyp_text as it can reside anywhere in the kernel text. __hyp_text was also used to prevent kprobes from patching breakpoint instructions into this region, as this code runs at a different exception level. While this is no longer true with VHE, KVM still switches VBAR_EL1, meaning a kprobe's breakpoint executed in the world-switch code will cause a hyp-panic. echo "p:weasel sysreg_save_guest_state_vhe" > /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/events/kprobes/weasel/enable lkvm run -k /boot/Image --console serial -p "console=ttyS0 earlycon=uart,mmio,0x3f8" # lkvm run -k /boot/Image -m 384 -c 3 --name guest-1474 Info: Placing fdt at 0x8fe00000 - 0x8fffffff Info: virtio-mmio.devices=0x200@0x10000:36 Info: virtio-mmio.devices=0x200@0x10200:37 Info: virtio-mmio.devices=0x200@0x10400:38 [ 614.178186] Kernel panic - not syncing: HYP panic: [ 614.178186] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.178186] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.178186] VCPU:00000000f8de32f1 [ 614.178383] CPU: 2 PID: 1482 Comm: kvm-vcpu-0 Not tainted 5.0.0-rc2 #10799 [ 614.178446] Call trace: [ 614.178480] dump_backtrace+0x0/0x148 [ 614.178567] show_stack+0x24/0x30 [ 614.178658] dump_stack+0x90/0xb4 [ 614.178710] panic+0x13c/0x2d8 [ 614.178793] hyp_panic+0xac/0xd8 [ 614.178880] kvm_vcpu_run_vhe+0x9c/0xe0 [ 614.178958] kvm_arch_vcpu_ioctl_run+0x454/0x798 [ 614.179038] kvm_vcpu_ioctl+0x360/0x898 [ 614.179087] do_vfs_ioctl+0xc4/0x858 [ 614.179174] ksys_ioctl+0x84/0xb8 [ 614.179261] __arm64_sys_ioctl+0x28/0x38 [ 614.179348] el0_svc_common+0x94/0x108 [ 614.179401] el0_svc_handler+0x38/0x78 [ 614.179487] el0_svc+0x8/0xc [ 614.179558] SMP: stopping secondary CPUs [ 614.179661] Kernel Offset: disabled [ 614.179695] CPU features: 0x003,2a80aa38 [ 614.179758] Memory Limit: none [ 614.179858] ---[ end Kernel panic - not syncing: HYP panic: [ 614.179858] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.179858] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.179858] VCPU:00000000f8de32f1 ]--- Annotate the VHE world-switch functions that aren't marked __hyp_text using NOKPROBE_SYMBOL(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 3f5c90b890ac ("KVM: arm64: Introduce VHE-specific kvm_vcpu_run") Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-01-24 19:32:54 +03:00
NOKPROBE_SYMBOL(activate_traps_vhe);
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
{
u64 val;
__activate_traps_common(vcpu);
val = CPTR_EL2_DEFAULT;
val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM;
if (!update_fp_enabled(vcpu)) {
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
val |= CPTR_EL2_TFP;
__activate_traps_fpsimd32(vcpu);
}
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
write_sysreg(val, cptr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* configured and enabled. We can now restore the guest's S1
* configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
isb();
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
}
}
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
u64 hcr = vcpu->arch.hcr_el2;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
hcr |= HCR_TVM;
write_sysreg(hcr, hcr_el2);
arm64: KVM: Hide unsupported AArch64 CPU features from guests Currently, a guest kernel sees the true CPU feature registers (ID_*_EL1) when it reads them using MRS instructions. This means that the guest may observe features that are present in the hardware but the host doesn't understand or doesn't provide support for. A guest may legimitately try to use such a feature as per the architecture, but use of the feature may trap instead of working normally, triggering undef injection into the guest. This is not a problem for the host, but the guest may go wrong when running on newer hardware than the host knows about. This patch hides from guest VMs any AArch64-specific CPU features that the host doesn't support, by exposing to the guest the sanitised versions of the registers computed by the cpufeatures framework, instead of the true hardware registers. To achieve this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation code is added to KVM to report the sanitised versions of the affected registers in response to MRS and register reads from userspace. The affected registers are removed from invariant_sys_regs[] (since the invariant_sys_regs handling is no longer quite correct for them) and added to sys_reg_desgs[], with appropriate access(), get_user() and set_user() methods. No runtime vcpu storage is allocated for the registers: instead, they are read on demand from the cpufeatures framework. This may need modification in the future if there is a need for userspace to customise the features visible to the guest. Attempts by userspace to write the registers are handled similarly to the current invariant_sys_regs handling: writes are permitted, but only if they don't attempt to change the value. This is sufficient to support VM snapshot/restore from userspace. Because of the additional registers, restoring a VM on an older kernel may not work unless userspace knows how to handle the extra VM registers exposed to the KVM user ABI by this patch. Under the principle of least damage, this patch makes no attempt to handle any of the other registers currently in invariant_sys_regs[], or to emulate registers for AArch32: however, these could be handled in a similar way in future, as necessary. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 18:50:56 +03:00
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
if (has_vhe())
activate_traps_vhe(vcpu);
else
__activate_traps_nvhe(vcpu);
}
static void deactivate_traps_vhe(void)
{
extern char vectors[]; /* kernel exception vectors */
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
/*
* ARM errata 1165522 and 1530923 require the actual execution of the
* above before we can switch to the EL2/EL0 translation regime used by
* the host.
*/
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT_VHE));
arm64/sve: KVM: Prevent guests from using SVE Until KVM has full SVE support, guests must not be allowed to execute SVE instructions. This patch enables the necessary traps, and also ensures that the traps are disabled again on exit from the guest so that the host can still use SVE if it wants to. On guest exit, high bits of the SVE Zn registers may have been clobbered as a side-effect the execution of FPSIMD instructions in the guest. The existing KVM host FPSIMD restore code is not sufficient to restore these bits, so this patch explicitly marks the CPU as not containing cached vector state for any task, thus forcing a reload on the next return to userspace. This is an interim measure, in advance of adding full SVE awareness to KVM. This marking of cached vector state in the CPU as invalid is done using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due to the repeated use of this rather obscure operation, it makes sense to factor it out as a separate helper with a clearer name. This patch factors it out as fpsimd_flush_cpu_state(), and ports all callers to use it. As a side effect of this refactoring, a this_cpu_write() in fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This should be fine, since cpu_pm_enter() is supposed to be called only with interrupts disabled. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 18:51:16 +03:00
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
write_sysreg(vectors, vbar_el1);
}
KVM: arm64: Forbid kprobing of the VHE world-switch code On systems with VHE the kernel and KVM's world-switch code run at the same exception level. Code that is only used on a VHE system does not need to be annotated as __hyp_text as it can reside anywhere in the kernel text. __hyp_text was also used to prevent kprobes from patching breakpoint instructions into this region, as this code runs at a different exception level. While this is no longer true with VHE, KVM still switches VBAR_EL1, meaning a kprobe's breakpoint executed in the world-switch code will cause a hyp-panic. echo "p:weasel sysreg_save_guest_state_vhe" > /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/events/kprobes/weasel/enable lkvm run -k /boot/Image --console serial -p "console=ttyS0 earlycon=uart,mmio,0x3f8" # lkvm run -k /boot/Image -m 384 -c 3 --name guest-1474 Info: Placing fdt at 0x8fe00000 - 0x8fffffff Info: virtio-mmio.devices=0x200@0x10000:36 Info: virtio-mmio.devices=0x200@0x10200:37 Info: virtio-mmio.devices=0x200@0x10400:38 [ 614.178186] Kernel panic - not syncing: HYP panic: [ 614.178186] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.178186] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.178186] VCPU:00000000f8de32f1 [ 614.178383] CPU: 2 PID: 1482 Comm: kvm-vcpu-0 Not tainted 5.0.0-rc2 #10799 [ 614.178446] Call trace: [ 614.178480] dump_backtrace+0x0/0x148 [ 614.178567] show_stack+0x24/0x30 [ 614.178658] dump_stack+0x90/0xb4 [ 614.178710] panic+0x13c/0x2d8 [ 614.178793] hyp_panic+0xac/0xd8 [ 614.178880] kvm_vcpu_run_vhe+0x9c/0xe0 [ 614.178958] kvm_arch_vcpu_ioctl_run+0x454/0x798 [ 614.179038] kvm_vcpu_ioctl+0x360/0x898 [ 614.179087] do_vfs_ioctl+0xc4/0x858 [ 614.179174] ksys_ioctl+0x84/0xb8 [ 614.179261] __arm64_sys_ioctl+0x28/0x38 [ 614.179348] el0_svc_common+0x94/0x108 [ 614.179401] el0_svc_handler+0x38/0x78 [ 614.179487] el0_svc+0x8/0xc [ 614.179558] SMP: stopping secondary CPUs [ 614.179661] Kernel Offset: disabled [ 614.179695] CPU features: 0x003,2a80aa38 [ 614.179758] Memory Limit: none [ 614.179858] ---[ end Kernel panic - not syncing: HYP panic: [ 614.179858] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.179858] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.179858] VCPU:00000000f8de32f1 ]--- Annotate the VHE world-switch functions that aren't marked __hyp_text using NOKPROBE_SYMBOL(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 3f5c90b890ac ("KVM: arm64: Introduce VHE-specific kvm_vcpu_run") Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-01-24 19:32:54 +03:00
NOKPROBE_SYMBOL(deactivate_traps_vhe);
static void __hyp_text __deactivate_traps_nvhe(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
u64 val;
/*
* Set the TCR and SCTLR registers in the exact opposite
* sequence as __activate_traps_nvhe (first prevent walks,
* then force the MMU on). A generous sprinkling of isb()
* ensure that things happen in this exact order.
*/
val = read_sysreg_el1(SYS_TCR);
write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
isb();
val = read_sysreg_el1(SYS_SCTLR);
write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
isb();
}
__deactivate_traps_common();
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
write_sysreg(mdcr_el2, mdcr_el2);
write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
/*
* If we pended a virtual abort, preserve it until it gets
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
* the crucial bit is "On taking a vSError interrupt,
* HCR_EL2.VSE is cleared to 0."
*/
if (vcpu->arch.hcr_el2 & HCR_VSE) {
vcpu->arch.hcr_el2 &= ~HCR_VSE;
vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
}
if (has_vhe())
deactivate_traps_vhe();
else
__deactivate_traps_nvhe();
}
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
__activate_traps_common(vcpu);
}
void deactivate_traps_vhe_put(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
MDCR_EL2_TPMS;
write_sysreg(mdcr_el2, mdcr_el2);
__deactivate_traps_common();
}
static void __hyp_text __activate_vm(struct kvm *kvm)
{
__load_guest_stage2(kvm);
}
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
write_sysreg(0, vttbr_el2);
}
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_save_state(vcpu);
__vgic_v3_deactivate_traps(vcpu);
}
}
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_activate_traps(vcpu);
__vgic_v3_restore_state(vcpu);
}
}
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
u64 par, tmp;
/*
* Resolve the IPA the hard way using the guest VA.
*
* Stage-1 translation already validated the memory access
* rights. As such, we can use the EL1 translation regime, and
* don't have to distinguish between EL0 and EL1 access.
*
* We do need to save/restore PAR_EL1 though, as we haven't
* saved the guest context yet, and we may return early...
*/
par = read_sysreg(par_el1);
asm volatile("at s1e1r, %0" : : "r" (far));
isb();
tmp = read_sysreg(par_el1);
write_sysreg(par, par_el1);
if (unlikely(tmp & SYS_PAR_EL1_F))
return false; /* Translation failed, back to guest */
/* Convert PAR to HPFAR format */
*hpfar = PAR_TO_HPFAR(tmp);
return true;
}
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
u8 ec;
u64 esr;
u64 hpfar, far;
esr = vcpu->arch.fault.esr_el2;
ec = ESR_ELx_EC(esr);
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
return true;
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
far = read_sysreg_el2(SYS_FAR);
/*
* The HPFAR can be invalid if the stage 2 fault did not
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
* bit is clear) and one of the two following cases are true:
* 1. The fault was due to a permission fault
* 2. The processor carries errata 834220
*
* Therefore, for all non S1PTW faults where we either have a
* permission fault or the errata workaround is enabled, we
* resolve the IPA using the AT instruction.
*/
if (!(esr & ESR_ELx_S1PTW) &&
(cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
(esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
if (!__translate_far_to_hpfar(far, &hpfar))
return false;
} else {
hpfar = read_sysreg(hpfar_el2);
}
vcpu->arch.fault.far_el2 = far;
vcpu->arch.fault.hpfar_el2 = hpfar;
return true;
}
/* Check for an FPSIMD/SVE trap and handle as appropriate */
static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
{
bool vhe, sve_guest, sve_host;
u8 hsr_ec;
if (!system_supports_fpsimd())
return false;
if (system_supports_sve()) {
sve_guest = vcpu_has_sve(vcpu);
sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
vhe = true;
} else {
sve_guest = false;
sve_host = false;
vhe = has_vhe();
}
hsr_ec = kvm_vcpu_trap_get_class(vcpu);
if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
hsr_ec != ESR_ELx_EC_SVE)
return false;
/* Don't handle SVE traps for non-SVE vcpus here: */
if (!sve_guest)
if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
return false;
/* Valid trap. Switch the context: */
if (vhe) {
u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
if (sve_guest)
reg |= CPACR_EL1_ZEN;
write_sysreg(reg, cpacr_el1);
} else {
write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
cptr_el2);
}
isb();
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
/*
* In the SVE case, VHE is assumed: it is enforced by
* Kconfig and kvm_arch_init().
*/
if (sve_host) {
struct thread_struct *thread = container_of(
vcpu->arch.host_fpsimd_state,
struct thread_struct, uw.fpsimd_state);
sve_save_state(sve_pffr(thread),
&vcpu->arch.host_fpsimd_state->fpsr);
} else {
__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
}
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
}
if (sve_guest) {
sve_load_state(vcpu_sve_pffr(vcpu),
&vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
KVM: arm64/sve: System register context switch and access support This patch adds the necessary support for context switching ZCR_EL1 for each vcpu. ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes sense for it to be handled as part of the guest FPSIMD/SVE context for context switch purposes instead of handling it as a general system register. This means that it can be switched in lazily at the appropriate time. No effort is made to track host context for this register, since SVE requires VHE: thus the hosts's value for this register lives permanently in ZCR_EL2 and does not alias the guest's value at any time. The Hyp switch and fpsimd context handling code is extended appropriately. Accessors are added in sys_regs.c to expose the SVE system registers and ID register fields. Because these need to be conditionally visible based on the guest configuration, they are implemented separately for now rather than by use of the generic system register helpers. This may be abstracted better later on when/if there are more features requiring this model. ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the guest, but for compatibility with non-SVE aware KVM implementations the register should not be enumerated at all for KVM_GET_REG_LIST in this case. For consistency we also reject ioctl access to the register. This ensures that a non-SVE-enabled guest looks the same to userspace, irrespective of whether the kernel KVM implementation supports SVE. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-28 16:39:16 +03:00
write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
} else {
__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
}
KVM: arm64/sve: System register context switch and access support This patch adds the necessary support for context switching ZCR_EL1 for each vcpu. ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes sense for it to be handled as part of the guest FPSIMD/SVE context for context switch purposes instead of handling it as a general system register. This means that it can be switched in lazily at the appropriate time. No effort is made to track host context for this register, since SVE requires VHE: thus the hosts's value for this register lives permanently in ZCR_EL2 and does not alias the guest's value at any time. The Hyp switch and fpsimd context handling code is extended appropriately. Accessors are added in sys_regs.c to expose the SVE system registers and ID register fields. Because these need to be conditionally visible based on the guest configuration, they are implemented separately for now rather than by use of the generic system register helpers. This may be abstracted better later on when/if there are more features requiring this model. ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the guest, but for compatibility with non-SVE aware KVM implementations the register should not be enumerated at all for KVM_GET_REG_LIST in this case. For consistency we also reject ioctl access to the register. This ensures that a non-SVE-enabled guest looks the same to userspace, irrespective of whether the kernel KVM implementation supports SVE. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-09-28 16:39:16 +03:00
/* Skip restoring fpexc32 for AArch64 guests */
if (!(read_sysreg(hcr_el2) & HCR_RW))
write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
fpexc32_el2);
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
return true;
}
static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
{
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
int rt = kvm_vcpu_sys_get_rt(vcpu);
u64 val = vcpu_get_reg(vcpu, rt);
/*
* The normal sysreg handling code expects to see the traps,
* let's not do anything here.
*/
if (vcpu->arch.hcr_el2 & HCR_TVM)
return false;
switch (sysreg) {
case SYS_SCTLR_EL1:
write_sysreg_el1(val, SYS_SCTLR);
break;
case SYS_TTBR0_EL1:
write_sysreg_el1(val, SYS_TTBR0);
break;
case SYS_TTBR1_EL1:
write_sysreg_el1(val, SYS_TTBR1);
break;
case SYS_TCR_EL1:
write_sysreg_el1(val, SYS_TCR);
break;
case SYS_ESR_EL1:
write_sysreg_el1(val, SYS_ESR);
break;
case SYS_FAR_EL1:
write_sysreg_el1(val, SYS_FAR);
break;
case SYS_AFSR0_EL1:
write_sysreg_el1(val, SYS_AFSR0);
break;
case SYS_AFSR1_EL1:
write_sysreg_el1(val, SYS_AFSR1);
break;
case SYS_MAIR_EL1:
write_sysreg_el1(val, SYS_MAIR);
break;
case SYS_AMAIR_EL1:
write_sysreg_el1(val, SYS_AMAIR);
break;
case SYS_CONTEXTIDR_EL1:
write_sysreg_el1(val, SYS_CONTEXTIDR);
break;
default:
return false;
}
__kvm_skip_instr(vcpu);
return true;
}
/*
* Return true when we were able to fixup the guest exit and should return to
* the guest, false when we should restore the host state and return to the
* main run loop.
*/
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
/*
* We're using the raw exception code in order to only process
* the trap if no SError is pending. We will come back to the
* same PC once the SError has been injected, and replay the
* trapping instruction.
*/
if (*exit_code != ARM_EXCEPTION_TRAP)
goto exit;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
handle_tx2_tvm(vcpu))
return true;
/*
* We trap the first access to the FP/SIMD to save the host context
* and restore the guest context lazily.
* If FP/SIMD is not implemented, handle the trap and inject an
* undefined instruction exception to the guest.
* Similarly for trapped SVE accesses.
*/
if (__hyp_handle_fpsimd(vcpu))
return true;
if (!__populate_fault_info(vcpu))
return true;
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
bool valid;
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
kvm_vcpu_dabt_isvalid(vcpu) &&
!kvm_vcpu_dabt_isextabt(vcpu) &&
!kvm_vcpu_dabt_iss1tw(vcpu);
if (valid) {
int ret = __vgic_v2_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
/* Promote an illegal access to an SError.*/
if (ret == -1)
*exit_code = ARM_EXCEPTION_EL1_SERROR;
goto exit;
}
}
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
int ret = __vgic_v3_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
}
exit:
/* Return to the host kernel and handle the exit */
return false;
}
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
if (!cpus_have_final_cap(ARM64_SSBD))
return false;
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}
static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* The host runs with the workaround always present. If the
* guest wants it disabled, so be it...
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}
static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* If the guest has disabled the workaround, bring it back on.
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}
KVM: arm64: Move pmu hyp code under hyp's Makefile to avoid instrumentation KVM's pmu.c contains the __hyp_text needed to switch the pmu registers between host and guest. Because this isn't covered by the 'hyp' Makefile, it can be built with kasan and friends when these are enabled in Kconfig. When starting a guest, this results in: | Kernel panic - not syncing: HYP panic: | PS:a00003c9 PC:000083000028ada0 ESR:86000007 | FAR:000083000028ada0 HPFAR:0000000029df5300 PAR:0000000000000000 | VCPU:000000004e10b7d6 | CPU: 0 PID: 3088 Comm: qemu-system-aar Not tainted 5.2.0-rc1 #11026 | Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Plat | Call trace: | dump_backtrace+0x0/0x200 | show_stack+0x20/0x30 | dump_stack+0xec/0x158 | panic+0x1ec/0x420 | panic+0x0/0x420 | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x002,25006082 | Memory Limit: none | ---[ end Kernel panic - not syncing: HYP panic: This is caused by functions in pmu.c calling the instrumented code, which isn't mapped to hyp. From objdump -r: | RELOCATION RECORDS FOR [.hyp.text]: | OFFSET TYPE VALUE | 0000000000000010 R_AARCH64_CALL26 __sanitizer_cov_trace_pc | 0000000000000018 R_AARCH64_CALL26 __asan_load4_noabort | 0000000000000024 R_AARCH64_CALL26 __asan_load4_noabort Move the affected code to a new file under 'hyp's Makefile. Fixes: 3d91befbb3a0 ("arm64: KVM: Enable !VHE support for :G/:H perf event modifiers") Cc: Andrew Murray <Andrew.Murray@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-22 20:47:04 +03:00
/**
* Disable host events, enable guest events
*/
static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenclr_el0);
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenset_el0);
return (pmu->events_host || pmu->events_guest);
}
/**
* Disable guest events, enable host events
*/
static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenclr_el0);
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenset_el0);
}
/* Switch to the guest for VHE systems running in EL2 */
static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
u64 exit_code;
host_ctxt = vcpu->arch.host_cpu_context;
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
sysreg_save_host_state_vhe(host_ctxt);
/*
* ARM erratum 1165522 requires us to configure both stage 1 and
* stage 2 translation for the guest context before we clear
* HCR_EL2.TGE.
*
* We have already configured the guest's stage 1 translation in
* kvm_vcpu_load_sysregs above. We must now call __activate_vm
* before __activate_traps, because __activate_vm configures
* stage 2 translation, and __activate_traps clear HCR_EL2.TGE
* (among other things).
*/
__activate_vm(vcpu->kvm);
__activate_traps(vcpu);
sysreg_restore_guest_state_vhe(guest_ctxt);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
sysreg_save_guest_state_vhe(guest_ctxt);
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
__debug_switch_to_host(vcpu);
return exit_code;
}
NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
int ret;
local_daif_mask();
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
*/
pmr_sync();
ret = __kvm_vcpu_run_vhe(vcpu);
/*
* local_daif_restore() takes care to properly restore PSTATE.DAIF
* and the GIC PMR if the host is using IRQ priorities.
*/
local_daif_restore(DAIF_PROCCTX_NOIRQ);
/*
* When we exit from the guest we change a number of CPU configuration
* parameters, such as traps. Make sure these changes take effect
* before running the host or additional guests.
*/
isb();
return ret;
}
/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
bool pmu_switch_needed;
u64 exit_code;
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*/
if (system_uses_irq_prio_masking()) {
arm64: Fix incorrect irqflag restore for priority masking When using IRQ priority masking to disable interrupts, in order to deal with the PSR.I state, local_irq_save() would convert the I bit into a PMR value (GIC_PRIO_IRQOFF). This resulted in local_irq_restore() potentially modifying the value of PMR in undesired location due to the state of PSR.I upon flag saving [1]. In an attempt to solve this issue in a less hackish manner, introduce a bit (GIC_PRIO_IGNORE_PMR) for the PMR values that can represent whether PSR.I is being used to disable interrupts, in which case it takes precedence of the status of interrupt masking via PMR. GIC_PRIO_PSR_I_SET is chosen such that (<pmr_value> | GIC_PRIO_PSR_I_SET) does not mask more interrupts than <pmr_value> as some sections (e.g. arch_cpu_idle(), interrupt acknowledge path) requires PMR not to mask interrupts that could be signaled to the CPU when using only PSR.I. [1] https://www.spinics.net/lists/arm-kernel/msg716956.html Fixes: 4a503217ce37 ("arm64: irqflags: Use ICC_PMR_EL1 for interrupt masking") Cc: <stable@vger.kernel.org> # 5.1.x- Reported-by: Zenghui Yu <yuzenghui@huawei.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Wei Li <liwei391@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Pouloze <suzuki.poulose@arm.com> Cc: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-06-11 12:38:10 +03:00
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
pmr_sync();
}
vcpu = kern_hyp_va(vcpu);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
__sysreg_save_state_nvhe(host_ctxt);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*
* Also, and in order to be able to deal with erratum #1319537 (A57)
* and #1319367 (A72), we must ensure that all VM-related sysreg are
* restored before we enable S2 translation.
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_state_nvhe(guest_ctxt);
__activate_vm(kern_hyp_va(vcpu->kvm));
__activate_traps(vcpu);
__hyp_vgic_restore_state(vcpu);
__timer_enable_traps(vcpu);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
__sysreg_save_state_nvhe(guest_ctxt);
__sysreg32_save_state(vcpu);
__timer_disable_traps(vcpu);
__hyp_vgic_save_state(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(host_ctxt);
KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-06 16:55:59 +03:00
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
/*
* This must come after restoring the host sysregs, since a non-VHE
* system may enable SPE here and make use of the TTBRs.
*/
__debug_switch_to_host(vcpu);
if (pmu_switch_needed)
__pmu_switch_to_host(host_ctxt);
/* Returning to host will clear PSR.I, remask PMR if needed */
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQOFF);
return exit_code;
}
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
struct kvm_cpu_context *__host_ctxt)
{
struct kvm_vcpu *vcpu;
unsigned long str_va;
vcpu = __host_ctxt->__hyp_running_vcpu;
if (read_sysreg(vttbr_el2)) {
__timer_disable_traps(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(__host_ctxt);
}
/*
* Force the panic string to be loaded from the literal pool,
* making sure it is a kernel address and not a PC-relative
* reference.
*/
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
__hyp_do_panic(str_va,
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
spsr, elr,
read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
struct kvm_cpu_context *host_ctxt)
{
struct kvm_vcpu *vcpu;
vcpu = host_ctxt->__hyp_running_vcpu;
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
panic(__hyp_panic_string,
spsr, elr,
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
KVM: arm64: Forbid kprobing of the VHE world-switch code On systems with VHE the kernel and KVM's world-switch code run at the same exception level. Code that is only used on a VHE system does not need to be annotated as __hyp_text as it can reside anywhere in the kernel text. __hyp_text was also used to prevent kprobes from patching breakpoint instructions into this region, as this code runs at a different exception level. While this is no longer true with VHE, KVM still switches VBAR_EL1, meaning a kprobe's breakpoint executed in the world-switch code will cause a hyp-panic. echo "p:weasel sysreg_save_guest_state_vhe" > /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/events/kprobes/weasel/enable lkvm run -k /boot/Image --console serial -p "console=ttyS0 earlycon=uart,mmio,0x3f8" # lkvm run -k /boot/Image -m 384 -c 3 --name guest-1474 Info: Placing fdt at 0x8fe00000 - 0x8fffffff Info: virtio-mmio.devices=0x200@0x10000:36 Info: virtio-mmio.devices=0x200@0x10200:37 Info: virtio-mmio.devices=0x200@0x10400:38 [ 614.178186] Kernel panic - not syncing: HYP panic: [ 614.178186] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.178186] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.178186] VCPU:00000000f8de32f1 [ 614.178383] CPU: 2 PID: 1482 Comm: kvm-vcpu-0 Not tainted 5.0.0-rc2 #10799 [ 614.178446] Call trace: [ 614.178480] dump_backtrace+0x0/0x148 [ 614.178567] show_stack+0x24/0x30 [ 614.178658] dump_stack+0x90/0xb4 [ 614.178710] panic+0x13c/0x2d8 [ 614.178793] hyp_panic+0xac/0xd8 [ 614.178880] kvm_vcpu_run_vhe+0x9c/0xe0 [ 614.178958] kvm_arch_vcpu_ioctl_run+0x454/0x798 [ 614.179038] kvm_vcpu_ioctl+0x360/0x898 [ 614.179087] do_vfs_ioctl+0xc4/0x858 [ 614.179174] ksys_ioctl+0x84/0xb8 [ 614.179261] __arm64_sys_ioctl+0x28/0x38 [ 614.179348] el0_svc_common+0x94/0x108 [ 614.179401] el0_svc_handler+0x38/0x78 [ 614.179487] el0_svc+0x8/0xc [ 614.179558] SMP: stopping secondary CPUs [ 614.179661] Kernel Offset: disabled [ 614.179695] CPU features: 0x003,2a80aa38 [ 614.179758] Memory Limit: none [ 614.179858] ---[ end Kernel panic - not syncing: HYP panic: [ 614.179858] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004 [ 614.179858] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de [ 614.179858] VCPU:00000000f8de32f1 ]--- Annotate the VHE world-switch functions that aren't marked __hyp_text using NOKPROBE_SYMBOL(). Signed-off-by: James Morse <james.morse@arm.com> Fixes: 3f5c90b890ac ("KVM: arm64: Introduce VHE-specific kvm_vcpu_run") Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-01-24 19:32:54 +03:00
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
2017-10-08 18:01:56 +03:00
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
{
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 elr = read_sysreg_el2(SYS_ELR);
u64 par = read_sysreg(par_el1);
if (!has_vhe())
__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
else
__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
unreachable();
}