WSL2-Linux-Kernel/drivers/thunderbolt/dma_test.c

737 строки
18 KiB
C
Исходник Обычный вид История

thunderbolt: Add DMA traffic test driver This driver allows sending DMA traffic over XDomain connection. Specifically over a loopback connection using either a Thunderbolt/USB4 cable that is connected back to the host router port, or a special loopback dongle that has RX and TX lines crossed. This can be useful at manufacturing floor to check whether Thunderbolt/USB4 ports are functional. The driver exposes debugfs directory under the XDomain service that can be used to configure the driver, start the test and check the results. If a loopback dongle is used the steps to send and receive 1000 packets can be done like: # modprobe thunderbolt_dma_test # echo 1000 > /sys/kernel/debug/thunderbolt/<service_id>/dma_test/packets_to_receive # echo 1000 > /sys/kernel/debug/thunderbolt/<service_id>/dma_test/packets_to_send # echo 1 > /sys/kernel/debug/thunderbolt/<service_id>/dma_test/test # cat /sys/kernel/debug/thunderbolt/<service_id>/dma_test/status When a cable is connected back to host then there are two Thunderbolt services, one is configured for receiving (does not matter which one): # modprobe thunderbolt_dma_test # echo 1000 > /sys/kernel/debug/thunderbolt/<service_a>/dma_test/packets_to_receive # echo 1 > /sys/kernel/debug/thunderbolt/<service_a>/dma_test/test The other one for sending: # echo 1000 > /sys/kernel/debug/thunderbolt/<service_b>/dma_test/packets_to_send # echo 1 > /sys/kernel/debug/thunderbolt/<service_b>/dma_test/test Results can be read from both services status attributes. Signed-off-by: Isaac Hazan <isaac.hazan@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-24 11:44:02 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* DMA traffic test driver
*
* Copyright (C) 2020, Intel Corporation
* Authors: Isaac Hazan <isaac.hazan@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/acpi.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/sizes.h>
#include <linux/thunderbolt.h>
#define DMA_TEST_HOPID 8
#define DMA_TEST_TX_RING_SIZE 64
#define DMA_TEST_RX_RING_SIZE 256
#define DMA_TEST_FRAME_SIZE SZ_4K
#define DMA_TEST_DATA_PATTERN 0x0123456789abcdefLL
#define DMA_TEST_MAX_PACKETS 1000
enum dma_test_frame_pdf {
DMA_TEST_PDF_FRAME_START = 1,
DMA_TEST_PDF_FRAME_END,
};
struct dma_test_frame {
struct dma_test *dma_test;
void *data;
struct ring_frame frame;
};
enum dma_test_test_error {
DMA_TEST_NO_ERROR,
DMA_TEST_INTERRUPTED,
DMA_TEST_BUFFER_ERROR,
DMA_TEST_DMA_ERROR,
DMA_TEST_CONFIG_ERROR,
DMA_TEST_SPEED_ERROR,
DMA_TEST_WIDTH_ERROR,
DMA_TEST_BONDING_ERROR,
DMA_TEST_PACKET_ERROR,
};
static const char * const dma_test_error_names[] = {
[DMA_TEST_NO_ERROR] = "no errors",
[DMA_TEST_INTERRUPTED] = "interrupted by signal",
[DMA_TEST_BUFFER_ERROR] = "no memory for packet buffers",
[DMA_TEST_DMA_ERROR] = "DMA ring setup failed",
[DMA_TEST_CONFIG_ERROR] = "configuration is not valid",
[DMA_TEST_SPEED_ERROR] = "unexpected link speed",
[DMA_TEST_WIDTH_ERROR] = "unexpected link width",
[DMA_TEST_BONDING_ERROR] = "lane bonding configuration error",
[DMA_TEST_PACKET_ERROR] = "packet check failed",
};
enum dma_test_result {
DMA_TEST_NOT_RUN,
DMA_TEST_SUCCESS,
DMA_TEST_FAIL,
};
static const char * const dma_test_result_names[] = {
[DMA_TEST_NOT_RUN] = "not run",
[DMA_TEST_SUCCESS] = "success",
[DMA_TEST_FAIL] = "failed",
};
/**
* struct dma_test - DMA test device driver private data
* @svc: XDomain service the driver is bound to
* @xd: XDomain the service belongs to
* @rx_ring: Software ring holding RX frames
* @tx_ring: Software ring holding TX frames
* @packets_to_send: Number of packets to send
* @packets_to_receive: Number of packets to receive
* @packets_sent: Actual number of packets sent
* @packets_received: Actual number of packets received
* @link_speed: Expected link speed (Gb/s), %0 to use whatever is negotiated
* @link_width: Expected link width (Gb/s), %0 to use whatever is negotiated
* @crc_errors: Number of CRC errors during the test run
* @buffer_overflow_errors: Number of buffer overflow errors during the test
* run
* @result: Result of the last run
* @error_code: Error code of the last run
* @complete: Used to wait for the Rx to complete
* @lock: Lock serializing access to this structure
* @debugfs_dir: dentry of this dma_test
*/
struct dma_test {
const struct tb_service *svc;
struct tb_xdomain *xd;
struct tb_ring *rx_ring;
struct tb_ring *tx_ring;
unsigned int packets_to_send;
unsigned int packets_to_receive;
unsigned int packets_sent;
unsigned int packets_received;
unsigned int link_speed;
unsigned int link_width;
unsigned int crc_errors;
unsigned int buffer_overflow_errors;
enum dma_test_result result;
enum dma_test_test_error error_code;
struct completion complete;
struct mutex lock;
struct dentry *debugfs_dir;
};
/* DMA test property directory UUID: 3188cd10-6523-4a5a-a682-fdca07a248d8 */
static const uuid_t dma_test_dir_uuid =
UUID_INIT(0x3188cd10, 0x6523, 0x4a5a,
0xa6, 0x82, 0xfd, 0xca, 0x07, 0xa2, 0x48, 0xd8);
static struct tb_property_dir *dma_test_dir;
static void *dma_test_pattern;
static void dma_test_free_rings(struct dma_test *dt)
{
if (dt->rx_ring) {
tb_ring_free(dt->rx_ring);
dt->rx_ring = NULL;
}
if (dt->tx_ring) {
tb_ring_free(dt->tx_ring);
dt->tx_ring = NULL;
}
}
static int dma_test_start_rings(struct dma_test *dt)
{
unsigned int flags = RING_FLAG_FRAME;
struct tb_xdomain *xd = dt->xd;
int ret, e2e_tx_hop = 0;
struct tb_ring *ring;
/*
* If we are both sender and receiver (traffic goes over a
* special loopback dongle) enable E2E flow control. This avoids
* losing packets.
*/
if (dt->packets_to_send && dt->packets_to_receive)
flags |= RING_FLAG_E2E;
if (dt->packets_to_send) {
ring = tb_ring_alloc_tx(xd->tb->nhi, -1, DMA_TEST_TX_RING_SIZE,
flags);
if (!ring)
return -ENOMEM;
dt->tx_ring = ring;
e2e_tx_hop = ring->hop;
}
if (dt->packets_to_receive) {
u16 sof_mask, eof_mask;
sof_mask = BIT(DMA_TEST_PDF_FRAME_START);
eof_mask = BIT(DMA_TEST_PDF_FRAME_END);
ring = tb_ring_alloc_rx(xd->tb->nhi, -1, DMA_TEST_RX_RING_SIZE,
flags, e2e_tx_hop, sof_mask, eof_mask,
NULL, NULL);
if (!ring) {
dma_test_free_rings(dt);
return -ENOMEM;
}
dt->rx_ring = ring;
}
ret = tb_xdomain_enable_paths(dt->xd, DMA_TEST_HOPID,
dt->tx_ring ? dt->tx_ring->hop : 0,
DMA_TEST_HOPID,
dt->rx_ring ? dt->rx_ring->hop : 0);
if (ret) {
dma_test_free_rings(dt);
return ret;
}
if (dt->tx_ring)
tb_ring_start(dt->tx_ring);
if (dt->rx_ring)
tb_ring_start(dt->rx_ring);
return 0;
}
static void dma_test_stop_rings(struct dma_test *dt)
{
if (dt->rx_ring)
tb_ring_stop(dt->rx_ring);
if (dt->tx_ring)
tb_ring_stop(dt->tx_ring);
if (tb_xdomain_disable_paths(dt->xd))
dev_warn(&dt->svc->dev, "failed to disable DMA paths\n");
dma_test_free_rings(dt);
}
static void dma_test_rx_callback(struct tb_ring *ring, struct ring_frame *frame,
bool canceled)
{
struct dma_test_frame *tf = container_of(frame, typeof(*tf), frame);
struct dma_test *dt = tf->dma_test;
struct device *dma_dev = tb_ring_dma_device(dt->rx_ring);
dma_unmap_single(dma_dev, tf->frame.buffer_phy, DMA_TEST_FRAME_SIZE,
DMA_FROM_DEVICE);
kfree(tf->data);
if (canceled) {
kfree(tf);
return;
}
dt->packets_received++;
dev_dbg(&dt->svc->dev, "packet %u/%u received\n", dt->packets_received,
dt->packets_to_receive);
if (tf->frame.flags & RING_DESC_CRC_ERROR)
dt->crc_errors++;
if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN)
dt->buffer_overflow_errors++;
kfree(tf);
if (dt->packets_received == dt->packets_to_receive)
complete(&dt->complete);
}
static int dma_test_submit_rx(struct dma_test *dt, size_t npackets)
{
struct device *dma_dev = tb_ring_dma_device(dt->rx_ring);
int i;
for (i = 0; i < npackets; i++) {
struct dma_test_frame *tf;
dma_addr_t dma_addr;
tf = kzalloc(sizeof(*tf), GFP_KERNEL);
if (!tf)
return -ENOMEM;
tf->data = kzalloc(DMA_TEST_FRAME_SIZE, GFP_KERNEL);
if (!tf->data) {
kfree(tf);
return -ENOMEM;
}
dma_addr = dma_map_single(dma_dev, tf->data, DMA_TEST_FRAME_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(dma_dev, dma_addr)) {
kfree(tf->data);
kfree(tf);
return -ENOMEM;
}
tf->frame.buffer_phy = dma_addr;
tf->frame.callback = dma_test_rx_callback;
tf->dma_test = dt;
INIT_LIST_HEAD(&tf->frame.list);
tb_ring_rx(dt->rx_ring, &tf->frame);
}
return 0;
}
static void dma_test_tx_callback(struct tb_ring *ring, struct ring_frame *frame,
bool canceled)
{
struct dma_test_frame *tf = container_of(frame, typeof(*tf), frame);
struct dma_test *dt = tf->dma_test;
struct device *dma_dev = tb_ring_dma_device(dt->tx_ring);
dma_unmap_single(dma_dev, tf->frame.buffer_phy, DMA_TEST_FRAME_SIZE,
DMA_TO_DEVICE);
kfree(tf->data);
kfree(tf);
}
static int dma_test_submit_tx(struct dma_test *dt, size_t npackets)
{
struct device *dma_dev = tb_ring_dma_device(dt->tx_ring);
int i;
for (i = 0; i < npackets; i++) {
struct dma_test_frame *tf;
dma_addr_t dma_addr;
tf = kzalloc(sizeof(*tf), GFP_KERNEL);
if (!tf)
return -ENOMEM;
tf->frame.size = 0; /* means 4096 */
tf->dma_test = dt;
tf->data = kzalloc(DMA_TEST_FRAME_SIZE, GFP_KERNEL);
if (!tf->data) {
kfree(tf);
return -ENOMEM;
}
memcpy(tf->data, dma_test_pattern, DMA_TEST_FRAME_SIZE);
dma_addr = dma_map_single(dma_dev, tf->data, DMA_TEST_FRAME_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dma_dev, dma_addr)) {
kfree(tf->data);
kfree(tf);
return -ENOMEM;
}
tf->frame.buffer_phy = dma_addr;
tf->frame.callback = dma_test_tx_callback;
tf->frame.sof = DMA_TEST_PDF_FRAME_START;
tf->frame.eof = DMA_TEST_PDF_FRAME_END;
INIT_LIST_HEAD(&tf->frame.list);
dt->packets_sent++;
dev_dbg(&dt->svc->dev, "packet %u/%u sent\n", dt->packets_sent,
dt->packets_to_send);
tb_ring_tx(dt->tx_ring, &tf->frame);
}
return 0;
}
#define DMA_TEST_DEBUGFS_ATTR(__fops, __get, __validate, __set) \
static int __fops ## _show(void *data, u64 *val) \
{ \
struct tb_service *svc = data; \
struct dma_test *dt = tb_service_get_drvdata(svc); \
int ret; \
\
ret = mutex_lock_interruptible(&dt->lock); \
if (ret) \
return ret; \
__get(dt, val); \
mutex_unlock(&dt->lock); \
return 0; \
} \
static int __fops ## _store(void *data, u64 val) \
{ \
struct tb_service *svc = data; \
struct dma_test *dt = tb_service_get_drvdata(svc); \
int ret; \
\
ret = __validate(val); \
if (ret) \
return ret; \
ret = mutex_lock_interruptible(&dt->lock); \
if (ret) \
return ret; \
__set(dt, val); \
mutex_unlock(&dt->lock); \
return 0; \
} \
DEFINE_DEBUGFS_ATTRIBUTE(__fops ## _fops, __fops ## _show, \
__fops ## _store, "%llu\n")
static void lanes_get(const struct dma_test *dt, u64 *val)
{
*val = dt->link_width;
}
static int lanes_validate(u64 val)
{
return val > 2 ? -EINVAL : 0;
}
static void lanes_set(struct dma_test *dt, u64 val)
{
dt->link_width = val;
}
DMA_TEST_DEBUGFS_ATTR(lanes, lanes_get, lanes_validate, lanes_set);
static void speed_get(const struct dma_test *dt, u64 *val)
{
*val = dt->link_speed;
}
static int speed_validate(u64 val)
{
switch (val) {
case 20:
case 10:
case 0:
return 0;
default:
return -EINVAL;
}
}
static void speed_set(struct dma_test *dt, u64 val)
{
dt->link_speed = val;
}
DMA_TEST_DEBUGFS_ATTR(speed, speed_get, speed_validate, speed_set);
static void packets_to_receive_get(const struct dma_test *dt, u64 *val)
{
*val = dt->packets_to_receive;
}
static int packets_to_receive_validate(u64 val)
{
return val > DMA_TEST_MAX_PACKETS ? -EINVAL : 0;
}
static void packets_to_receive_set(struct dma_test *dt, u64 val)
{
dt->packets_to_receive = val;
}
DMA_TEST_DEBUGFS_ATTR(packets_to_receive, packets_to_receive_get,
packets_to_receive_validate, packets_to_receive_set);
static void packets_to_send_get(const struct dma_test *dt, u64 *val)
{
*val = dt->packets_to_send;
}
static int packets_to_send_validate(u64 val)
{
return val > DMA_TEST_MAX_PACKETS ? -EINVAL : 0;
}
static void packets_to_send_set(struct dma_test *dt, u64 val)
{
dt->packets_to_send = val;
}
DMA_TEST_DEBUGFS_ATTR(packets_to_send, packets_to_send_get,
packets_to_send_validate, packets_to_send_set);
static int dma_test_set_bonding(struct dma_test *dt)
{
switch (dt->link_width) {
case 2:
return tb_xdomain_lane_bonding_enable(dt->xd);
case 1:
tb_xdomain_lane_bonding_disable(dt->xd);
fallthrough;
default:
return 0;
}
}
static bool dma_test_validate_config(struct dma_test *dt)
{
if (!dt->packets_to_send && !dt->packets_to_receive)
return false;
if (dt->packets_to_send && dt->packets_to_receive &&
dt->packets_to_send != dt->packets_to_receive)
return false;
return true;
}
static void dma_test_check_errors(struct dma_test *dt, int ret)
{
if (!dt->error_code) {
if (dt->link_speed && dt->xd->link_speed != dt->link_speed) {
dt->error_code = DMA_TEST_SPEED_ERROR;
} else if (dt->link_width &&
dt->xd->link_width != dt->link_width) {
dt->error_code = DMA_TEST_WIDTH_ERROR;
} else if (dt->packets_to_send != dt->packets_sent ||
dt->packets_to_receive != dt->packets_received ||
dt->crc_errors || dt->buffer_overflow_errors) {
dt->error_code = DMA_TEST_PACKET_ERROR;
} else {
return;
}
}
dt->result = DMA_TEST_FAIL;
}
static int test_store(void *data, u64 val)
{
struct tb_service *svc = data;
struct dma_test *dt = tb_service_get_drvdata(svc);
int ret;
if (val != 1)
return -EINVAL;
ret = mutex_lock_interruptible(&dt->lock);
if (ret)
return ret;
dt->packets_sent = 0;
dt->packets_received = 0;
dt->crc_errors = 0;
dt->buffer_overflow_errors = 0;
dt->result = DMA_TEST_SUCCESS;
dt->error_code = DMA_TEST_NO_ERROR;
dev_dbg(&svc->dev, "DMA test starting\n");
if (dt->link_speed)
dev_dbg(&svc->dev, "link_speed: %u Gb/s\n", dt->link_speed);
if (dt->link_width)
dev_dbg(&svc->dev, "link_width: %u\n", dt->link_width);
dev_dbg(&svc->dev, "packets_to_send: %u\n", dt->packets_to_send);
dev_dbg(&svc->dev, "packets_to_receive: %u\n", dt->packets_to_receive);
if (!dma_test_validate_config(dt)) {
dev_err(&svc->dev, "invalid test configuration\n");
dt->error_code = DMA_TEST_CONFIG_ERROR;
goto out_unlock;
}
ret = dma_test_set_bonding(dt);
if (ret) {
dev_err(&svc->dev, "failed to set lanes\n");
dt->error_code = DMA_TEST_BONDING_ERROR;
goto out_unlock;
}
ret = dma_test_start_rings(dt);
if (ret) {
dev_err(&svc->dev, "failed to enable DMA rings\n");
dt->error_code = DMA_TEST_DMA_ERROR;
goto out_unlock;
}
if (dt->packets_to_receive) {
reinit_completion(&dt->complete);
ret = dma_test_submit_rx(dt, dt->packets_to_receive);
if (ret) {
dev_err(&svc->dev, "failed to submit receive buffers\n");
dt->error_code = DMA_TEST_BUFFER_ERROR;
goto out_stop;
}
}
if (dt->packets_to_send) {
ret = dma_test_submit_tx(dt, dt->packets_to_send);
if (ret) {
dev_err(&svc->dev, "failed to submit transmit buffers\n");
dt->error_code = DMA_TEST_BUFFER_ERROR;
goto out_stop;
}
}
if (dt->packets_to_receive) {
ret = wait_for_completion_interruptible(&dt->complete);
if (ret) {
dt->error_code = DMA_TEST_INTERRUPTED;
goto out_stop;
}
}
out_stop:
dma_test_stop_rings(dt);
out_unlock:
dma_test_check_errors(dt, ret);
mutex_unlock(&dt->lock);
dev_dbg(&svc->dev, "DMA test %s\n", dma_test_result_names[dt->result]);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(test_fops, NULL, test_store, "%llu\n");
static int status_show(struct seq_file *s, void *not_used)
{
struct tb_service *svc = s->private;
struct dma_test *dt = tb_service_get_drvdata(svc);
int ret;
ret = mutex_lock_interruptible(&dt->lock);
if (ret)
return ret;
seq_printf(s, "result: %s\n", dma_test_result_names[dt->result]);
if (dt->result == DMA_TEST_NOT_RUN)
goto out_unlock;
seq_printf(s, "packets received: %u\n", dt->packets_received);
seq_printf(s, "packets sent: %u\n", dt->packets_sent);
seq_printf(s, "CRC errors: %u\n", dt->crc_errors);
seq_printf(s, "buffer overflow errors: %u\n",
dt->buffer_overflow_errors);
seq_printf(s, "error: %s\n", dma_test_error_names[dt->error_code]);
out_unlock:
mutex_unlock(&dt->lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(status);
static void dma_test_debugfs_init(struct tb_service *svc)
{
struct dma_test *dt = tb_service_get_drvdata(svc);
dt->debugfs_dir = debugfs_create_dir("dma_test", svc->debugfs_dir);
debugfs_create_file("lanes", 0600, dt->debugfs_dir, svc, &lanes_fops);
debugfs_create_file("speed", 0600, dt->debugfs_dir, svc, &speed_fops);
debugfs_create_file("packets_to_receive", 0600, dt->debugfs_dir, svc,
&packets_to_receive_fops);
debugfs_create_file("packets_to_send", 0600, dt->debugfs_dir, svc,
&packets_to_send_fops);
debugfs_create_file("status", 0400, dt->debugfs_dir, svc, &status_fops);
debugfs_create_file("test", 0200, dt->debugfs_dir, svc, &test_fops);
}
static int dma_test_probe(struct tb_service *svc, const struct tb_service_id *id)
{
struct tb_xdomain *xd = tb_service_parent(svc);
struct dma_test *dt;
dt = devm_kzalloc(&svc->dev, sizeof(*dt), GFP_KERNEL);
if (!dt)
return -ENOMEM;
dt->svc = svc;
dt->xd = xd;
mutex_init(&dt->lock);
init_completion(&dt->complete);
tb_service_set_drvdata(svc, dt);
dma_test_debugfs_init(svc);
return 0;
}
static void dma_test_remove(struct tb_service *svc)
{
struct dma_test *dt = tb_service_get_drvdata(svc);
mutex_lock(&dt->lock);
debugfs_remove_recursive(dt->debugfs_dir);
mutex_unlock(&dt->lock);
}
static int __maybe_unused dma_test_suspend(struct device *dev)
{
/*
* No need to do anything special here. If userspace is writing
* to the test attribute when suspend started, it comes out from
* wait_for_completion_interruptible() with -ERESTARTSYS and the
* DMA test fails tearing down the rings. Once userspace is
* thawed the kernel restarts the write syscall effectively
* re-running the test.
*/
return 0;
}
static int __maybe_unused dma_test_resume(struct device *dev)
{
return 0;
}
static const struct dev_pm_ops dma_test_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dma_test_suspend, dma_test_resume)
};
static const struct tb_service_id dma_test_ids[] = {
{ TB_SERVICE("dma_test", 1) },
{ },
};
MODULE_DEVICE_TABLE(tbsvc, dma_test_ids);
static struct tb_service_driver dma_test_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "thunderbolt_dma_test",
.pm = &dma_test_pm_ops,
},
.probe = dma_test_probe,
.remove = dma_test_remove,
.id_table = dma_test_ids,
};
static int __init dma_test_init(void)
{
u64 data_value = DMA_TEST_DATA_PATTERN;
int i, ret;
dma_test_pattern = kmalloc(DMA_TEST_FRAME_SIZE, GFP_KERNEL);
if (!dma_test_pattern)
return -ENOMEM;
for (i = 0; i < DMA_TEST_FRAME_SIZE / sizeof(data_value); i++)
((u32 *)dma_test_pattern)[i] = data_value++;
dma_test_dir = tb_property_create_dir(&dma_test_dir_uuid);
if (!dma_test_dir) {
ret = -ENOMEM;
goto err_free_pattern;
}
tb_property_add_immediate(dma_test_dir, "prtcid", 1);
tb_property_add_immediate(dma_test_dir, "prtcvers", 1);
tb_property_add_immediate(dma_test_dir, "prtcrevs", 0);
tb_property_add_immediate(dma_test_dir, "prtcstns", 0);
ret = tb_register_property_dir("dma_test", dma_test_dir);
if (ret)
goto err_free_dir;
ret = tb_register_service_driver(&dma_test_driver);
if (ret)
goto err_unregister_dir;
return 0;
err_unregister_dir:
tb_unregister_property_dir("dma_test", dma_test_dir);
err_free_dir:
tb_property_free_dir(dma_test_dir);
err_free_pattern:
kfree(dma_test_pattern);
return ret;
}
module_init(dma_test_init);
static void __exit dma_test_exit(void)
{
tb_unregister_service_driver(&dma_test_driver);
tb_unregister_property_dir("dma_test", dma_test_dir);
tb_property_free_dir(dma_test_dir);
kfree(dma_test_pattern);
}
module_exit(dma_test_exit);
MODULE_AUTHOR("Isaac Hazan <isaac.hazan@intel.com>");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_DESCRIPTION("DMA traffic test driver");
MODULE_LICENSE("GPL v2");