WSL2-Linux-Kernel/mm/truncate.c

669 строки
20 KiB
C
Исходник Обычный вид История

/*
* mm/truncate.c - code for taking down pages from address_spaces
*
* Copyright (C) 2002, Linus Torvalds
*
* 10Sep2002 Andrew Morton
* Initial version.
*/
#include <linux/kernel.h>
#include <linux/backing-dev.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/buffer_head.h> /* grr. try_to_release_page,
do_invalidatepage */
#include <linux/cleancache.h>
#include "internal.h"
/**
* do_invalidatepage - invalidate part or all of a page
* @page: the page which is affected
* @offset: the index of the truncation point
*
* do_invalidatepage() is called when all or part of the page has become
* invalidated by a truncate operation.
*
* do_invalidatepage() does not have to release all buffers, but it must
* ensure that no dirty buffer is left outside @offset and that no I/O
* is underway against any of the blocks which are outside the truncation
* point. Because the caller is about to free (and possibly reuse) those
* blocks on-disk.
*/
void do_invalidatepage(struct page *page, unsigned long offset)
{
void (*invalidatepage)(struct page *, unsigned long);
invalidatepage = page->mapping->a_ops->invalidatepage;
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 22:45:40 +04:00
#ifdef CONFIG_BLOCK
if (!invalidatepage)
invalidatepage = block_invalidatepage;
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 22:45:40 +04:00
#endif
if (invalidatepage)
(*invalidatepage)(page, offset);
}
static inline void truncate_partial_page(struct page *page, unsigned partial)
{
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
zero_user_segment(page, partial, PAGE_CACHE_SIZE);
cleancache_invalidate_page(page->mapping, page);
if (page_has_private(page))
do_invalidatepage(page, partial);
}
/*
* This cancels just the dirty bit on the kernel page itself, it
* does NOT actually remove dirty bits on any mmap's that may be
* around. It also leaves the page tagged dirty, so any sync
* activity will still find it on the dirty lists, and in particular,
* clear_page_dirty_for_io() will still look at the dirty bits in
* the VM.
*
* Doing this should *normally* only ever be done when a page
* is truncated, and is not actually mapped anywhere at all. However,
* fs/buffer.c does this when it notices that somebody has cleaned
* out all the buffers on a page without actually doing it through
* the VM. Can you say "ext3 is horribly ugly"? Tought you could.
*/
VM: Remove "clear_page_dirty()" and "test_clear_page_dirty()" functions They were horribly easy to mis-use because of their tempting naming, and they also did way more than any users of them generally wanted them to do. A dirty page can become clean under two circumstances: (a) when we write it out. We have "clear_page_dirty_for_io()" for this, and that function remains unchanged. In the "for IO" case it is not sufficient to just clear the dirty bit, you also have to mark the page as being under writeback etc. (b) when we actually remove a page due to it becoming inaccessible to users, notably because it was truncate()'d away or the file (or metadata) no longer exists, and we thus want to cancel any outstanding dirty state. For the (b) case, we now introduce "cancel_dirty_page()", which only touches the page state itself, and verifies that the page is not mapped (since cancelling writes on a mapped page would be actively wrong as it is still accessible to users). Some filesystems need to be fixed up for this: CIFS, FUSE, JFS, ReiserFS, XFS all use the old confusing functions, and will be fixed separately in subsequent commits (with some of them just removing the offending logic, and others using clear_page_dirty_for_io()). This was confirmed by Martin Michlmayr to fix the apt database corruption on ARM. Cc: Martin Michlmayr <tbm@cyrius.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Andrei Popa <andrei.popa@i-neo.ro> Cc: Andrew Morton <akpm@osdl.org> Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Cc: Gordon Farquharson <gordonfarquharson@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-21 00:46:42 +03:00
void cancel_dirty_page(struct page *page, unsigned int account_size)
{
if (TestClearPageDirty(page)) {
struct address_space *mapping = page->mapping;
if (mapping && mapping_cap_account_dirty(mapping)) {
dec_zone_page_state(page, NR_FILE_DIRTY);
dec_bdi_stat(mapping->backing_dev_info,
BDI_RECLAIMABLE);
if (account_size)
task_io_account_cancelled_write(account_size);
}
}
VM: Remove "clear_page_dirty()" and "test_clear_page_dirty()" functions They were horribly easy to mis-use because of their tempting naming, and they also did way more than any users of them generally wanted them to do. A dirty page can become clean under two circumstances: (a) when we write it out. We have "clear_page_dirty_for_io()" for this, and that function remains unchanged. In the "for IO" case it is not sufficient to just clear the dirty bit, you also have to mark the page as being under writeback etc. (b) when we actually remove a page due to it becoming inaccessible to users, notably because it was truncate()'d away or the file (or metadata) no longer exists, and we thus want to cancel any outstanding dirty state. For the (b) case, we now introduce "cancel_dirty_page()", which only touches the page state itself, and verifies that the page is not mapped (since cancelling writes on a mapped page would be actively wrong as it is still accessible to users). Some filesystems need to be fixed up for this: CIFS, FUSE, JFS, ReiserFS, XFS all use the old confusing functions, and will be fixed separately in subsequent commits (with some of them just removing the offending logic, and others using clear_page_dirty_for_io()). This was confirmed by Martin Michlmayr to fix the apt database corruption on ARM. Cc: Martin Michlmayr <tbm@cyrius.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Andrei Popa <andrei.popa@i-neo.ro> Cc: Andrew Morton <akpm@osdl.org> Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Cc: Gordon Farquharson <gordonfarquharson@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-21 00:46:42 +03:00
}
EXPORT_SYMBOL(cancel_dirty_page);
VM: Remove "clear_page_dirty()" and "test_clear_page_dirty()" functions They were horribly easy to mis-use because of their tempting naming, and they also did way more than any users of them generally wanted them to do. A dirty page can become clean under two circumstances: (a) when we write it out. We have "clear_page_dirty_for_io()" for this, and that function remains unchanged. In the "for IO" case it is not sufficient to just clear the dirty bit, you also have to mark the page as being under writeback etc. (b) when we actually remove a page due to it becoming inaccessible to users, notably because it was truncate()'d away or the file (or metadata) no longer exists, and we thus want to cancel any outstanding dirty state. For the (b) case, we now introduce "cancel_dirty_page()", which only touches the page state itself, and verifies that the page is not mapped (since cancelling writes on a mapped page would be actively wrong as it is still accessible to users). Some filesystems need to be fixed up for this: CIFS, FUSE, JFS, ReiserFS, XFS all use the old confusing functions, and will be fixed separately in subsequent commits (with some of them just removing the offending logic, and others using clear_page_dirty_for_io()). This was confirmed by Martin Michlmayr to fix the apt database corruption on ARM. Cc: Martin Michlmayr <tbm@cyrius.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Andrei Popa <andrei.popa@i-neo.ro> Cc: Andrew Morton <akpm@osdl.org> Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Cc: Gordon Farquharson <gordonfarquharson@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-21 00:46:42 +03:00
/*
* If truncate cannot remove the fs-private metadata from the page, the page
* becomes orphaned. It will be left on the LRU and may even be mapped into
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:46:59 +04:00
* user pagetables if we're racing with filemap_fault().
*
* We need to bale out if page->mapping is no longer equal to the original
* mapping. This happens a) when the VM reclaimed the page while we waited on
* its lock, b) when a concurrent invalidate_mapping_pages got there first and
* c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
*/
static int
truncate_complete_page(struct address_space *mapping, struct page *page)
{
if (page->mapping != mapping)
return -EIO;
if (page_has_private(page))
do_invalidatepage(page, 0);
Fix dirty page accounting leak with ext3 data=journal In 46d2277c796f9f4937bfa668c40b2e3f43e93dd0 ("Clean up and make try_to_free_buffers() not race with dirty pages"), try_to_free_buffers was changed to bail out if the page was dirty. That in turn caused truncate_complete_page to leak massive amounts of memory, because the dirty bit was only cleared after the call to try_to_free_buffers. So the call to cancel_dirty_page was moved up to have the dirty bit cleared early in 3e67c0987d7567ad666641164a153dca9a43b11d ("truncate: clear page dirtiness before running try_to_free_buffers()"). The problem with that fix is, that the page can be redirtied after cancel_dirty_page was called, eg. like this: truncate_complete_page() cancel_dirty_page() // PG_dirty cleared, decr. dirty pages do_invalidatepage() ext3_invalidatepage() journal_invalidatepage() journal_unmap_buffer() __dispose_buffer() __journal_unfile_buffer() __journal_temp_unlink_buffer() mark_buffer_dirty(); // PG_dirty set, incr. dirty pages And then we end up with dirty pages being wrongly accounted. As a result, in ecdfc9787fe527491baefc22dce8b2dbd5b2908d ("Resurrect 'try_to_free_buffers()' VM hackery") the changes to try_to_free_buffers were reverted, so the original reason for the massive memory leak is gone, and we can also revert the move of the call to cancel_dirty_page from truncate_complete_page and get the accounting right again. I'm not sure if it matters, but opposed to the final check in __remove_from_page_cache, this one also cares about the task io accounting, so maybe we want to use this instead, although it's not quite the clean fix either. Signed-off-by: Björn Steinbrink <B.Steinbrink@gmx.de> Tested-by: Krzysztof Piotr Oledzki <ole@ans.pl> Cc: Jan Kara <jack@ucw.cz> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Osterried <osterried@jesse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:29:28 +03:00
cancel_dirty_page(page, PAGE_CACHE_SIZE);
clear_page_mlock(page);
ClearPageMappedToDisk(page);
delete_from_page_cache(page);
return 0;
}
/*
* This is for invalidate_mapping_pages(). That function can be called at
* any time, and is not supposed to throw away dirty pages. But pages can
* be marked dirty at any time too, so use remove_mapping which safely
* discards clean, unused pages.
*
* Returns non-zero if the page was successfully invalidated.
*/
static int
invalidate_complete_page(struct address_space *mapping, struct page *page)
{
int ret;
if (page->mapping != mapping)
return 0;
if (page_has_private(page) && !try_to_release_page(page, 0))
return 0;
clear_page_mlock(page);
ret = remove_mapping(mapping, page);
return ret;
}
int truncate_inode_page(struct address_space *mapping, struct page *page)
{
if (page_mapped(page)) {
unmap_mapping_range(mapping,
(loff_t)page->index << PAGE_CACHE_SHIFT,
PAGE_CACHE_SIZE, 0);
}
return truncate_complete_page(mapping, page);
}
/*
* Used to get rid of pages on hardware memory corruption.
*/
int generic_error_remove_page(struct address_space *mapping, struct page *page)
{
if (!mapping)
return -EINVAL;
/*
* Only punch for normal data pages for now.
* Handling other types like directories would need more auditing.
*/
if (!S_ISREG(mapping->host->i_mode))
return -EIO;
return truncate_inode_page(mapping, page);
}
EXPORT_SYMBOL(generic_error_remove_page);
/*
* Safely invalidate one page from its pagecache mapping.
* It only drops clean, unused pages. The page must be locked.
*
* Returns 1 if the page is successfully invalidated, otherwise 0.
*/
int invalidate_inode_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
if (!mapping)
return 0;
if (PageDirty(page) || PageWriteback(page))
return 0;
if (page_mapped(page))
return 0;
return invalidate_complete_page(mapping, page);
}
/**
* truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
* @lend: offset to which to truncate
*
* Truncate the page cache, removing the pages that are between
* specified offsets (and zeroing out partial page
* (if lstart is not page aligned)).
*
* Truncate takes two passes - the first pass is nonblocking. It will not
* block on page locks and it will not block on writeback. The second pass
* will wait. This is to prevent as much IO as possible in the affected region.
* The first pass will remove most pages, so the search cost of the second pass
* is low.
*
* We pass down the cache-hot hint to the page freeing code. Even if the
* mapping is large, it is probably the case that the final pages are the most
* recently touched, and freeing happens in ascending file offset order.
*/
void truncate_inode_pages_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
struct pagevec pvec;
pgoff_t index;
pgoff_t end;
int i;
cleancache_invalidate_inode(mapping);
if (mapping->nrpages == 0)
return;
BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
end = (lend >> PAGE_CACHE_SHIFT);
pagevec_init(&pvec, 0);
index = start;
while (index <= end && pagevec_lookup(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = page->index;
if (index > end)
break;
if (!trylock_page(page))
continue;
WARN_ON(page->index != index);
if (PageWriteback(page)) {
unlock_page(page);
continue;
}
truncate_inode_page(mapping, page);
unlock_page(page);
}
pagevec_release(&pvec);
mem_cgroup_uncharge_end();
cond_resched();
index++;
}
if (partial) {
struct page *page = find_lock_page(mapping, start - 1);
if (page) {
wait_on_page_writeback(page);
truncate_partial_page(page, partial);
unlock_page(page);
page_cache_release(page);
}
}
index = start;
for ( ; ; ) {
cond_resched();
if (!pagevec_lookup(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
if (index == start)
break;
index = start;
continue;
}
if (index == start && pvec.pages[0]->index > end) {
pagevec_release(&pvec);
break;
}
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = page->index;
if (index > end)
break;
lock_page(page);
WARN_ON(page->index != index);
wait_on_page_writeback(page);
truncate_inode_page(mapping, page);
unlock_page(page);
}
pagevec_release(&pvec);
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_end();
index++;
}
cleancache_invalidate_inode(mapping);
}
EXPORT_SYMBOL(truncate_inode_pages_range);
/**
* truncate_inode_pages - truncate *all* the pages from an offset
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
*
* Called under (and serialised by) inode->i_mutex.
*
* Note: When this function returns, there can be a page in the process of
* deletion (inside __delete_from_page_cache()) in the specified range. Thus
* mapping->nrpages can be non-zero when this function returns even after
* truncation of the whole mapping.
*/
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
{
truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
}
EXPORT_SYMBOL(truncate_inode_pages);
/**
* invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
* @mapping: the address_space which holds the pages to invalidate
* @start: the offset 'from' which to invalidate
* @end: the offset 'to' which to invalidate (inclusive)
*
* This function only removes the unlocked pages, if you want to
* remove all the pages of one inode, you must call truncate_inode_pages.
*
* invalidate_mapping_pages() will not block on IO activity. It will not
* invalidate pages which are dirty, locked, under writeback or mapped into
* pagetables.
*/
unsigned long invalidate_mapping_pages(struct address_space *mapping,
mm: deactivate invalidated pages Recently, there are reported problem about thrashing. (http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup workloads(ex, nightly rsync). That's because the workload makes just use-once pages and touches pages twice. It promotes the page into active list so that it results in working set page eviction. Some app developer want to support POSIX_FADV_NOREUSE. But other OSes don't support it, either. (http://marc.info/?l=linux-mm&m=128928979512086&w=2) By other approach, app developers use POSIX_FADV_DONTNEED. But it has a problem. If kernel meets page is writing during invalidate_mapping_pages, it can't work. It makes for application programmer to use it since they always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to make sure the pages could be discardable. At last, they can't use deferred write of kernel so that they could see performance loss. (http://insights.oetiker.ch/linux/fadvise.html) In fact, invalidation is very big hint to reclaimer. It means we don't use the page any more. So let's move the writing page into inactive list's head if we can't truncate it right now. Why I move page to head of lru on this patch, Dirty/Writeback page would be flushed sooner or later. It can prevent writeout of pageout which is less effective than flusher's writeout. Originally, I reused lru_demote of Peter with some change so added his Signed-off-by. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Ben Gamari <bgamari.foss@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 02:32:52 +03:00
pgoff_t start, pgoff_t end)
{
struct pagevec pvec;
pgoff_t index = start;
mm: deactivate invalidated pages Recently, there are reported problem about thrashing. (http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup workloads(ex, nightly rsync). That's because the workload makes just use-once pages and touches pages twice. It promotes the page into active list so that it results in working set page eviction. Some app developer want to support POSIX_FADV_NOREUSE. But other OSes don't support it, either. (http://marc.info/?l=linux-mm&m=128928979512086&w=2) By other approach, app developers use POSIX_FADV_DONTNEED. But it has a problem. If kernel meets page is writing during invalidate_mapping_pages, it can't work. It makes for application programmer to use it since they always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to make sure the pages could be discardable. At last, they can't use deferred write of kernel so that they could see performance loss. (http://insights.oetiker.ch/linux/fadvise.html) In fact, invalidation is very big hint to reclaimer. It means we don't use the page any more. So let's move the writing page into inactive list's head if we can't truncate it right now. Why I move page to head of lru on this patch, Dirty/Writeback page would be flushed sooner or later. It can prevent writeout of pageout which is less effective than flusher's writeout. Originally, I reused lru_demote of Peter with some change so added his Signed-off-by. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Ben Gamari <bgamari.foss@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 02:32:52 +03:00
unsigned long ret;
unsigned long count = 0;
int i;
/*
* Note: this function may get called on a shmem/tmpfs mapping:
* pagevec_lookup() might then return 0 prematurely (because it
* got a gangful of swap entries); but it's hardly worth worrying
* about - it can rarely have anything to free from such a mapping
* (most pages are dirty), and already skips over any difficulties.
*/
pagevec_init(&pvec, 0);
while (index <= end && pagevec_lookup(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = page->index;
if (index > end)
break;
if (!trylock_page(page))
continue;
WARN_ON(page->index != index);
mm: deactivate invalidated pages Recently, there are reported problem about thrashing. (http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup workloads(ex, nightly rsync). That's because the workload makes just use-once pages and touches pages twice. It promotes the page into active list so that it results in working set page eviction. Some app developer want to support POSIX_FADV_NOREUSE. But other OSes don't support it, either. (http://marc.info/?l=linux-mm&m=128928979512086&w=2) By other approach, app developers use POSIX_FADV_DONTNEED. But it has a problem. If kernel meets page is writing during invalidate_mapping_pages, it can't work. It makes for application programmer to use it since they always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to make sure the pages could be discardable. At last, they can't use deferred write of kernel so that they could see performance loss. (http://insights.oetiker.ch/linux/fadvise.html) In fact, invalidation is very big hint to reclaimer. It means we don't use the page any more. So let's move the writing page into inactive list's head if we can't truncate it right now. Why I move page to head of lru on this patch, Dirty/Writeback page would be flushed sooner or later. It can prevent writeout of pageout which is less effective than flusher's writeout. Originally, I reused lru_demote of Peter with some change so added his Signed-off-by. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Ben Gamari <bgamari.foss@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 02:32:52 +03:00
ret = invalidate_inode_page(page);
unlock_page(page);
mm: deactivate invalidated pages Recently, there are reported problem about thrashing. (http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup workloads(ex, nightly rsync). That's because the workload makes just use-once pages and touches pages twice. It promotes the page into active list so that it results in working set page eviction. Some app developer want to support POSIX_FADV_NOREUSE. But other OSes don't support it, either. (http://marc.info/?l=linux-mm&m=128928979512086&w=2) By other approach, app developers use POSIX_FADV_DONTNEED. But it has a problem. If kernel meets page is writing during invalidate_mapping_pages, it can't work. It makes for application programmer to use it since they always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to make sure the pages could be discardable. At last, they can't use deferred write of kernel so that they could see performance loss. (http://insights.oetiker.ch/linux/fadvise.html) In fact, invalidation is very big hint to reclaimer. It means we don't use the page any more. So let's move the writing page into inactive list's head if we can't truncate it right now. Why I move page to head of lru on this patch, Dirty/Writeback page would be flushed sooner or later. It can prevent writeout of pageout which is less effective than flusher's writeout. Originally, I reused lru_demote of Peter with some change so added his Signed-off-by. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Ben Gamari <bgamari.foss@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 02:32:52 +03:00
/*
* Invalidation is a hint that the page is no longer
* of interest and try to speed up its reclaim.
*/
if (!ret)
deactivate_page(page);
count += ret;
}
pagevec_release(&pvec);
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_end();
cond_resched();
index++;
}
mm: deactivate invalidated pages Recently, there are reported problem about thrashing. (http://marc.info/?l=rsync&m=128885034930933&w=2) It happens by backup workloads(ex, nightly rsync). That's because the workload makes just use-once pages and touches pages twice. It promotes the page into active list so that it results in working set page eviction. Some app developer want to support POSIX_FADV_NOREUSE. But other OSes don't support it, either. (http://marc.info/?l=linux-mm&m=128928979512086&w=2) By other approach, app developers use POSIX_FADV_DONTNEED. But it has a problem. If kernel meets page is writing during invalidate_mapping_pages, it can't work. It makes for application programmer to use it since they always have to sync data before calling fadivse(..POSIX_FADV_DONTNEED) to make sure the pages could be discardable. At last, they can't use deferred write of kernel so that they could see performance loss. (http://insights.oetiker.ch/linux/fadvise.html) In fact, invalidation is very big hint to reclaimer. It means we don't use the page any more. So let's move the writing page into inactive list's head if we can't truncate it right now. Why I move page to head of lru on this patch, Dirty/Writeback page would be flushed sooner or later. It can prevent writeout of pageout which is less effective than flusher's writeout. Originally, I reused lru_demote of Peter with some change so added his Signed-off-by. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Ben Gamari <bgamari.foss@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 02:32:52 +03:00
return count;
}
EXPORT_SYMBOL(invalidate_mapping_pages);
/*
* This is like invalidate_complete_page(), except it ignores the page's
* refcount. We do this because invalidate_inode_pages2() needs stronger
* invalidation guarantees, and cannot afford to leave pages behind because
* shrink_page_list() has a temp ref on them, or because they're transiently
* sitting in the lru_cache_add() pagevecs.
*/
static int
invalidate_complete_page2(struct address_space *mapping, struct page *page)
{
if (page->mapping != mapping)
return 0;
if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
return 0;
spin_lock_irq(&mapping->tree_lock);
if (PageDirty(page))
goto failed;
clear_page_mlock(page);
BUG_ON(page_has_private(page));
__delete_from_page_cache(page);
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
if (mapping->a_ops->freepage)
mapping->a_ops->freepage(page);
page_cache_release(page); /* pagecache ref */
return 1;
failed:
spin_unlock_irq(&mapping->tree_lock);
return 0;
}
static int do_launder_page(struct address_space *mapping, struct page *page)
{
if (!PageDirty(page))
return 0;
if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
return 0;
return mapping->a_ops->launder_page(page);
}
/**
* invalidate_inode_pages2_range - remove range of pages from an address_space
* @mapping: the address_space
* @start: the page offset 'from' which to invalidate
* @end: the page offset 'to' which to invalidate (inclusive)
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
VFS: fix dio write returning EIO when try_to_release_page fails Dio write returns EIO when try_to_release_page fails because bh is still referenced. The patch commit 3f31fddfa26b7594b44ff2b34f9a04ba409e0f91 Author: Mingming Cao <cmm@us.ibm.com> Date: Fri Jul 25 01:46:22 2008 -0700 jbd: fix race between free buffer and commit transaction was merged into 2.6.27-rc1, but I noticed that this patch is not enough to fix the race. I did fsstress test heavily to 2.6.27-rc1, and found that dio write still sometimes got EIO through this test. The patch above fixed race between freeing buffer(dio) and committing transaction(jbd) but I discovered that there is another race, freeing buffer(dio) and ext3/4_ordered_writepage. : background_writeout() ->write_cache_pages() ->ext3_ordered_writepage() walk_page_buffers() -> take a bh ref block_write_full_page() -> unlock_page : <- end_page_writeback : <- race! (dio write->try_to_release_page fails) walk_page_buffers() ->release a bh ref ext3_ordered_writepage holds bh ref and does unlock_page remaining taking a bh ref, so this causes the race and failure of try_to_release_page. To fix this race, I used the approach of falling back to buffered writes if try_to_release_page() fails on a page. [akpm@linux-foundation.org: cleanups] Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp> Cc: Chris Mason <chris.mason@oracle.com> Cc: Jan Kara <jack@suse.cz> Cc: Mingming Cao <cmm@us.ibm.com> Cc: Zach Brown <zach.brown@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-09-03 01:35:40 +04:00
* Returns -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
struct pagevec pvec;
pgoff_t index;
int i;
int ret = 0;
int ret2 = 0;
int did_range_unmap = 0;
cleancache_invalidate_inode(mapping);
pagevec_init(&pvec, 0);
index = start;
while (index <= end && pagevec_lookup(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = page->index;
if (index > end)
break;
lock_page(page);
WARN_ON(page->index != index);
if (page->mapping != mapping) {
unlock_page(page);
continue;
}
wait_on_page_writeback(page);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:46:57 +04:00
if (page_mapped(page)) {
if (!did_range_unmap) {
/*
* Zap the rest of the file in one hit.
*/
unmap_mapping_range(mapping,
(loff_t)index << PAGE_CACHE_SHIFT,
(loff_t)(1 + end - index)
<< PAGE_CACHE_SHIFT,
0);
did_range_unmap = 1;
} else {
/*
* Just zap this page
*/
unmap_mapping_range(mapping,
(loff_t)index << PAGE_CACHE_SHIFT,
PAGE_CACHE_SIZE, 0);
}
}
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:46:57 +04:00
BUG_ON(page_mapped(page));
ret2 = do_launder_page(mapping, page);
if (ret2 == 0) {
if (!invalidate_complete_page2(mapping, page))
VFS: fix dio write returning EIO when try_to_release_page fails Dio write returns EIO when try_to_release_page fails because bh is still referenced. The patch commit 3f31fddfa26b7594b44ff2b34f9a04ba409e0f91 Author: Mingming Cao <cmm@us.ibm.com> Date: Fri Jul 25 01:46:22 2008 -0700 jbd: fix race between free buffer and commit transaction was merged into 2.6.27-rc1, but I noticed that this patch is not enough to fix the race. I did fsstress test heavily to 2.6.27-rc1, and found that dio write still sometimes got EIO through this test. The patch above fixed race between freeing buffer(dio) and committing transaction(jbd) but I discovered that there is another race, freeing buffer(dio) and ext3/4_ordered_writepage. : background_writeout() ->write_cache_pages() ->ext3_ordered_writepage() walk_page_buffers() -> take a bh ref block_write_full_page() -> unlock_page : <- end_page_writeback : <- race! (dio write->try_to_release_page fails) walk_page_buffers() ->release a bh ref ext3_ordered_writepage holds bh ref and does unlock_page remaining taking a bh ref, so this causes the race and failure of try_to_release_page. To fix this race, I used the approach of falling back to buffered writes if try_to_release_page() fails on a page. [akpm@linux-foundation.org: cleanups] Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp> Cc: Chris Mason <chris.mason@oracle.com> Cc: Jan Kara <jack@suse.cz> Cc: Mingming Cao <cmm@us.ibm.com> Cc: Zach Brown <zach.brown@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-09-03 01:35:40 +04:00
ret2 = -EBUSY;
}
if (ret2 < 0)
ret = ret2;
unlock_page(page);
}
pagevec_release(&pvec);
memcg: coalesce uncharge during unmap/truncate In massive parallel enviroment, res_counter can be a performance bottleneck. One strong techinque to reduce lock contention is reducing calls by coalescing some amount of calls into one. Considering charge/uncharge chatacteristic, - charge is done one by one via demand-paging. - uncharge is done by - in chunk at munmap, truncate, exit, execve... - one by one via vmscan/paging. It seems we have a chance to coalesce uncharges for improving scalability at unmap/truncation. This patch is a for coalescing uncharge. For avoiding scattering memcg's structure to functions under /mm, this patch adds memcg batch uncharge information to the task. A reason for per-task batching is for making use of caller's context information. We do batched uncharge (deleyed uncharge) when truncation/unmap occurs but do direct uncharge when uncharge is called by memory reclaim (vmscan.c). The degree of coalescing depends on callers - at invalidate/trucate... pagevec size - at unmap ....ZAP_BLOCK_SIZE (memory itself will be freed in this degree.) Then, we'll not coalescing too much. On x86-64 8cpu server, I tested overheads of memcg at page fault by running a program which does map/fault/unmap in a loop. Running a task per a cpu by taskset and see sum of the number of page faults in 60secs. [without memcg config] 40156968 page-faults # 0.085 M/sec ( +- 0.046% ) 27.67 cache-miss/faults [root cgroup] 36659599 page-faults # 0.077 M/sec ( +- 0.247% ) 31.58 miss/faults [in a child cgroup] 18444157 page-faults # 0.039 M/sec ( +- 0.133% ) 69.96 miss/faults [child with this patch] 27133719 page-faults # 0.057 M/sec ( +- 0.155% ) 47.16 miss/faults We can see some amounts of improvement. (root cgroup doesn't affected by this patch) Another patch for "charge" will follow this and above will be improved more. Changelog(since 2009/10/02): - renamed filed of memcg_batch (as pages to bytes, memsw to memsw_bytes) - some clean up and commentary/description updates. - added initialize code to copy_process(). (possible bug fix) Changelog(old): - fixed !CONFIG_MEM_CGROUP case. - rebased onto the latest mmotm + softlimit fix patches. - unified patch for callers - added commetns. - make ->do_batch as bool. - removed css_get() at el. We don't need it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 03:47:03 +03:00
mem_cgroup_uncharge_end();
cond_resched();
index++;
}
cleancache_invalidate_inode(mapping);
return ret;
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
/**
* invalidate_inode_pages2 - remove all pages from an address_space
* @mapping: the address_space
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
* Returns -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2(struct address_space *mapping)
{
return invalidate_inode_pages2_range(mapping, 0, -1);
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
/**
* truncate_pagecache - unmap and remove pagecache that has been truncated
* @inode: inode
* @oldsize: old file size
* @newsize: new file size
*
* inode's new i_size must already be written before truncate_pagecache
* is called.
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
{
struct address_space *mapping = inode->i_mapping;
loff_t holebegin = round_up(newsize, PAGE_SIZE);
/*
* unmap_mapping_range is called twice, first simply for
* efficiency so that truncate_inode_pages does fewer
* single-page unmaps. However after this first call, and
* before truncate_inode_pages finishes, it is possible for
* private pages to be COWed, which remain after
* truncate_inode_pages finishes, hence the second
* unmap_mapping_range call must be made for correctness.
*/
unmap_mapping_range(mapping, holebegin, 0, 1);
truncate_inode_pages(mapping, newsize);
unmap_mapping_range(mapping, holebegin, 0, 1);
}
EXPORT_SYMBOL(truncate_pagecache);
/**
* truncate_setsize - update inode and pagecache for a new file size
* @inode: inode
* @newsize: new file size
*
* truncate_setsize updates i_size and performs pagecache truncation (if
* necessary) to @newsize. It will be typically be called from the filesystem's
* setattr function when ATTR_SIZE is passed in.
*
* Must be called with inode_mutex held and before all filesystem specific
* block truncation has been performed.
*/
void truncate_setsize(struct inode *inode, loff_t newsize)
{
loff_t oldsize;
oldsize = inode->i_size;
i_size_write(inode, newsize);
truncate_pagecache(inode, oldsize, newsize);
}
EXPORT_SYMBOL(truncate_setsize);
/**
* vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @newsize: file offset to start truncating
*
* This function is deprecated and truncate_setsize or truncate_pagecache
* should be used instead, together with filesystem specific block truncation.
*/
int vmtruncate(struct inode *inode, loff_t newsize)
{
int error;
error = inode_newsize_ok(inode, newsize);
if (error)
return error;
fs: introduce new truncate sequence Introduce a new truncate calling sequence into fs/mm subsystems. Rather than setattr > vmtruncate > truncate, have filesystems call their truncate sequence from ->setattr if filesystem specific operations are required. vmtruncate is deprecated, and truncate_pagecache and inode_newsize_ok helpers introduced previously should be used. simple_setattr is introduced for simple in-ram filesystems to implement the new truncate sequence. Eventually all filesystems should be converted to implement a setattr, and the default code in notify_change should go away. simple_setsize is also introduced to perform just the ATTR_SIZE portion of simple_setattr (ie. changing i_size and trimming pagecache). To implement the new truncate sequence: - filesystem specific manipulations (eg freeing blocks) must be done in the setattr method rather than ->truncate. - vmtruncate can not be used by core code to trim blocks past i_size in the event of write failure after allocation, so this must be performed in the fs code. - convert usage of helpers block_write_begin, nobh_write_begin, cont_write_begin, and *blockdev_direct_IO* to use _newtrunc postfixed variants. These avoid calling vmtruncate to trim blocks (see previous). - inode_setattr should not be used. generic_setattr is a new function to be used to copy simple attributes into the generic inode. - make use of the better opportunity to handle errors with the new sequence. Big problem with the previous calling sequence: the filesystem is not called until i_size has already changed. This means it is not allowed to fail the call, and also it does not know what the previous i_size was. Also, generic code calling vmtruncate to truncate allocated blocks in case of error had no good way to return a meaningful error (or, for example, atomically handle block deallocation). Cc: Christoph Hellwig <hch@lst.de> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-05-26 19:05:33 +04:00
truncate_setsize(inode, newsize);
if (inode->i_op->truncate)
inode->i_op->truncate(inode);
return 0;
}
EXPORT_SYMBOL(vmtruncate);
int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
struct address_space *mapping = inode->i_mapping;
loff_t holebegin = round_up(lstart, PAGE_SIZE);
loff_t holelen = 1 + lend - holebegin;
/*
* If the underlying filesystem is not going to provide
* a way to truncate a range of blocks (punch a hole) -
* we should return failure right now.
*/
if (!inode->i_op->truncate_range)
return -ENOSYS;
mutex_lock(&inode->i_mutex);
inode_dio_wait(inode);
unmap_mapping_range(mapping, holebegin, holelen, 1);
inode->i_op->truncate_range(inode, lstart, lend);
tmpfs: take control of its truncate_range 2.6.35's new truncate convention gave tmpfs the opportunity to control its file truncation, no longer enforced from outside by vmtruncate(). We shall want to build upon that, to handle pagecache and swap together. Slightly redefine the ->truncate_range interface: let it now be called between the unmap_mapping_range()s, with the filesystem responsible for doing the truncate_inode_pages_range() from it - just as the filesystem is nowadays responsible for doing that from its ->setattr. Let's rename shmem_notify_change() to shmem_setattr(). Instead of calling the generic truncate_setsize(), bring that code in so we can call shmem_truncate_range() - which will later be updated to perform its own variant of truncate_inode_pages_range(). Remove the punch_hole unmap_mapping_range() from shmem_truncate_range(): now that the COW's unmap_mapping_range() comes after ->truncate_range, there is no need to call it a third time. Export shmem_truncate_range() and add it to the list in shmem_fs.h, so that i915_gem_object_truncate() can call it explicitly in future; get this patch in first, then update drm/i915 once this is available (until then, i915 will just be doing the truncate_inode_pages() twice). Though introduced five years ago, no other filesystem is implementing ->truncate_range, and its only other user is madvise(,,MADV_REMOVE): we expect to convert it to fallocate(,FALLOC_FL_PUNCH_HOLE,,) shortly, whereupon ->truncate_range can be removed from inode_operations - shmem_truncate_range() will help i915 across that transition too. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-28 03:18:03 +04:00
/* unmap again to remove racily COWed private pages */
unmap_mapping_range(mapping, holebegin, holelen, 1);
mutex_unlock(&inode->i_mutex);
return 0;
}
/**
* truncate_pagecache_range - unmap and remove pagecache that is hole-punched
* @inode: inode
* @lstart: offset of beginning of hole
* @lend: offset of last byte of hole
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
{
struct address_space *mapping = inode->i_mapping;
loff_t unmap_start = round_up(lstart, PAGE_SIZE);
loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
/*
* This rounding is currently just for example: unmap_mapping_range
* expands its hole outwards, whereas we want it to contract the hole
* inwards. However, existing callers of truncate_pagecache_range are
* doing their own page rounding first; and truncate_inode_pages_range
* currently BUGs if lend is not pagealigned-1 (it handles partial
* page at start of hole, but not partial page at end of hole). Note
* unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
*/
/*
* Unlike in truncate_pagecache, unmap_mapping_range is called only
* once (before truncating pagecache), and without "even_cows" flag:
* hole-punching should not remove private COWed pages from the hole.
*/
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
truncate_inode_pages_range(mapping, lstart, lend);
}
EXPORT_SYMBOL(truncate_pagecache_range);