WSL2-Linux-Kernel/fs/ext4/crypto_fname.c

712 строки
18 KiB
C
Исходник Обычный вид История

/*
* linux/fs/ext4/crypto_fname.c
*
* Copyright (C) 2015, Google, Inc.
*
* This contains functions for filename crypto management in ext4
*
* Written by Uday Savagaonkar, 2014.
*
* This has not yet undergone a rigorous security audit.
*
*/
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <keys/encrypted-type.h>
#include <keys/user-type.h>
#include <linux/crypto.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <linux/key.h>
#include <linux/key.h>
#include <linux/list.h>
#include <linux/mempool.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/spinlock_types.h>
#include "ext4.h"
#include "ext4_crypto.h"
#include "xattr.h"
/**
* ext4_dir_crypt_complete() -
*/
static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res)
{
struct ext4_completion_result *ecr = req->data;
if (res == -EINPROGRESS)
return;
ecr->res = res;
complete(&ecr->completion);
}
bool ext4_valid_filenames_enc_mode(uint32_t mode)
{
return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS);
}
/**
* ext4_fname_encrypt() -
*
* This function encrypts the input filename, and returns the length of the
* ciphertext. Errors are returned as negative numbers. We trust the caller to
* allocate sufficient memory to oname string.
*/
static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx,
const struct qstr *iname,
struct ext4_str *oname)
{
u32 ciphertext_len;
struct ablkcipher_request *req = NULL;
DECLARE_EXT4_COMPLETION_RESULT(ecr);
struct crypto_ablkcipher *tfm = ctx->ctfm;
int res = 0;
char iv[EXT4_CRYPTO_BLOCK_SIZE];
struct scatterlist sg[1];
char *workbuf;
if (iname->len <= 0 || iname->len > ctx->lim)
return -EIO;
ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ?
EXT4_CRYPTO_BLOCK_SIZE : iname->len;
ciphertext_len = (ciphertext_len > ctx->lim)
? ctx->lim : ciphertext_len;
/* Allocate request */
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
printk_ratelimited(
KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
return -ENOMEM;
}
ablkcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
ext4_dir_crypt_complete, &ecr);
/* Map the workpage */
workbuf = kmap(ctx->workpage);
/* Copy the input */
memcpy(workbuf, iname->name, iname->len);
if (iname->len < ciphertext_len)
memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
/* Initialize IV */
memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
/* Create encryption request */
sg_init_table(sg, 1);
sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
res = crypto_ablkcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
BUG_ON(req->base.data != &ecr);
wait_for_completion(&ecr.completion);
res = ecr.res;
}
if (res >= 0) {
/* Copy the result to output */
memcpy(oname->name, workbuf, ciphertext_len);
res = ciphertext_len;
}
kunmap(ctx->workpage);
ablkcipher_request_free(req);
if (res < 0) {
printk_ratelimited(
KERN_ERR "%s: Error (error code %d)\n", __func__, res);
}
oname->len = ciphertext_len;
return res;
}
/*
* ext4_fname_decrypt()
* This function decrypts the input filename, and returns
* the length of the plaintext.
* Errors are returned as negative numbers.
* We trust the caller to allocate sufficient memory to oname string.
*/
static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx,
const struct ext4_str *iname,
struct ext4_str *oname)
{
struct ext4_str tmp_in[2], tmp_out[1];
struct ablkcipher_request *req = NULL;
DECLARE_EXT4_COMPLETION_RESULT(ecr);
struct scatterlist sg[1];
struct crypto_ablkcipher *tfm = ctx->ctfm;
int res = 0;
char iv[EXT4_CRYPTO_BLOCK_SIZE];
char *workbuf;
if (iname->len <= 0 || iname->len > ctx->lim)
return -EIO;
tmp_in[0].name = iname->name;
tmp_in[0].len = iname->len;
tmp_out[0].name = oname->name;
/* Allocate request */
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
printk_ratelimited(
KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
return -ENOMEM;
}
ablkcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
ext4_dir_crypt_complete, &ecr);
/* Map the workpage */
workbuf = kmap(ctx->workpage);
/* Copy the input */
memcpy(workbuf, iname->name, iname->len);
/* Initialize IV */
memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
/* Create encryption request */
sg_init_table(sg, 1);
sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
res = crypto_ablkcipher_decrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
BUG_ON(req->base.data != &ecr);
wait_for_completion(&ecr.completion);
res = ecr.res;
}
if (res >= 0) {
/* Copy the result to output */
memcpy(oname->name, workbuf, iname->len);
res = iname->len;
}
kunmap(ctx->workpage);
ablkcipher_request_free(req);
if (res < 0) {
printk_ratelimited(
KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n",
__func__, res);
return res;
}
oname->len = strnlen(oname->name, iname->len);
return oname->len;
}
static const char *lookup_table =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
/**
* ext4_fname_encode_digest() -
*
* Encodes the input digest using characters from the set [a-zA-Z0-9_+].
* The encoded string is roughly 4/3 times the size of the input string.
*/
static int digest_encode(const char *src, int len, char *dst)
{
int i = 0, bits = 0, ac = 0;
char *cp = dst;
while (i < len) {
ac += (((unsigned char) src[i]) << bits);
bits += 8;
do {
*cp++ = lookup_table[ac & 0x3f];
ac >>= 6;
bits -= 6;
} while (bits >= 6);
i++;
}
if (bits)
*cp++ = lookup_table[ac & 0x3f];
return cp - dst;
}
static int digest_decode(const char *src, int len, char *dst)
{
int i = 0, bits = 0, ac = 0;
const char *p;
char *cp = dst;
while (i < len) {
p = strchr(lookup_table, src[i]);
if (p == NULL || src[i] == 0)
return -2;
ac += (p - lookup_table) << bits;
bits += 6;
if (bits >= 8) {
*cp++ = ac & 0xff;
ac >>= 8;
bits -= 8;
}
i++;
}
if (ac)
return -1;
return cp - dst;
}
/**
* ext4_free_fname_crypto_ctx() -
*
* Frees up a crypto context.
*/
void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx)
{
if (ctx == NULL || IS_ERR(ctx))
return;
if (ctx->ctfm && !IS_ERR(ctx->ctfm))
crypto_free_ablkcipher(ctx->ctfm);
if (ctx->htfm && !IS_ERR(ctx->htfm))
crypto_free_hash(ctx->htfm);
if (ctx->workpage && !IS_ERR(ctx->workpage))
__free_page(ctx->workpage);
kfree(ctx);
}
/**
* ext4_put_fname_crypto_ctx() -
*
* Return: The crypto context onto free list. If the free list is above a
* threshold, completely frees up the context, and returns the memory.
*
* TODO: Currently we directly free the crypto context. Eventually we should
* add code it to return to free list. Such an approach will increase
* efficiency of directory lookup.
*/
void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx)
{
if (*ctx == NULL || IS_ERR(*ctx))
return;
ext4_free_fname_crypto_ctx(*ctx);
*ctx = NULL;
}
/**
* ext4_search_fname_crypto_ctx() -
*/
static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx(
const struct ext4_encryption_key *key)
{
return NULL;
}
/**
* ext4_alloc_fname_crypto_ctx() -
*/
struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx(
const struct ext4_encryption_key *key)
{
struct ext4_fname_crypto_ctx *ctx;
ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS);
if (ctx == NULL)
return ERR_PTR(-ENOMEM);
if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) {
/* This will automatically set key mode to invalid
* As enum for ENCRYPTION_MODE_INVALID is zero */
memset(&ctx->key, 0, sizeof(ctx->key));
} else {
memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key));
}
ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode)
? 0 : 1;
ctx->ctfm_key_is_ready = 0;
ctx->ctfm = NULL;
ctx->htfm = NULL;
ctx->workpage = NULL;
return ctx;
}
/**
* ext4_get_fname_crypto_ctx() -
*
* Allocates a free crypto context and initializes it to hold
* the crypto material for the inode.
*
* Return: NULL if not encrypted. Error value on error. Valid pointer otherwise.
*/
struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(
struct inode *inode, u32 max_ciphertext_len)
{
struct ext4_fname_crypto_ctx *ctx;
struct ext4_inode_info *ei = EXT4_I(inode);
int res;
/* Check if the crypto policy is set on the inode */
res = ext4_encrypted_inode(inode);
if (res == 0)
return NULL;
if (!ext4_has_encryption_key(inode))
ext4_generate_encryption_key(inode);
/* Get a crypto context based on the key.
* A new context is allocated if no context matches the requested key.
*/
ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key));
if (ctx == NULL)
ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key));
if (IS_ERR(ctx))
return ctx;
if (ctx->has_valid_key) {
if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) {
printk_once(KERN_WARNING
"ext4: unsupported key mode %d\n",
ctx->key.mode);
return ERR_PTR(-ENOKEY);
}
/* As a first cut, we will allocate new tfm in every call.
* later, we will keep the tfm around, in case the key gets
* re-used */
if (ctx->ctfm == NULL) {
ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))",
0, 0);
}
if (IS_ERR(ctx->ctfm)) {
res = PTR_ERR(ctx->ctfm);
printk(
KERN_DEBUG "%s: error (%d) allocating crypto tfm\n",
__func__, res);
ctx->ctfm = NULL;
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(res);
}
if (ctx->ctfm == NULL) {
printk(
KERN_DEBUG "%s: could not allocate crypto tfm\n",
__func__);
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(-ENOMEM);
}
if (ctx->workpage == NULL)
ctx->workpage = alloc_page(GFP_NOFS);
if (IS_ERR(ctx->workpage)) {
res = PTR_ERR(ctx->workpage);
printk(
KERN_DEBUG "%s: error (%d) allocating work page\n",
__func__, res);
ctx->workpage = NULL;
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(res);
}
if (ctx->workpage == NULL) {
printk(
KERN_DEBUG "%s: could not allocate work page\n",
__func__);
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(-ENOMEM);
}
ctx->lim = max_ciphertext_len;
crypto_ablkcipher_clear_flags(ctx->ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
/* If we are lucky, we will get a context that is already
* set up with the right key. Else, we will have to
* set the key */
if (!ctx->ctfm_key_is_ready) {
/* Since our crypto objectives for filename encryption
* are pretty weak,
* we directly use the inode master key */
res = crypto_ablkcipher_setkey(ctx->ctfm,
ctx->key.raw, ctx->key.size);
if (res) {
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(-EIO);
}
ctx->ctfm_key_is_ready = 1;
} else {
/* In the current implementation, key should never be
* marked "ready" for a context that has just been
* allocated. So we should never reach here */
BUG();
}
}
if (ctx->htfm == NULL)
ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->htfm)) {
res = PTR_ERR(ctx->htfm);
printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n",
__func__, res);
ctx->htfm = NULL;
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(res);
}
if (ctx->htfm == NULL) {
printk(KERN_DEBUG "%s: could not allocate hash tfm\n",
__func__);
ext4_put_fname_crypto_ctx(&ctx);
return ERR_PTR(-ENOMEM);
}
return ctx;
}
/**
* ext4_fname_crypto_round_up() -
*
* Return: The next multiple of block size
*/
u32 ext4_fname_crypto_round_up(u32 size, u32 blksize)
{
return ((size+blksize-1)/blksize)*blksize;
}
/**
* ext4_fname_crypto_namelen_on_disk() -
*/
int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx,
u32 namelen)
{
u32 ciphertext_len;
if (ctx == NULL)
return -EIO;
if (!(ctx->has_valid_key))
return -EACCES;
ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ?
EXT4_CRYPTO_BLOCK_SIZE : namelen;
ciphertext_len = (ciphertext_len > ctx->lim)
? ctx->lim : ciphertext_len;
return (int) ciphertext_len;
}
/**
* ext4_fname_crypto_alloc_obuff() -
*
* Allocates an output buffer that is sufficient for the crypto operation
* specified by the context and the direction.
*/
int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx,
u32 ilen, struct ext4_str *crypto_str)
{
unsigned int olen;
if (!ctx)
return -EIO;
olen = ext4_fname_crypto_round_up(ilen, EXT4_CRYPTO_BLOCK_SIZE);
crypto_str->len = olen;
if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2)
olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2;
/* Allocated buffer can hold one more character to null-terminate the
* string */
crypto_str->name = kmalloc(olen+1, GFP_NOFS);
if (!(crypto_str->name))
return -ENOMEM;
return 0;
}
/**
* ext4_fname_crypto_free_buffer() -
*
* Frees the buffer allocated for crypto operation.
*/
void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str)
{
if (!crypto_str)
return;
kfree(crypto_str->name);
crypto_str->name = NULL;
}
/**
* ext4_fname_disk_to_usr() - converts a filename from disk space to user space
*/
int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
struct dx_hash_info *hinfo,
const struct ext4_str *iname,
struct ext4_str *oname)
{
char buf[24];
int ret;
if (ctx == NULL)
return -EIO;
if (iname->len < 3) {
/*Check for . and .. */
if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') {
oname->name[0] = '.';
oname->name[iname->len-1] = '.';
oname->len = iname->len;
return oname->len;
}
}
if (ctx->has_valid_key)
return ext4_fname_decrypt(ctx, iname, oname);
if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) {
ret = digest_encode(iname->name, iname->len, oname->name);
oname->len = ret;
return ret;
}
if (hinfo) {
memcpy(buf, &hinfo->hash, 4);
memcpy(buf+4, &hinfo->minor_hash, 4);
} else
memset(buf, 0, 8);
memcpy(buf + 8, iname->name + iname->len - 16, 16);
oname->name[0] = '_';
ret = digest_encode(buf, 24, oname->name+1);
oname->len = ret + 1;
return ret + 1;
}
int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
struct dx_hash_info *hinfo,
const struct ext4_dir_entry_2 *de,
struct ext4_str *oname)
{
struct ext4_str iname = {.name = (unsigned char *) de->name,
.len = de->name_len };
return _ext4_fname_disk_to_usr(ctx, hinfo, &iname, oname);
}
/**
* ext4_fname_usr_to_disk() - converts a filename from user space to disk space
*/
int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx,
const struct qstr *iname,
struct ext4_str *oname)
{
int res;
if (ctx == NULL)
return -EIO;
if (iname->len < 3) {
/*Check for . and .. */
if (iname->name[0] == '.' &&
iname->name[iname->len-1] == '.') {
oname->name[0] = '.';
oname->name[iname->len-1] = '.';
oname->len = iname->len;
return oname->len;
}
}
if (ctx->has_valid_key) {
res = ext4_fname_encrypt(ctx, iname, oname);
return res;
}
/* Without a proper key, a user is not allowed to modify the filenames
* in a directory. Consequently, a user space name cannot be mapped to
* a disk-space name */
return -EACCES;
}
/*
* Calculate the htree hash from a filename from user space
*/
int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx,
const struct qstr *iname,
struct dx_hash_info *hinfo)
{
struct ext4_str tmp;
int ret = 0;
char buf[EXT4_FNAME_CRYPTO_DIGEST_SIZE+1];
if (!ctx ||
((iname->name[0] == '.') &&
((iname->len == 1) ||
((iname->name[1] == '.') && (iname->len == 2))))) {
ext4fs_dirhash(iname->name, iname->len, hinfo);
return 0;
}
if (!ctx->has_valid_key && iname->name[0] == '_') {
if (iname->len != 33)
return -ENOENT;
ret = digest_decode(iname->name+1, iname->len, buf);
if (ret != 24)
return -ENOENT;
memcpy(&hinfo->hash, buf, 4);
memcpy(&hinfo->minor_hash, buf + 4, 4);
return 0;
}
if (!ctx->has_valid_key && iname->name[0] != '_') {
if (iname->len > 43)
return -ENOENT;
ret = digest_decode(iname->name, iname->len, buf);
ext4fs_dirhash(buf, ret, hinfo);
return 0;
}
/* First encrypt the plaintext name */
ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp);
if (ret < 0)
return ret;
ret = ext4_fname_encrypt(ctx, iname, &tmp);
if (ret >= 0) {
ext4fs_dirhash(tmp.name, tmp.len, hinfo);
ret = 0;
}
ext4_fname_crypto_free_buffer(&tmp);
return ret;
}
int ext4_fname_match(struct ext4_fname_crypto_ctx *ctx, struct ext4_str *cstr,
int len, const char * const name,
struct ext4_dir_entry_2 *de)
{
int ret = -ENOENT;
int bigname = (*name == '_');
if (ctx->has_valid_key) {
if (cstr->name == NULL) {
struct qstr istr;
ret = ext4_fname_crypto_alloc_buffer(ctx, len, cstr);
if (ret < 0)
goto errout;
istr.name = name;
istr.len = len;
ret = ext4_fname_encrypt(ctx, &istr, cstr);
if (ret < 0)
goto errout;
}
} else {
if (cstr->name == NULL) {
cstr->name = kmalloc(32, GFP_KERNEL);
if (cstr->name == NULL)
return -ENOMEM;
if ((bigname && (len != 33)) ||
(!bigname && (len > 43)))
goto errout;
ret = digest_decode(name+bigname, len-bigname,
cstr->name);
if (ret < 0) {
ret = -ENOENT;
goto errout;
}
cstr->len = ret;
}
if (bigname) {
if (de->name_len < 16)
return 0;
ret = memcmp(de->name + de->name_len - 16,
cstr->name + 8, 16);
return (ret == 0) ? 1 : 0;
}
}
if (de->name_len != cstr->len)
return 0;
ret = memcmp(de->name, cstr->name, cstr->len);
return (ret == 0) ? 1 : 0;
errout:
kfree(cstr->name);
cstr->name = NULL;
return ret;
}