1499 строки
34 KiB
C
1499 строки
34 KiB
C
|
/*
|
||
|
* linux/fs/exec.c
|
||
|
*
|
||
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* #!-checking implemented by tytso.
|
||
|
*/
|
||
|
/*
|
||
|
* Demand-loading implemented 01.12.91 - no need to read anything but
|
||
|
* the header into memory. The inode of the executable is put into
|
||
|
* "current->executable", and page faults do the actual loading. Clean.
|
||
|
*
|
||
|
* Once more I can proudly say that linux stood up to being changed: it
|
||
|
* was less than 2 hours work to get demand-loading completely implemented.
|
||
|
*
|
||
|
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
|
||
|
* current->executable is only used by the procfs. This allows a dispatch
|
||
|
* table to check for several different types of binary formats. We keep
|
||
|
* trying until we recognize the file or we run out of supported binary
|
||
|
* formats.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/file.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/a.out.h>
|
||
|
#include <linux/stat.h>
|
||
|
#include <linux/fcntl.h>
|
||
|
#include <linux/smp_lock.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/key.h>
|
||
|
#include <linux/personality.h>
|
||
|
#include <linux/binfmts.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/utsname.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/namei.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/mount.h>
|
||
|
#include <linux/security.h>
|
||
|
#include <linux/syscalls.h>
|
||
|
#include <linux/rmap.h>
|
||
|
#include <linux/acct.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
|
||
|
#ifdef CONFIG_KMOD
|
||
|
#include <linux/kmod.h>
|
||
|
#endif
|
||
|
|
||
|
int core_uses_pid;
|
||
|
char core_pattern[65] = "core";
|
||
|
/* The maximal length of core_pattern is also specified in sysctl.c */
|
||
|
|
||
|
static struct linux_binfmt *formats;
|
||
|
static DEFINE_RWLOCK(binfmt_lock);
|
||
|
|
||
|
int register_binfmt(struct linux_binfmt * fmt)
|
||
|
{
|
||
|
struct linux_binfmt ** tmp = &formats;
|
||
|
|
||
|
if (!fmt)
|
||
|
return -EINVAL;
|
||
|
if (fmt->next)
|
||
|
return -EBUSY;
|
||
|
write_lock(&binfmt_lock);
|
||
|
while (*tmp) {
|
||
|
if (fmt == *tmp) {
|
||
|
write_unlock(&binfmt_lock);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
tmp = &(*tmp)->next;
|
||
|
}
|
||
|
fmt->next = formats;
|
||
|
formats = fmt;
|
||
|
write_unlock(&binfmt_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(register_binfmt);
|
||
|
|
||
|
int unregister_binfmt(struct linux_binfmt * fmt)
|
||
|
{
|
||
|
struct linux_binfmt ** tmp = &formats;
|
||
|
|
||
|
write_lock(&binfmt_lock);
|
||
|
while (*tmp) {
|
||
|
if (fmt == *tmp) {
|
||
|
*tmp = fmt->next;
|
||
|
write_unlock(&binfmt_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
tmp = &(*tmp)->next;
|
||
|
}
|
||
|
write_unlock(&binfmt_lock);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(unregister_binfmt);
|
||
|
|
||
|
static inline void put_binfmt(struct linux_binfmt * fmt)
|
||
|
{
|
||
|
module_put(fmt->module);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that a shared library must be both readable and executable due to
|
||
|
* security reasons.
|
||
|
*
|
||
|
* Also note that we take the address to load from from the file itself.
|
||
|
*/
|
||
|
asmlinkage long sys_uselib(const char __user * library)
|
||
|
{
|
||
|
struct file * file;
|
||
|
struct nameidata nd;
|
||
|
int error;
|
||
|
|
||
|
nd.intent.open.flags = FMODE_READ;
|
||
|
error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
|
||
|
if (error)
|
||
|
goto out;
|
||
|
|
||
|
error = -EINVAL;
|
||
|
if (!S_ISREG(nd.dentry->d_inode->i_mode))
|
||
|
goto exit;
|
||
|
|
||
|
error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
|
||
|
if (error)
|
||
|
goto exit;
|
||
|
|
||
|
file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
|
||
|
error = PTR_ERR(file);
|
||
|
if (IS_ERR(file))
|
||
|
goto out;
|
||
|
|
||
|
error = -ENOEXEC;
|
||
|
if(file->f_op) {
|
||
|
struct linux_binfmt * fmt;
|
||
|
|
||
|
read_lock(&binfmt_lock);
|
||
|
for (fmt = formats ; fmt ; fmt = fmt->next) {
|
||
|
if (!fmt->load_shlib)
|
||
|
continue;
|
||
|
if (!try_module_get(fmt->module))
|
||
|
continue;
|
||
|
read_unlock(&binfmt_lock);
|
||
|
error = fmt->load_shlib(file);
|
||
|
read_lock(&binfmt_lock);
|
||
|
put_binfmt(fmt);
|
||
|
if (error != -ENOEXEC)
|
||
|
break;
|
||
|
}
|
||
|
read_unlock(&binfmt_lock);
|
||
|
}
|
||
|
fput(file);
|
||
|
out:
|
||
|
return error;
|
||
|
exit:
|
||
|
path_release(&nd);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* count() counts the number of strings in array ARGV.
|
||
|
*/
|
||
|
static int count(char __user * __user * argv, int max)
|
||
|
{
|
||
|
int i = 0;
|
||
|
|
||
|
if (argv != NULL) {
|
||
|
for (;;) {
|
||
|
char __user * p;
|
||
|
|
||
|
if (get_user(p, argv))
|
||
|
return -EFAULT;
|
||
|
if (!p)
|
||
|
break;
|
||
|
argv++;
|
||
|
if(++i > max)
|
||
|
return -E2BIG;
|
||
|
cond_resched();
|
||
|
}
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* 'copy_strings()' copies argument/environment strings from user
|
||
|
* memory to free pages in kernel mem. These are in a format ready
|
||
|
* to be put directly into the top of new user memory.
|
||
|
*/
|
||
|
int copy_strings(int argc,char __user * __user * argv, struct linux_binprm *bprm)
|
||
|
{
|
||
|
struct page *kmapped_page = NULL;
|
||
|
char *kaddr = NULL;
|
||
|
int ret;
|
||
|
|
||
|
while (argc-- > 0) {
|
||
|
char __user *str;
|
||
|
int len;
|
||
|
unsigned long pos;
|
||
|
|
||
|
if (get_user(str, argv+argc) ||
|
||
|
!(len = strnlen_user(str, bprm->p))) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (bprm->p < len) {
|
||
|
ret = -E2BIG;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
bprm->p -= len;
|
||
|
/* XXX: add architecture specific overflow check here. */
|
||
|
pos = bprm->p;
|
||
|
|
||
|
while (len > 0) {
|
||
|
int i, new, err;
|
||
|
int offset, bytes_to_copy;
|
||
|
struct page *page;
|
||
|
|
||
|
offset = pos % PAGE_SIZE;
|
||
|
i = pos/PAGE_SIZE;
|
||
|
page = bprm->page[i];
|
||
|
new = 0;
|
||
|
if (!page) {
|
||
|
page = alloc_page(GFP_HIGHUSER);
|
||
|
bprm->page[i] = page;
|
||
|
if (!page) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
new = 1;
|
||
|
}
|
||
|
|
||
|
if (page != kmapped_page) {
|
||
|
if (kmapped_page)
|
||
|
kunmap(kmapped_page);
|
||
|
kmapped_page = page;
|
||
|
kaddr = kmap(kmapped_page);
|
||
|
}
|
||
|
if (new && offset)
|
||
|
memset(kaddr, 0, offset);
|
||
|
bytes_to_copy = PAGE_SIZE - offset;
|
||
|
if (bytes_to_copy > len) {
|
||
|
bytes_to_copy = len;
|
||
|
if (new)
|
||
|
memset(kaddr+offset+len, 0,
|
||
|
PAGE_SIZE-offset-len);
|
||
|
}
|
||
|
err = copy_from_user(kaddr+offset, str, bytes_to_copy);
|
||
|
if (err) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
pos += bytes_to_copy;
|
||
|
str += bytes_to_copy;
|
||
|
len -= bytes_to_copy;
|
||
|
}
|
||
|
}
|
||
|
ret = 0;
|
||
|
out:
|
||
|
if (kmapped_page)
|
||
|
kunmap(kmapped_page);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Like copy_strings, but get argv and its values from kernel memory.
|
||
|
*/
|
||
|
int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
|
||
|
{
|
||
|
int r;
|
||
|
mm_segment_t oldfs = get_fs();
|
||
|
set_fs(KERNEL_DS);
|
||
|
r = copy_strings(argc, (char __user * __user *)argv, bprm);
|
||
|
set_fs(oldfs);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(copy_strings_kernel);
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
/*
|
||
|
* This routine is used to map in a page into an address space: needed by
|
||
|
* execve() for the initial stack and environment pages.
|
||
|
*
|
||
|
* vma->vm_mm->mmap_sem is held for writing.
|
||
|
*/
|
||
|
void install_arg_page(struct vm_area_struct *vma,
|
||
|
struct page *page, unsigned long address)
|
||
|
{
|
||
|
struct mm_struct *mm = vma->vm_mm;
|
||
|
pgd_t * pgd;
|
||
|
pud_t * pud;
|
||
|
pmd_t * pmd;
|
||
|
pte_t * pte;
|
||
|
|
||
|
if (unlikely(anon_vma_prepare(vma)))
|
||
|
goto out_sig;
|
||
|
|
||
|
flush_dcache_page(page);
|
||
|
pgd = pgd_offset(mm, address);
|
||
|
|
||
|
spin_lock(&mm->page_table_lock);
|
||
|
pud = pud_alloc(mm, pgd, address);
|
||
|
if (!pud)
|
||
|
goto out;
|
||
|
pmd = pmd_alloc(mm, pud, address);
|
||
|
if (!pmd)
|
||
|
goto out;
|
||
|
pte = pte_alloc_map(mm, pmd, address);
|
||
|
if (!pte)
|
||
|
goto out;
|
||
|
if (!pte_none(*pte)) {
|
||
|
pte_unmap(pte);
|
||
|
goto out;
|
||
|
}
|
||
|
inc_mm_counter(mm, rss);
|
||
|
lru_cache_add_active(page);
|
||
|
set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
|
||
|
page, vma->vm_page_prot))));
|
||
|
page_add_anon_rmap(page, vma, address);
|
||
|
pte_unmap(pte);
|
||
|
spin_unlock(&mm->page_table_lock);
|
||
|
|
||
|
/* no need for flush_tlb */
|
||
|
return;
|
||
|
out:
|
||
|
spin_unlock(&mm->page_table_lock);
|
||
|
out_sig:
|
||
|
__free_page(page);
|
||
|
force_sig(SIGKILL, current);
|
||
|
}
|
||
|
|
||
|
#define EXTRA_STACK_VM_PAGES 20 /* random */
|
||
|
|
||
|
int setup_arg_pages(struct linux_binprm *bprm,
|
||
|
unsigned long stack_top,
|
||
|
int executable_stack)
|
||
|
{
|
||
|
unsigned long stack_base;
|
||
|
struct vm_area_struct *mpnt;
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
int i, ret;
|
||
|
long arg_size;
|
||
|
|
||
|
#ifdef CONFIG_STACK_GROWSUP
|
||
|
/* Move the argument and environment strings to the bottom of the
|
||
|
* stack space.
|
||
|
*/
|
||
|
int offset, j;
|
||
|
char *to, *from;
|
||
|
|
||
|
/* Start by shifting all the pages down */
|
||
|
i = 0;
|
||
|
for (j = 0; j < MAX_ARG_PAGES; j++) {
|
||
|
struct page *page = bprm->page[j];
|
||
|
if (!page)
|
||
|
continue;
|
||
|
bprm->page[i++] = page;
|
||
|
}
|
||
|
|
||
|
/* Now move them within their pages */
|
||
|
offset = bprm->p % PAGE_SIZE;
|
||
|
to = kmap(bprm->page[0]);
|
||
|
for (j = 1; j < i; j++) {
|
||
|
memmove(to, to + offset, PAGE_SIZE - offset);
|
||
|
from = kmap(bprm->page[j]);
|
||
|
memcpy(to + PAGE_SIZE - offset, from, offset);
|
||
|
kunmap(bprm->page[j - 1]);
|
||
|
to = from;
|
||
|
}
|
||
|
memmove(to, to + offset, PAGE_SIZE - offset);
|
||
|
kunmap(bprm->page[j - 1]);
|
||
|
|
||
|
/* Limit stack size to 1GB */
|
||
|
stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
|
||
|
if (stack_base > (1 << 30))
|
||
|
stack_base = 1 << 30;
|
||
|
stack_base = PAGE_ALIGN(stack_top - stack_base);
|
||
|
|
||
|
/* Adjust bprm->p to point to the end of the strings. */
|
||
|
bprm->p = stack_base + PAGE_SIZE * i - offset;
|
||
|
|
||
|
mm->arg_start = stack_base;
|
||
|
arg_size = i << PAGE_SHIFT;
|
||
|
|
||
|
/* zero pages that were copied above */
|
||
|
while (i < MAX_ARG_PAGES)
|
||
|
bprm->page[i++] = NULL;
|
||
|
#else
|
||
|
stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
|
||
|
stack_base = PAGE_ALIGN(stack_base);
|
||
|
bprm->p += stack_base;
|
||
|
mm->arg_start = bprm->p;
|
||
|
arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
|
||
|
#endif
|
||
|
|
||
|
arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
|
||
|
|
||
|
if (bprm->loader)
|
||
|
bprm->loader += stack_base;
|
||
|
bprm->exec += stack_base;
|
||
|
|
||
|
mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
|
||
|
if (!mpnt)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
|
||
|
kmem_cache_free(vm_area_cachep, mpnt);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
memset(mpnt, 0, sizeof(*mpnt));
|
||
|
|
||
|
down_write(&mm->mmap_sem);
|
||
|
{
|
||
|
mpnt->vm_mm = mm;
|
||
|
#ifdef CONFIG_STACK_GROWSUP
|
||
|
mpnt->vm_start = stack_base;
|
||
|
mpnt->vm_end = stack_base + arg_size;
|
||
|
#else
|
||
|
mpnt->vm_end = stack_top;
|
||
|
mpnt->vm_start = mpnt->vm_end - arg_size;
|
||
|
#endif
|
||
|
/* Adjust stack execute permissions; explicitly enable
|
||
|
* for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
|
||
|
* and leave alone (arch default) otherwise. */
|
||
|
if (unlikely(executable_stack == EXSTACK_ENABLE_X))
|
||
|
mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
|
||
|
else if (executable_stack == EXSTACK_DISABLE_X)
|
||
|
mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
|
||
|
else
|
||
|
mpnt->vm_flags = VM_STACK_FLAGS;
|
||
|
mpnt->vm_flags |= mm->def_flags;
|
||
|
mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
|
||
|
if ((ret = insert_vm_struct(mm, mpnt))) {
|
||
|
up_write(&mm->mmap_sem);
|
||
|
kmem_cache_free(vm_area_cachep, mpnt);
|
||
|
return ret;
|
||
|
}
|
||
|
mm->stack_vm = mm->total_vm = vma_pages(mpnt);
|
||
|
}
|
||
|
|
||
|
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
|
||
|
struct page *page = bprm->page[i];
|
||
|
if (page) {
|
||
|
bprm->page[i] = NULL;
|
||
|
install_arg_page(mpnt, page, stack_base);
|
||
|
}
|
||
|
stack_base += PAGE_SIZE;
|
||
|
}
|
||
|
up_write(&mm->mmap_sem);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(setup_arg_pages);
|
||
|
|
||
|
#define free_arg_pages(bprm) do { } while (0)
|
||
|
|
||
|
#else
|
||
|
|
||
|
static inline void free_arg_pages(struct linux_binprm *bprm)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < MAX_ARG_PAGES; i++) {
|
||
|
if (bprm->page[i])
|
||
|
__free_page(bprm->page[i]);
|
||
|
bprm->page[i] = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
struct file *open_exec(const char *name)
|
||
|
{
|
||
|
struct nameidata nd;
|
||
|
int err;
|
||
|
struct file *file;
|
||
|
|
||
|
nd.intent.open.flags = FMODE_READ;
|
||
|
err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
|
||
|
file = ERR_PTR(err);
|
||
|
|
||
|
if (!err) {
|
||
|
struct inode *inode = nd.dentry->d_inode;
|
||
|
file = ERR_PTR(-EACCES);
|
||
|
if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
|
||
|
S_ISREG(inode->i_mode)) {
|
||
|
int err = permission(inode, MAY_EXEC, &nd);
|
||
|
if (!err && !(inode->i_mode & 0111))
|
||
|
err = -EACCES;
|
||
|
file = ERR_PTR(err);
|
||
|
if (!err) {
|
||
|
file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
|
||
|
if (!IS_ERR(file)) {
|
||
|
err = deny_write_access(file);
|
||
|
if (err) {
|
||
|
fput(file);
|
||
|
file = ERR_PTR(err);
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
return file;
|
||
|
}
|
||
|
}
|
||
|
path_release(&nd);
|
||
|
}
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(open_exec);
|
||
|
|
||
|
int kernel_read(struct file *file, unsigned long offset,
|
||
|
char *addr, unsigned long count)
|
||
|
{
|
||
|
mm_segment_t old_fs;
|
||
|
loff_t pos = offset;
|
||
|
int result;
|
||
|
|
||
|
old_fs = get_fs();
|
||
|
set_fs(get_ds());
|
||
|
/* The cast to a user pointer is valid due to the set_fs() */
|
||
|
result = vfs_read(file, (void __user *)addr, count, &pos);
|
||
|
set_fs(old_fs);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(kernel_read);
|
||
|
|
||
|
static int exec_mmap(struct mm_struct *mm)
|
||
|
{
|
||
|
struct task_struct *tsk;
|
||
|
struct mm_struct * old_mm, *active_mm;
|
||
|
|
||
|
/* Notify parent that we're no longer interested in the old VM */
|
||
|
tsk = current;
|
||
|
old_mm = current->mm;
|
||
|
mm_release(tsk, old_mm);
|
||
|
|
||
|
if (old_mm) {
|
||
|
/*
|
||
|
* Make sure that if there is a core dump in progress
|
||
|
* for the old mm, we get out and die instead of going
|
||
|
* through with the exec. We must hold mmap_sem around
|
||
|
* checking core_waiters and changing tsk->mm. The
|
||
|
* core-inducing thread will increment core_waiters for
|
||
|
* each thread whose ->mm == old_mm.
|
||
|
*/
|
||
|
down_read(&old_mm->mmap_sem);
|
||
|
if (unlikely(old_mm->core_waiters)) {
|
||
|
up_read(&old_mm->mmap_sem);
|
||
|
return -EINTR;
|
||
|
}
|
||
|
}
|
||
|
task_lock(tsk);
|
||
|
active_mm = tsk->active_mm;
|
||
|
tsk->mm = mm;
|
||
|
tsk->active_mm = mm;
|
||
|
activate_mm(active_mm, mm);
|
||
|
task_unlock(tsk);
|
||
|
arch_pick_mmap_layout(mm);
|
||
|
if (old_mm) {
|
||
|
up_read(&old_mm->mmap_sem);
|
||
|
if (active_mm != old_mm) BUG();
|
||
|
mmput(old_mm);
|
||
|
return 0;
|
||
|
}
|
||
|
mmdrop(active_mm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function makes sure the current process has its own signal table,
|
||
|
* so that flush_signal_handlers can later reset the handlers without
|
||
|
* disturbing other processes. (Other processes might share the signal
|
||
|
* table via the CLONE_SIGHAND option to clone().)
|
||
|
*/
|
||
|
static inline int de_thread(struct task_struct *tsk)
|
||
|
{
|
||
|
struct signal_struct *sig = tsk->signal;
|
||
|
struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
|
||
|
spinlock_t *lock = &oldsighand->siglock;
|
||
|
int count;
|
||
|
|
||
|
/*
|
||
|
* If we don't share sighandlers, then we aren't sharing anything
|
||
|
* and we can just re-use it all.
|
||
|
*/
|
||
|
if (atomic_read(&oldsighand->count) <= 1) {
|
||
|
BUG_ON(atomic_read(&sig->count) != 1);
|
||
|
exit_itimers(sig);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
|
||
|
if (!newsighand)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (thread_group_empty(current))
|
||
|
goto no_thread_group;
|
||
|
|
||
|
/*
|
||
|
* Kill all other threads in the thread group.
|
||
|
* We must hold tasklist_lock to call zap_other_threads.
|
||
|
*/
|
||
|
read_lock(&tasklist_lock);
|
||
|
spin_lock_irq(lock);
|
||
|
if (sig->flags & SIGNAL_GROUP_EXIT) {
|
||
|
/*
|
||
|
* Another group action in progress, just
|
||
|
* return so that the signal is processed.
|
||
|
*/
|
||
|
spin_unlock_irq(lock);
|
||
|
read_unlock(&tasklist_lock);
|
||
|
kmem_cache_free(sighand_cachep, newsighand);
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
zap_other_threads(current);
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
/*
|
||
|
* Account for the thread group leader hanging around:
|
||
|
*/
|
||
|
count = 2;
|
||
|
if (thread_group_leader(current))
|
||
|
count = 1;
|
||
|
while (atomic_read(&sig->count) > count) {
|
||
|
sig->group_exit_task = current;
|
||
|
sig->notify_count = count;
|
||
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
||
|
spin_unlock_irq(lock);
|
||
|
schedule();
|
||
|
spin_lock_irq(lock);
|
||
|
}
|
||
|
sig->group_exit_task = NULL;
|
||
|
sig->notify_count = 0;
|
||
|
spin_unlock_irq(lock);
|
||
|
|
||
|
/*
|
||
|
* At this point all other threads have exited, all we have to
|
||
|
* do is to wait for the thread group leader to become inactive,
|
||
|
* and to assume its PID:
|
||
|
*/
|
||
|
if (!thread_group_leader(current)) {
|
||
|
struct task_struct *leader = current->group_leader, *parent;
|
||
|
struct dentry *proc_dentry1, *proc_dentry2;
|
||
|
unsigned long exit_state, ptrace;
|
||
|
|
||
|
/*
|
||
|
* Wait for the thread group leader to be a zombie.
|
||
|
* It should already be zombie at this point, most
|
||
|
* of the time.
|
||
|
*/
|
||
|
while (leader->exit_state != EXIT_ZOMBIE)
|
||
|
yield();
|
||
|
|
||
|
spin_lock(&leader->proc_lock);
|
||
|
spin_lock(¤t->proc_lock);
|
||
|
proc_dentry1 = proc_pid_unhash(current);
|
||
|
proc_dentry2 = proc_pid_unhash(leader);
|
||
|
write_lock_irq(&tasklist_lock);
|
||
|
|
||
|
if (leader->tgid != current->tgid)
|
||
|
BUG();
|
||
|
if (current->pid == current->tgid)
|
||
|
BUG();
|
||
|
/*
|
||
|
* An exec() starts a new thread group with the
|
||
|
* TGID of the previous thread group. Rehash the
|
||
|
* two threads with a switched PID, and release
|
||
|
* the former thread group leader:
|
||
|
*/
|
||
|
ptrace = leader->ptrace;
|
||
|
parent = leader->parent;
|
||
|
if (unlikely(ptrace) && unlikely(parent == current)) {
|
||
|
/*
|
||
|
* Joker was ptracing his own group leader,
|
||
|
* and now he wants to be his own parent!
|
||
|
* We can't have that.
|
||
|
*/
|
||
|
ptrace = 0;
|
||
|
}
|
||
|
|
||
|
ptrace_unlink(current);
|
||
|
ptrace_unlink(leader);
|
||
|
remove_parent(current);
|
||
|
remove_parent(leader);
|
||
|
|
||
|
switch_exec_pids(leader, current);
|
||
|
|
||
|
current->parent = current->real_parent = leader->real_parent;
|
||
|
leader->parent = leader->real_parent = child_reaper;
|
||
|
current->group_leader = current;
|
||
|
leader->group_leader = leader;
|
||
|
|
||
|
add_parent(current, current->parent);
|
||
|
add_parent(leader, leader->parent);
|
||
|
if (ptrace) {
|
||
|
current->ptrace = ptrace;
|
||
|
__ptrace_link(current, parent);
|
||
|
}
|
||
|
|
||
|
list_del(¤t->tasks);
|
||
|
list_add_tail(¤t->tasks, &init_task.tasks);
|
||
|
current->exit_signal = SIGCHLD;
|
||
|
exit_state = leader->exit_state;
|
||
|
|
||
|
write_unlock_irq(&tasklist_lock);
|
||
|
spin_unlock(&leader->proc_lock);
|
||
|
spin_unlock(¤t->proc_lock);
|
||
|
proc_pid_flush(proc_dentry1);
|
||
|
proc_pid_flush(proc_dentry2);
|
||
|
|
||
|
if (exit_state != EXIT_ZOMBIE)
|
||
|
BUG();
|
||
|
release_task(leader);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now there are really no other threads at all,
|
||
|
* so it's safe to stop telling them to kill themselves.
|
||
|
*/
|
||
|
sig->flags = 0;
|
||
|
|
||
|
no_thread_group:
|
||
|
BUG_ON(atomic_read(&sig->count) != 1);
|
||
|
exit_itimers(sig);
|
||
|
|
||
|
if (atomic_read(&oldsighand->count) == 1) {
|
||
|
/*
|
||
|
* Now that we nuked the rest of the thread group,
|
||
|
* it turns out we are not sharing sighand any more either.
|
||
|
* So we can just keep it.
|
||
|
*/
|
||
|
kmem_cache_free(sighand_cachep, newsighand);
|
||
|
} else {
|
||
|
/*
|
||
|
* Move our state over to newsighand and switch it in.
|
||
|
*/
|
||
|
spin_lock_init(&newsighand->siglock);
|
||
|
atomic_set(&newsighand->count, 1);
|
||
|
memcpy(newsighand->action, oldsighand->action,
|
||
|
sizeof(newsighand->action));
|
||
|
|
||
|
write_lock_irq(&tasklist_lock);
|
||
|
spin_lock(&oldsighand->siglock);
|
||
|
spin_lock(&newsighand->siglock);
|
||
|
|
||
|
current->sighand = newsighand;
|
||
|
recalc_sigpending();
|
||
|
|
||
|
spin_unlock(&newsighand->siglock);
|
||
|
spin_unlock(&oldsighand->siglock);
|
||
|
write_unlock_irq(&tasklist_lock);
|
||
|
|
||
|
if (atomic_dec_and_test(&oldsighand->count))
|
||
|
kmem_cache_free(sighand_cachep, oldsighand);
|
||
|
}
|
||
|
|
||
|
if (!thread_group_empty(current))
|
||
|
BUG();
|
||
|
if (!thread_group_leader(current))
|
||
|
BUG();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These functions flushes out all traces of the currently running executable
|
||
|
* so that a new one can be started
|
||
|
*/
|
||
|
|
||
|
static inline void flush_old_files(struct files_struct * files)
|
||
|
{
|
||
|
long j = -1;
|
||
|
|
||
|
spin_lock(&files->file_lock);
|
||
|
for (;;) {
|
||
|
unsigned long set, i;
|
||
|
|
||
|
j++;
|
||
|
i = j * __NFDBITS;
|
||
|
if (i >= files->max_fds || i >= files->max_fdset)
|
||
|
break;
|
||
|
set = files->close_on_exec->fds_bits[j];
|
||
|
if (!set)
|
||
|
continue;
|
||
|
files->close_on_exec->fds_bits[j] = 0;
|
||
|
spin_unlock(&files->file_lock);
|
||
|
for ( ; set ; i++,set >>= 1) {
|
||
|
if (set & 1) {
|
||
|
sys_close(i);
|
||
|
}
|
||
|
}
|
||
|
spin_lock(&files->file_lock);
|
||
|
|
||
|
}
|
||
|
spin_unlock(&files->file_lock);
|
||
|
}
|
||
|
|
||
|
void get_task_comm(char *buf, struct task_struct *tsk)
|
||
|
{
|
||
|
/* buf must be at least sizeof(tsk->comm) in size */
|
||
|
task_lock(tsk);
|
||
|
strncpy(buf, tsk->comm, sizeof(tsk->comm));
|
||
|
task_unlock(tsk);
|
||
|
}
|
||
|
|
||
|
void set_task_comm(struct task_struct *tsk, char *buf)
|
||
|
{
|
||
|
task_lock(tsk);
|
||
|
strlcpy(tsk->comm, buf, sizeof(tsk->comm));
|
||
|
task_unlock(tsk);
|
||
|
}
|
||
|
|
||
|
int flush_old_exec(struct linux_binprm * bprm)
|
||
|
{
|
||
|
char * name;
|
||
|
int i, ch, retval;
|
||
|
struct files_struct *files;
|
||
|
char tcomm[sizeof(current->comm)];
|
||
|
|
||
|
/*
|
||
|
* Make sure we have a private signal table and that
|
||
|
* we are unassociated from the previous thread group.
|
||
|
*/
|
||
|
retval = de_thread(current);
|
||
|
if (retval)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Make sure we have private file handles. Ask the
|
||
|
* fork helper to do the work for us and the exit
|
||
|
* helper to do the cleanup of the old one.
|
||
|
*/
|
||
|
files = current->files; /* refcounted so safe to hold */
|
||
|
retval = unshare_files();
|
||
|
if (retval)
|
||
|
goto out;
|
||
|
/*
|
||
|
* Release all of the old mmap stuff
|
||
|
*/
|
||
|
retval = exec_mmap(bprm->mm);
|
||
|
if (retval)
|
||
|
goto mmap_failed;
|
||
|
|
||
|
bprm->mm = NULL; /* We're using it now */
|
||
|
|
||
|
/* This is the point of no return */
|
||
|
steal_locks(files);
|
||
|
put_files_struct(files);
|
||
|
|
||
|
current->sas_ss_sp = current->sas_ss_size = 0;
|
||
|
|
||
|
if (current->euid == current->uid && current->egid == current->gid)
|
||
|
current->mm->dumpable = 1;
|
||
|
name = bprm->filename;
|
||
|
for (i=0; (ch = *(name++)) != '\0';) {
|
||
|
if (ch == '/')
|
||
|
i = 0;
|
||
|
else
|
||
|
if (i < (sizeof(tcomm) - 1))
|
||
|
tcomm[i++] = ch;
|
||
|
}
|
||
|
tcomm[i] = '\0';
|
||
|
set_task_comm(current, tcomm);
|
||
|
|
||
|
current->flags &= ~PF_RANDOMIZE;
|
||
|
flush_thread();
|
||
|
|
||
|
if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
|
||
|
permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
|
||
|
(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
|
||
|
suid_keys(current);
|
||
|
current->mm->dumpable = 0;
|
||
|
}
|
||
|
|
||
|
/* An exec changes our domain. We are no longer part of the thread
|
||
|
group */
|
||
|
|
||
|
current->self_exec_id++;
|
||
|
|
||
|
flush_signal_handlers(current, 0);
|
||
|
flush_old_files(current->files);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
mmap_failed:
|
||
|
put_files_struct(current->files);
|
||
|
current->files = files;
|
||
|
out:
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(flush_old_exec);
|
||
|
|
||
|
/*
|
||
|
* Fill the binprm structure from the inode.
|
||
|
* Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
|
||
|
*/
|
||
|
int prepare_binprm(struct linux_binprm *bprm)
|
||
|
{
|
||
|
int mode;
|
||
|
struct inode * inode = bprm->file->f_dentry->d_inode;
|
||
|
int retval;
|
||
|
|
||
|
mode = inode->i_mode;
|
||
|
/*
|
||
|
* Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
|
||
|
* generic_permission lets a non-executable through
|
||
|
*/
|
||
|
if (!(mode & 0111)) /* with at least _one_ execute bit set */
|
||
|
return -EACCES;
|
||
|
if (bprm->file->f_op == NULL)
|
||
|
return -EACCES;
|
||
|
|
||
|
bprm->e_uid = current->euid;
|
||
|
bprm->e_gid = current->egid;
|
||
|
|
||
|
if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
|
||
|
/* Set-uid? */
|
||
|
if (mode & S_ISUID) {
|
||
|
current->personality &= ~PER_CLEAR_ON_SETID;
|
||
|
bprm->e_uid = inode->i_uid;
|
||
|
}
|
||
|
|
||
|
/* Set-gid? */
|
||
|
/*
|
||
|
* If setgid is set but no group execute bit then this
|
||
|
* is a candidate for mandatory locking, not a setgid
|
||
|
* executable.
|
||
|
*/
|
||
|
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
|
||
|
current->personality &= ~PER_CLEAR_ON_SETID;
|
||
|
bprm->e_gid = inode->i_gid;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* fill in binprm security blob */
|
||
|
retval = security_bprm_set(bprm);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
memset(bprm->buf,0,BINPRM_BUF_SIZE);
|
||
|
return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(prepare_binprm);
|
||
|
|
||
|
static inline int unsafe_exec(struct task_struct *p)
|
||
|
{
|
||
|
int unsafe = 0;
|
||
|
if (p->ptrace & PT_PTRACED) {
|
||
|
if (p->ptrace & PT_PTRACE_CAP)
|
||
|
unsafe |= LSM_UNSAFE_PTRACE_CAP;
|
||
|
else
|
||
|
unsafe |= LSM_UNSAFE_PTRACE;
|
||
|
}
|
||
|
if (atomic_read(&p->fs->count) > 1 ||
|
||
|
atomic_read(&p->files->count) > 1 ||
|
||
|
atomic_read(&p->sighand->count) > 1)
|
||
|
unsafe |= LSM_UNSAFE_SHARE;
|
||
|
|
||
|
return unsafe;
|
||
|
}
|
||
|
|
||
|
void compute_creds(struct linux_binprm *bprm)
|
||
|
{
|
||
|
int unsafe;
|
||
|
|
||
|
if (bprm->e_uid != current->uid)
|
||
|
suid_keys(current);
|
||
|
exec_keys(current);
|
||
|
|
||
|
task_lock(current);
|
||
|
unsafe = unsafe_exec(current);
|
||
|
security_bprm_apply_creds(bprm, unsafe);
|
||
|
task_unlock(current);
|
||
|
security_bprm_post_apply_creds(bprm);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(compute_creds);
|
||
|
|
||
|
void remove_arg_zero(struct linux_binprm *bprm)
|
||
|
{
|
||
|
if (bprm->argc) {
|
||
|
unsigned long offset;
|
||
|
char * kaddr;
|
||
|
struct page *page;
|
||
|
|
||
|
offset = bprm->p % PAGE_SIZE;
|
||
|
goto inside;
|
||
|
|
||
|
while (bprm->p++, *(kaddr+offset++)) {
|
||
|
if (offset != PAGE_SIZE)
|
||
|
continue;
|
||
|
offset = 0;
|
||
|
kunmap_atomic(kaddr, KM_USER0);
|
||
|
inside:
|
||
|
page = bprm->page[bprm->p/PAGE_SIZE];
|
||
|
kaddr = kmap_atomic(page, KM_USER0);
|
||
|
}
|
||
|
kunmap_atomic(kaddr, KM_USER0);
|
||
|
bprm->argc--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(remove_arg_zero);
|
||
|
|
||
|
/*
|
||
|
* cycle the list of binary formats handler, until one recognizes the image
|
||
|
*/
|
||
|
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
|
||
|
{
|
||
|
int try,retval;
|
||
|
struct linux_binfmt *fmt;
|
||
|
#ifdef __alpha__
|
||
|
/* handle /sbin/loader.. */
|
||
|
{
|
||
|
struct exec * eh = (struct exec *) bprm->buf;
|
||
|
|
||
|
if (!bprm->loader && eh->fh.f_magic == 0x183 &&
|
||
|
(eh->fh.f_flags & 0x3000) == 0x3000)
|
||
|
{
|
||
|
struct file * file;
|
||
|
unsigned long loader;
|
||
|
|
||
|
allow_write_access(bprm->file);
|
||
|
fput(bprm->file);
|
||
|
bprm->file = NULL;
|
||
|
|
||
|
loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
|
||
|
|
||
|
file = open_exec("/sbin/loader");
|
||
|
retval = PTR_ERR(file);
|
||
|
if (IS_ERR(file))
|
||
|
return retval;
|
||
|
|
||
|
/* Remember if the application is TASO. */
|
||
|
bprm->sh_bang = eh->ah.entry < 0x100000000UL;
|
||
|
|
||
|
bprm->file = file;
|
||
|
bprm->loader = loader;
|
||
|
retval = prepare_binprm(bprm);
|
||
|
if (retval<0)
|
||
|
return retval;
|
||
|
/* should call search_binary_handler recursively here,
|
||
|
but it does not matter */
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
retval = security_bprm_check(bprm);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
|
||
|
/* kernel module loader fixup */
|
||
|
/* so we don't try to load run modprobe in kernel space. */
|
||
|
set_fs(USER_DS);
|
||
|
retval = -ENOENT;
|
||
|
for (try=0; try<2; try++) {
|
||
|
read_lock(&binfmt_lock);
|
||
|
for (fmt = formats ; fmt ; fmt = fmt->next) {
|
||
|
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
|
||
|
if (!fn)
|
||
|
continue;
|
||
|
if (!try_module_get(fmt->module))
|
||
|
continue;
|
||
|
read_unlock(&binfmt_lock);
|
||
|
retval = fn(bprm, regs);
|
||
|
if (retval >= 0) {
|
||
|
put_binfmt(fmt);
|
||
|
allow_write_access(bprm->file);
|
||
|
if (bprm->file)
|
||
|
fput(bprm->file);
|
||
|
bprm->file = NULL;
|
||
|
current->did_exec = 1;
|
||
|
return retval;
|
||
|
}
|
||
|
read_lock(&binfmt_lock);
|
||
|
put_binfmt(fmt);
|
||
|
if (retval != -ENOEXEC || bprm->mm == NULL)
|
||
|
break;
|
||
|
if (!bprm->file) {
|
||
|
read_unlock(&binfmt_lock);
|
||
|
return retval;
|
||
|
}
|
||
|
}
|
||
|
read_unlock(&binfmt_lock);
|
||
|
if (retval != -ENOEXEC || bprm->mm == NULL) {
|
||
|
break;
|
||
|
#ifdef CONFIG_KMOD
|
||
|
}else{
|
||
|
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
|
||
|
if (printable(bprm->buf[0]) &&
|
||
|
printable(bprm->buf[1]) &&
|
||
|
printable(bprm->buf[2]) &&
|
||
|
printable(bprm->buf[3]))
|
||
|
break; /* -ENOEXEC */
|
||
|
request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(search_binary_handler);
|
||
|
|
||
|
/*
|
||
|
* sys_execve() executes a new program.
|
||
|
*/
|
||
|
int do_execve(char * filename,
|
||
|
char __user *__user *argv,
|
||
|
char __user *__user *envp,
|
||
|
struct pt_regs * regs)
|
||
|
{
|
||
|
struct linux_binprm *bprm;
|
||
|
struct file *file;
|
||
|
int retval;
|
||
|
int i;
|
||
|
|
||
|
retval = -ENOMEM;
|
||
|
bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
|
||
|
if (!bprm)
|
||
|
goto out_ret;
|
||
|
memset(bprm, 0, sizeof(*bprm));
|
||
|
|
||
|
file = open_exec(filename);
|
||
|
retval = PTR_ERR(file);
|
||
|
if (IS_ERR(file))
|
||
|
goto out_kfree;
|
||
|
|
||
|
sched_exec();
|
||
|
|
||
|
bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
|
||
|
|
||
|
bprm->file = file;
|
||
|
bprm->filename = filename;
|
||
|
bprm->interp = filename;
|
||
|
bprm->mm = mm_alloc();
|
||
|
retval = -ENOMEM;
|
||
|
if (!bprm->mm)
|
||
|
goto out_file;
|
||
|
|
||
|
retval = init_new_context(current, bprm->mm);
|
||
|
if (retval < 0)
|
||
|
goto out_mm;
|
||
|
|
||
|
bprm->argc = count(argv, bprm->p / sizeof(void *));
|
||
|
if ((retval = bprm->argc) < 0)
|
||
|
goto out_mm;
|
||
|
|
||
|
bprm->envc = count(envp, bprm->p / sizeof(void *));
|
||
|
if ((retval = bprm->envc) < 0)
|
||
|
goto out_mm;
|
||
|
|
||
|
retval = security_bprm_alloc(bprm);
|
||
|
if (retval)
|
||
|
goto out;
|
||
|
|
||
|
retval = prepare_binprm(bprm);
|
||
|
if (retval < 0)
|
||
|
goto out;
|
||
|
|
||
|
retval = copy_strings_kernel(1, &bprm->filename, bprm);
|
||
|
if (retval < 0)
|
||
|
goto out;
|
||
|
|
||
|
bprm->exec = bprm->p;
|
||
|
retval = copy_strings(bprm->envc, envp, bprm);
|
||
|
if (retval < 0)
|
||
|
goto out;
|
||
|
|
||
|
retval = copy_strings(bprm->argc, argv, bprm);
|
||
|
if (retval < 0)
|
||
|
goto out;
|
||
|
|
||
|
retval = search_binary_handler(bprm,regs);
|
||
|
if (retval >= 0) {
|
||
|
free_arg_pages(bprm);
|
||
|
|
||
|
/* execve success */
|
||
|
security_bprm_free(bprm);
|
||
|
acct_update_integrals(current);
|
||
|
update_mem_hiwater(current);
|
||
|
kfree(bprm);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
/* Something went wrong, return the inode and free the argument pages*/
|
||
|
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
|
||
|
struct page * page = bprm->page[i];
|
||
|
if (page)
|
||
|
__free_page(page);
|
||
|
}
|
||
|
|
||
|
if (bprm->security)
|
||
|
security_bprm_free(bprm);
|
||
|
|
||
|
out_mm:
|
||
|
if (bprm->mm)
|
||
|
mmdrop(bprm->mm);
|
||
|
|
||
|
out_file:
|
||
|
if (bprm->file) {
|
||
|
allow_write_access(bprm->file);
|
||
|
fput(bprm->file);
|
||
|
}
|
||
|
|
||
|
out_kfree:
|
||
|
kfree(bprm);
|
||
|
|
||
|
out_ret:
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
int set_binfmt(struct linux_binfmt *new)
|
||
|
{
|
||
|
struct linux_binfmt *old = current->binfmt;
|
||
|
|
||
|
if (new) {
|
||
|
if (!try_module_get(new->module))
|
||
|
return -1;
|
||
|
}
|
||
|
current->binfmt = new;
|
||
|
if (old)
|
||
|
module_put(old->module);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(set_binfmt);
|
||
|
|
||
|
#define CORENAME_MAX_SIZE 64
|
||
|
|
||
|
/* format_corename will inspect the pattern parameter, and output a
|
||
|
* name into corename, which must have space for at least
|
||
|
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
|
||
|
*/
|
||
|
static void format_corename(char *corename, const char *pattern, long signr)
|
||
|
{
|
||
|
const char *pat_ptr = pattern;
|
||
|
char *out_ptr = corename;
|
||
|
char *const out_end = corename + CORENAME_MAX_SIZE;
|
||
|
int rc;
|
||
|
int pid_in_pattern = 0;
|
||
|
|
||
|
/* Repeat as long as we have more pattern to process and more output
|
||
|
space */
|
||
|
while (*pat_ptr) {
|
||
|
if (*pat_ptr != '%') {
|
||
|
if (out_ptr == out_end)
|
||
|
goto out;
|
||
|
*out_ptr++ = *pat_ptr++;
|
||
|
} else {
|
||
|
switch (*++pat_ptr) {
|
||
|
case 0:
|
||
|
goto out;
|
||
|
/* Double percent, output one percent */
|
||
|
case '%':
|
||
|
if (out_ptr == out_end)
|
||
|
goto out;
|
||
|
*out_ptr++ = '%';
|
||
|
break;
|
||
|
/* pid */
|
||
|
case 'p':
|
||
|
pid_in_pattern = 1;
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%d", current->tgid);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
/* uid */
|
||
|
case 'u':
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%d", current->uid);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
/* gid */
|
||
|
case 'g':
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%d", current->gid);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
/* signal that caused the coredump */
|
||
|
case 's':
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%ld", signr);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
/* UNIX time of coredump */
|
||
|
case 't': {
|
||
|
struct timeval tv;
|
||
|
do_gettimeofday(&tv);
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%lu", tv.tv_sec);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
}
|
||
|
/* hostname */
|
||
|
case 'h':
|
||
|
down_read(&uts_sem);
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%s", system_utsname.nodename);
|
||
|
up_read(&uts_sem);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
/* executable */
|
||
|
case 'e':
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
"%s", current->comm);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
++pat_ptr;
|
||
|
}
|
||
|
}
|
||
|
/* Backward compatibility with core_uses_pid:
|
||
|
*
|
||
|
* If core_pattern does not include a %p (as is the default)
|
||
|
* and core_uses_pid is set, then .%pid will be appended to
|
||
|
* the filename */
|
||
|
if (!pid_in_pattern
|
||
|
&& (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
|
||
|
rc = snprintf(out_ptr, out_end - out_ptr,
|
||
|
".%d", current->tgid);
|
||
|
if (rc > out_end - out_ptr)
|
||
|
goto out;
|
||
|
out_ptr += rc;
|
||
|
}
|
||
|
out:
|
||
|
*out_ptr = 0;
|
||
|
}
|
||
|
|
||
|
static void zap_threads (struct mm_struct *mm)
|
||
|
{
|
||
|
struct task_struct *g, *p;
|
||
|
struct task_struct *tsk = current;
|
||
|
struct completion *vfork_done = tsk->vfork_done;
|
||
|
int traced = 0;
|
||
|
|
||
|
/*
|
||
|
* Make sure nobody is waiting for us to release the VM,
|
||
|
* otherwise we can deadlock when we wait on each other
|
||
|
*/
|
||
|
if (vfork_done) {
|
||
|
tsk->vfork_done = NULL;
|
||
|
complete(vfork_done);
|
||
|
}
|
||
|
|
||
|
read_lock(&tasklist_lock);
|
||
|
do_each_thread(g,p)
|
||
|
if (mm == p->mm && p != tsk) {
|
||
|
force_sig_specific(SIGKILL, p);
|
||
|
mm->core_waiters++;
|
||
|
if (unlikely(p->ptrace) &&
|
||
|
unlikely(p->parent->mm == mm))
|
||
|
traced = 1;
|
||
|
}
|
||
|
while_each_thread(g,p);
|
||
|
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
if (unlikely(traced)) {
|
||
|
/*
|
||
|
* We are zapping a thread and the thread it ptraces.
|
||
|
* If the tracee went into a ptrace stop for exit tracing,
|
||
|
* we could deadlock since the tracer is waiting for this
|
||
|
* coredump to finish. Detach them so they can both die.
|
||
|
*/
|
||
|
write_lock_irq(&tasklist_lock);
|
||
|
do_each_thread(g,p) {
|
||
|
if (mm == p->mm && p != tsk &&
|
||
|
p->ptrace && p->parent->mm == mm) {
|
||
|
__ptrace_unlink(p);
|
||
|
}
|
||
|
} while_each_thread(g,p);
|
||
|
write_unlock_irq(&tasklist_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void coredump_wait(struct mm_struct *mm)
|
||
|
{
|
||
|
DECLARE_COMPLETION(startup_done);
|
||
|
|
||
|
mm->core_waiters++; /* let other threads block */
|
||
|
mm->core_startup_done = &startup_done;
|
||
|
|
||
|
/* give other threads a chance to run: */
|
||
|
yield();
|
||
|
|
||
|
zap_threads(mm);
|
||
|
if (--mm->core_waiters) {
|
||
|
up_write(&mm->mmap_sem);
|
||
|
wait_for_completion(&startup_done);
|
||
|
} else
|
||
|
up_write(&mm->mmap_sem);
|
||
|
BUG_ON(mm->core_waiters);
|
||
|
}
|
||
|
|
||
|
int do_coredump(long signr, int exit_code, struct pt_regs * regs)
|
||
|
{
|
||
|
char corename[CORENAME_MAX_SIZE + 1];
|
||
|
struct mm_struct *mm = current->mm;
|
||
|
struct linux_binfmt * binfmt;
|
||
|
struct inode * inode;
|
||
|
struct file * file;
|
||
|
int retval = 0;
|
||
|
|
||
|
binfmt = current->binfmt;
|
||
|
if (!binfmt || !binfmt->core_dump)
|
||
|
goto fail;
|
||
|
down_write(&mm->mmap_sem);
|
||
|
if (!mm->dumpable) {
|
||
|
up_write(&mm->mmap_sem);
|
||
|
goto fail;
|
||
|
}
|
||
|
mm->dumpable = 0;
|
||
|
init_completion(&mm->core_done);
|
||
|
spin_lock_irq(¤t->sighand->siglock);
|
||
|
current->signal->flags = SIGNAL_GROUP_EXIT;
|
||
|
current->signal->group_exit_code = exit_code;
|
||
|
spin_unlock_irq(¤t->sighand->siglock);
|
||
|
coredump_wait(mm);
|
||
|
|
||
|
/*
|
||
|
* Clear any false indication of pending signals that might
|
||
|
* be seen by the filesystem code called to write the core file.
|
||
|
*/
|
||
|
current->signal->group_stop_count = 0;
|
||
|
clear_thread_flag(TIF_SIGPENDING);
|
||
|
|
||
|
if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
|
||
|
goto fail_unlock;
|
||
|
|
||
|
/*
|
||
|
* lock_kernel() because format_corename() is controlled by sysctl, which
|
||
|
* uses lock_kernel()
|
||
|
*/
|
||
|
lock_kernel();
|
||
|
format_corename(corename, core_pattern, signr);
|
||
|
unlock_kernel();
|
||
|
file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE, 0600);
|
||
|
if (IS_ERR(file))
|
||
|
goto fail_unlock;
|
||
|
inode = file->f_dentry->d_inode;
|
||
|
if (inode->i_nlink > 1)
|
||
|
goto close_fail; /* multiple links - don't dump */
|
||
|
if (d_unhashed(file->f_dentry))
|
||
|
goto close_fail;
|
||
|
|
||
|
if (!S_ISREG(inode->i_mode))
|
||
|
goto close_fail;
|
||
|
if (!file->f_op)
|
||
|
goto close_fail;
|
||
|
if (!file->f_op->write)
|
||
|
goto close_fail;
|
||
|
if (do_truncate(file->f_dentry, 0) != 0)
|
||
|
goto close_fail;
|
||
|
|
||
|
retval = binfmt->core_dump(signr, regs, file);
|
||
|
|
||
|
if (retval)
|
||
|
current->signal->group_exit_code |= 0x80;
|
||
|
close_fail:
|
||
|
filp_close(file, NULL);
|
||
|
fail_unlock:
|
||
|
complete_all(&mm->core_done);
|
||
|
fail:
|
||
|
return retval;
|
||
|
}
|