WSL2-Linux-Kernel/sound/pci/oxygen/xonar_dg.c

278 строки
7.9 KiB
C
Исходник Обычный вид История

/*
* card driver for the Xonar DG/DGX
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) Roman Volkov <v1ron@mail.ru>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Xonar DG/DGX
* ------------
*
* CS4245 and CS4361 both will mute all outputs if any clock ratio
* is invalid.
*
* CMI8788:
*
* SPI 0 -> CS4245
*
* Playback:
* I²S 1 -> CS4245
* I²S 2 -> CS4361 (center/LFE)
* I²S 3 -> CS4361 (surround)
* I²S 4 -> CS4361 (front)
* Capture:
* I²S ADC 1 <- CS4245
*
* GPIO 3 <- ?
* GPIO 4 <- headphone detect
* GPIO 5 -> enable ADC analog circuit for the left channel
* GPIO 6 -> enable ADC analog circuit for the right channel
* GPIO 7 -> switch green rear output jack between CS4245 and and the first
* channel of CS4361 (mechanical relay)
* GPIO 8 -> enable output to speakers
*
* CS4245:
*
* input 0 <- mic
* input 1 <- aux
* input 2 <- front mic
* input 4 <- line
* DAC out -> headphones
* aux out -> front panel headphones
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "cs4245.h"
int cs4245_write_spi(struct oxygen *chip, u8 reg)
{
struct dg *data = chip->model_data;
unsigned int packet;
packet = reg << 8;
packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16;
packet |= data->cs4245_shadow[reg];
return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_3 |
OXYGEN_SPI_CLOCK_1280 |
(0 << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
packet);
}
int cs4245_read_spi(struct oxygen *chip, u8 addr)
{
struct dg *data = chip->model_data;
int ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr);
if (ret < 0)
return ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
(CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8);
if (ret < 0)
return ret;
data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1);
return 0;
}
int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op)
{
struct dg *data = chip->model_data;
unsigned char addr;
int ret;
for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) {
ret = (op == CS4245_SAVE_TO_SHADOW ?
cs4245_read_spi(chip, addr) :
cs4245_write_spi(chip, addr));
if (ret < 0)
return ret;
}
return 0;
}
static void cs4245_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
/* save the initial state: codec version, registers */
cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW);
/*
* Power up the CODEC internals, enable soft ramp & zero cross, work in
* async. mode, enable aux output from DAC. Invert DAC output as in the
* Windows driver.
*/
data->cs4245_shadow[CS4245_POWER_CTRL] = 0;
data->cs4245_shadow[CS4245_SIGNAL_SEL] =
CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH;
data->cs4245_shadow[CS4245_DAC_CTRL_1] =
CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
data->cs4245_shadow[CS4245_DAC_CTRL_2] =
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC;
data->cs4245_shadow[CS4245_ADC_CTRL] =
CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
data->cs4245_shadow[CS4245_ANALOG_IN] =
CS4245_PGA_SOFT | CS4245_PGA_ZERO;
data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0;
data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0;
data->cs4245_shadow[CS4245_DAC_A_CTRL] = 8;
data->cs4245_shadow[CS4245_DAC_B_CTRL] = 8;
cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
snd_component_add(chip->card, "CS4245");
}
void dg_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->output_sel = PLAYBACK_DST_HP_FP;
data->input_sel = CAPTURE_SRC_MIC;
cs4245_init(chip);
oxygen_write16(chip, OXYGEN_GPIO_CONTROL,
GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE);
/* anti-pop delay, wait some time before enabling the output */
msleep(2500);
oxygen_write16(chip, OXYGEN_GPIO_DATA,
GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE);
}
void dg_cleanup(struct oxygen *chip)
{
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
void dg_suspend(struct oxygen *chip)
{
dg_cleanup(chip);
}
void dg_resume(struct oxygen *chip)
{
cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
msleep(2500);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
unsigned char dac_ctrl;
unsigned char mclk_freq;
dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK;
if (params_rate(params) <= 50000) {
dac_ctrl |= CS4245_DAC_FM_SINGLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
} else if (params_rate(params) <= 100000) {
dac_ctrl |= CS4245_DAC_FM_DOUBLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
} else {
dac_ctrl |= CS4245_DAC_FM_QUAD;
mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT;
}
data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl;
data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}
void set_cs4245_adc_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
unsigned char adc_ctrl;
unsigned char mclk_freq;
adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK;
if (params_rate(params) <= 50000) {
adc_ctrl |= CS4245_ADC_FM_SINGLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
} else if (params_rate(params) <= 100000) {
adc_ctrl |= CS4245_ADC_FM_DOUBLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
} else {
adc_ctrl |= CS4245_ADC_FM_QUAD;
mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT;
}
data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl;
data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
cs4245_write_spi(chip, CS4245_ADC_CTRL);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}
unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing)
{
struct dg *data = chip->model_data;
unsigned int routing = 0;
switch (data->output_sel) {
case PLAYBACK_DST_HP:
case PLAYBACK_DST_HP_FP:
oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 |
OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK);
break;
case PLAYBACK_DST_MULTICH:
routing = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK);
break;
}
return routing;
}
void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer)
{
struct dg *data = chip->model_data;
unsigned int addr;
snd_iprintf(buffer, "\nCS4245:");
cs4245_read_spi(chip, CS4245_INT_STATUS);
for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++)
snd_iprintf(buffer, " %02x", data->cs4245_shadow[addr]);
snd_iprintf(buffer, "\n");
}