WSL2-Linux-Kernel/drivers/clocksource/sh_cmt.c

880 строки
21 KiB
C
Исходник Обычный вид История

/*
* SuperH Timer Support - CMT
*
* Copyright (C) 2008 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_timer.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
struct sh_cmt_priv {
void __iomem *mapbase;
void __iomem *mapbase_str;
struct clk *clk;
unsigned long width; /* 16 or 32 bit version of hardware block */
unsigned long overflow_bit;
unsigned long clear_bits;
struct irqaction irqaction;
struct platform_device *pdev;
unsigned long flags;
unsigned long match_value;
unsigned long next_match_value;
unsigned long max_match_value;
unsigned long rate;
raw_spinlock_t lock;
struct clock_event_device ced;
struct clocksource cs;
unsigned long total_cycles;
bool cs_enabled;
/* callbacks for CMSTR and CMCSR access */
unsigned long (*read_control)(void __iomem *base, unsigned long offs);
void (*write_control)(void __iomem *base, unsigned long offs,
unsigned long value);
/* callbacks for CMCNT and CMCOR access */
unsigned long (*read_count)(void __iomem *base, unsigned long offs);
void (*write_count)(void __iomem *base, unsigned long offs,
unsigned long value);
};
/* Examples of supported CMT timer register layouts and I/O access widths:
*
* "16-bit counter and 16-bit control" as found on sh7263:
* CMSTR 0xfffec000 16-bit
* CMCSR 0xfffec002 16-bit
* CMCNT 0xfffec004 16-bit
* CMCOR 0xfffec006 16-bit
*
* "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
* CMSTR 0xffca0000 16-bit
* CMCSR 0xffca0060 16-bit
* CMCNT 0xffca0064 32-bit
* CMCOR 0xffca0068 32-bit
*
* "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
* CMSTR 0xffca0500 32-bit
* CMCSR 0xffca0510 32-bit
* CMCNT 0xffca0514 32-bit
* CMCOR 0xffca0518 32-bit
*/
static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
{
return ioread16(base + (offs << 1));
}
static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
{
return ioread32(base + (offs << 2));
}
static void sh_cmt_write16(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite16(value, base + (offs << 1));
}
static void sh_cmt_write32(void __iomem *base, unsigned long offs,
unsigned long value)
{
iowrite32(value, base + (offs << 2));
}
#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */
static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
{
return p->read_control(p->mapbase_str, 0);
}
static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
{
return p->read_control(p->mapbase, CMCSR);
}
static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
{
return p->read_count(p->mapbase, CMCNT);
}
static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
unsigned long value)
{
p->write_control(p->mapbase_str, 0, value);
}
static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
unsigned long value)
{
p->write_control(p->mapbase, CMCSR, value);
}
static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
unsigned long value)
{
p->write_count(p->mapbase, CMCNT, value);
}
static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
unsigned long value)
{
p->write_count(p->mapbase, CMCOR, value);
}
static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
int *has_wrapped)
{
unsigned long v1, v2, v3;
int o1, o2;
o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
do {
o2 = o1;
v1 = sh_cmt_read_cmcnt(p);
v2 = sh_cmt_read_cmcnt(p);
v3 = sh_cmt_read_cmcnt(p);
o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
*has_wrapped = o1;
return v2;
}
static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
{
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&sh_cmt_lock, flags);
value = sh_cmt_read_cmstr(p);
if (start)
value |= 1 << cfg->timer_bit;
else
value &= ~(1 << cfg->timer_bit);
sh_cmt_write_cmstr(p, value);
raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
}
static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
{
int k, ret;
pm_runtime_get_sync(&p->pdev->dev);
dev_pm_syscore_device(&p->pdev->dev, true);
/* enable clock */
ret = clk_enable(p->clk);
if (ret) {
dev_err(&p->pdev->dev, "cannot enable clock\n");
goto err0;
}
/* make sure channel is disabled */
sh_cmt_start_stop_ch(p, 0);
/* configure channel, periodic mode and maximum timeout */
if (p->width == 16) {
*rate = clk_get_rate(p->clk) / 512;
sh_cmt_write_cmcsr(p, 0x43);
} else {
*rate = clk_get_rate(p->clk) / 8;
sh_cmt_write_cmcsr(p, 0x01a4);
}
sh_cmt_write_cmcor(p, 0xffffffff);
sh_cmt_write_cmcnt(p, 0);
/*
* According to the sh73a0 user's manual, as CMCNT can be operated
* only by the RCLK (Pseudo 32 KHz), there's one restriction on
* modifying CMCNT register; two RCLK cycles are necessary before
* this register is either read or any modification of the value
* it holds is reflected in the LSI's actual operation.
*
* While at it, we're supposed to clear out the CMCNT as of this
* moment, so make sure it's processed properly here. This will
* take RCLKx2 at maximum.
*/
for (k = 0; k < 100; k++) {
if (!sh_cmt_read_cmcnt(p))
break;
udelay(1);
}
if (sh_cmt_read_cmcnt(p)) {
dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
ret = -ETIMEDOUT;
goto err1;
}
/* enable channel */
sh_cmt_start_stop_ch(p, 1);
return 0;
err1:
/* stop clock */
clk_disable(p->clk);
err0:
return ret;
}
static void sh_cmt_disable(struct sh_cmt_priv *p)
{
/* disable channel */
sh_cmt_start_stop_ch(p, 0);
/* disable interrupts in CMT block */
sh_cmt_write_cmcsr(p, 0);
/* stop clock */
clk_disable(p->clk);
dev_pm_syscore_device(&p->pdev->dev, false);
pm_runtime_put(&p->pdev->dev);
}
/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)
static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
int absolute)
{
unsigned long new_match;
unsigned long value = p->next_match_value;
unsigned long delay = 0;
unsigned long now = 0;
int has_wrapped;
now = sh_cmt_get_counter(p, &has_wrapped);
p->flags |= FLAG_REPROGRAM; /* force reprogram */
if (has_wrapped) {
/* we're competing with the interrupt handler.
* -> let the interrupt handler reprogram the timer.
* -> interrupt number two handles the event.
*/
p->flags |= FLAG_SKIPEVENT;
return;
}
if (absolute)
now = 0;
do {
/* reprogram the timer hardware,
* but don't save the new match value yet.
*/
new_match = now + value + delay;
if (new_match > p->max_match_value)
new_match = p->max_match_value;
sh_cmt_write_cmcor(p, new_match);
now = sh_cmt_get_counter(p, &has_wrapped);
if (has_wrapped && (new_match > p->match_value)) {
/* we are changing to a greater match value,
* so this wrap must be caused by the counter
* matching the old value.
* -> first interrupt reprograms the timer.
* -> interrupt number two handles the event.
*/
p->flags |= FLAG_SKIPEVENT;
break;
}
if (has_wrapped) {
/* we are changing to a smaller match value,
* so the wrap must be caused by the counter
* matching the new value.
* -> save programmed match value.
* -> let isr handle the event.
*/
p->match_value = new_match;
break;
}
/* be safe: verify hardware settings */
if (now < new_match) {
/* timer value is below match value, all good.
* this makes sure we won't miss any match events.
* -> save programmed match value.
* -> let isr handle the event.
*/
p->match_value = new_match;
break;
}
/* the counter has reached a value greater
* than our new match value. and since the
* has_wrapped flag isn't set we must have
* programmed a too close event.
* -> increase delay and retry.
*/
if (delay)
delay <<= 1;
else
delay = 1;
if (!delay)
dev_warn(&p->pdev->dev, "too long delay\n");
} while (delay);
}
static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
{
if (delta > p->max_match_value)
dev_warn(&p->pdev->dev, "delta out of range\n");
p->next_match_value = delta;
sh_cmt_clock_event_program_verify(p, 0);
}
static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
{
unsigned long flags;
raw_spin_lock_irqsave(&p->lock, flags);
__sh_cmt_set_next(p, delta);
raw_spin_unlock_irqrestore(&p->lock, flags);
}
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
struct sh_cmt_priv *p = dev_id;
/* clear flags */
sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
/* update clock source counter to begin with if enabled
* the wrap flag should be cleared by the timer specific
* isr before we end up here.
*/
if (p->flags & FLAG_CLOCKSOURCE)
p->total_cycles += p->match_value + 1;
if (!(p->flags & FLAG_REPROGRAM))
p->next_match_value = p->max_match_value;
p->flags |= FLAG_IRQCONTEXT;
if (p->flags & FLAG_CLOCKEVENT) {
if (!(p->flags & FLAG_SKIPEVENT)) {
if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
p->next_match_value = p->max_match_value;
p->flags |= FLAG_REPROGRAM;
}
p->ced.event_handler(&p->ced);
}
}
p->flags &= ~FLAG_SKIPEVENT;
if (p->flags & FLAG_REPROGRAM) {
p->flags &= ~FLAG_REPROGRAM;
sh_cmt_clock_event_program_verify(p, 1);
if (p->flags & FLAG_CLOCKEVENT)
if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
|| (p->match_value == p->next_match_value))
p->flags &= ~FLAG_REPROGRAM;
}
p->flags &= ~FLAG_IRQCONTEXT;
return IRQ_HANDLED;
}
static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
{
int ret = 0;
unsigned long flags;
raw_spin_lock_irqsave(&p->lock, flags);
if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
ret = sh_cmt_enable(p, &p->rate);
if (ret)
goto out;
p->flags |= flag;
/* setup timeout if no clockevent */
if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
__sh_cmt_set_next(p, p->max_match_value);
out:
raw_spin_unlock_irqrestore(&p->lock, flags);
return ret;
}
static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
{
unsigned long flags;
unsigned long f;
raw_spin_lock_irqsave(&p->lock, flags);
f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
p->flags &= ~flag;
if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
sh_cmt_disable(p);
/* adjust the timeout to maximum if only clocksource left */
if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
__sh_cmt_set_next(p, p->max_match_value);
raw_spin_unlock_irqrestore(&p->lock, flags);
}
static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
{
return container_of(cs, struct sh_cmt_priv, cs);
}
static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
unsigned long flags, raw;
unsigned long value;
int has_wrapped;
raw_spin_lock_irqsave(&p->lock, flags);
value = p->total_cycles;
raw = sh_cmt_get_counter(p, &has_wrapped);
if (unlikely(has_wrapped))
raw += p->match_value + 1;
raw_spin_unlock_irqrestore(&p->lock, flags);
return value + raw;
}
static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
int ret;
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
WARN_ON(p->cs_enabled);
p->total_cycles = 0;
ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
if (!ret) {
__clocksource_updatefreq_hz(cs, p->rate);
p->cs_enabled = true;
}
return ret;
}
static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
WARN_ON(!p->cs_enabled);
sh_cmt_stop(p, FLAG_CLOCKSOURCE);
p->cs_enabled = false;
}
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
sh_cmt_stop(p, FLAG_CLOCKSOURCE);
pm_genpd_syscore_poweroff(&p->pdev->dev);
}
static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
pm_genpd_syscore_poweron(&p->pdev->dev);
sh_cmt_start(p, FLAG_CLOCKSOURCE);
}
static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
char *name, unsigned long rating)
{
struct clocksource *cs = &p->cs;
cs->name = name;
cs->rating = rating;
cs->read = sh_cmt_clocksource_read;
cs->enable = sh_cmt_clocksource_enable;
cs->disable = sh_cmt_clocksource_disable;
cs->suspend = sh_cmt_clocksource_suspend;
cs->resume = sh_cmt_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&p->pdev->dev, "used as clock source\n");
/* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1);
return 0;
}
static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
{
return container_of(ced, struct sh_cmt_priv, ced);
}
static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
{
struct clock_event_device *ced = &p->ced;
sh_cmt_start(p, FLAG_CLOCKEVENT);
/* TODO: calculate good shift from rate and counter bit width */
ced->shift = 32;
ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
if (periodic)
sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
else
sh_cmt_set_next(p, p->max_match_value);
}
static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
/* deal with old setting first */
switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
sh_cmt_stop(p, FLAG_CLOCKEVENT);
break;
default:
break;
}
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
dev_info(&p->pdev->dev, "used for periodic clock events\n");
sh_cmt_clock_event_start(p, 1);
break;
case CLOCK_EVT_MODE_ONESHOT:
dev_info(&p->pdev->dev, "used for oneshot clock events\n");
sh_cmt_clock_event_start(p, 0);
break;
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_UNUSED:
sh_cmt_stop(p, FLAG_CLOCKEVENT);
break;
default:
break;
}
}
static int sh_cmt_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
if (likely(p->flags & FLAG_IRQCONTEXT))
p->next_match_value = delta - 1;
else
sh_cmt_set_next(p, delta - 1);
return 0;
}
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
pm_genpd_syscore_poweroff(&p->pdev->dev);
clk_unprepare(p->clk);
}
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
{
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
clk_prepare(p->clk);
pm_genpd_syscore_poweron(&p->pdev->dev);
}
static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
char *name, unsigned long rating)
{
struct clock_event_device *ced = &p->ced;
memset(ced, 0, sizeof(*ced));
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = rating;
ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_cmt_clock_event_next;
ced->set_mode = sh_cmt_clock_event_mode;
ced->suspend = sh_cmt_clock_event_suspend;
ced->resume = sh_cmt_clock_event_resume;
dev_info(&p->pdev->dev, "used for clock events\n");
clockevents_register_device(ced);
}
static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
unsigned long clockevent_rating,
unsigned long clocksource_rating)
{
if (clockevent_rating)
sh_cmt_register_clockevent(p, name, clockevent_rating);
if (clocksource_rating)
sh_cmt_register_clocksource(p, name, clocksource_rating);
return 0;
}
static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
{
struct sh_timer_config *cfg = pdev->dev.platform_data;
struct resource *res, *res2;
int irq, ret;
ret = -ENXIO;
memset(p, 0, sizeof(*p));
p->pdev = pdev;
if (!cfg) {
dev_err(&p->pdev->dev, "missing platform data\n");
goto err0;
}
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&p->pdev->dev, "failed to get I/O memory\n");
goto err0;
}
/* optional resource for the shared timer start/stop register */
res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
irq = platform_get_irq(p->pdev, 0);
if (irq < 0) {
dev_err(&p->pdev->dev, "failed to get irq\n");
goto err0;
}
/* map memory, let mapbase point to our channel */
p->mapbase = ioremap_nocache(res->start, resource_size(res));
if (p->mapbase == NULL) {
dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
goto err0;
}
/* map second resource for CMSTR */
p->mapbase_str = ioremap_nocache(res2 ? res2->start :
res->start - cfg->channel_offset,
res2 ? resource_size(res2) : 2);
if (p->mapbase_str == NULL) {
dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
goto err1;
}
/* request irq using setup_irq() (too early for request_irq()) */
p->irqaction.name = dev_name(&p->pdev->dev);
p->irqaction.handler = sh_cmt_interrupt;
p->irqaction.dev_id = p;
p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
/* get hold of clock */
p->clk = clk_get(&p->pdev->dev, "cmt_fck");
if (IS_ERR(p->clk)) {
dev_err(&p->pdev->dev, "cannot get clock\n");
ret = PTR_ERR(p->clk);
goto err2;
}
ret = clk_prepare(p->clk);
if (ret < 0)
goto err3;
if (res2 && (resource_size(res2) == 4)) {
/* assume both CMSTR and CMCSR to be 32-bit */
p->read_control = sh_cmt_read32;
p->write_control = sh_cmt_write32;
} else {
p->read_control = sh_cmt_read16;
p->write_control = sh_cmt_write16;
}
if (resource_size(res) == 6) {
p->width = 16;
p->read_count = sh_cmt_read16;
p->write_count = sh_cmt_write16;
p->overflow_bit = 0x80;
p->clear_bits = ~0x80;
} else {
p->width = 32;
p->read_count = sh_cmt_read32;
p->write_count = sh_cmt_write32;
p->overflow_bit = 0x8000;
p->clear_bits = ~0xc000;
}
if (p->width == (sizeof(p->max_match_value) * 8))
p->max_match_value = ~0;
else
p->max_match_value = (1 << p->width) - 1;
p->match_value = p->max_match_value;
raw_spin_lock_init(&p->lock);
ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
cfg->clockevent_rating,
cfg->clocksource_rating);
if (ret) {
dev_err(&p->pdev->dev, "registration failed\n");
goto err4;
}
p->cs_enabled = false;
ret = setup_irq(irq, &p->irqaction);
if (ret) {
dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
goto err4;
}
platform_set_drvdata(pdev, p);
return 0;
err4:
clk_unprepare(p->clk);
err3:
clk_put(p->clk);
err2:
iounmap(p->mapbase_str);
err1:
iounmap(p->mapbase);
err0:
return ret;
}
static int sh_cmt_probe(struct platform_device *pdev)
{
struct sh_cmt_priv *p = platform_get_drvdata(pdev);
struct sh_timer_config *cfg = pdev->dev.platform_data;
int ret;
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (p) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
ret = sh_cmt_setup(p, pdev);
if (ret) {
kfree(p);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_early_platform_device(pdev))
return 0;
out:
if (cfg->clockevent_rating || cfg->clocksource_rating)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static int sh_cmt_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static struct platform_driver sh_cmt_device_driver = {
.probe = sh_cmt_probe,
.remove = sh_cmt_remove,
.driver = {
.name = "sh_cmt",
}
};
static int __init sh_cmt_init(void)
{
return platform_driver_register(&sh_cmt_device_driver);
}
static void __exit sh_cmt_exit(void)
{
platform_driver_unregister(&sh_cmt_device_driver);
}
early_platform_init("earlytimer", &sh_cmt_device_driver);
subsys_initcall(sh_cmt_init);
module_exit(sh_cmt_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");