WSL2-Linux-Kernel/drivers/scsi/pcmcia/nsp_cs.c

1927 строки
51 KiB
C
Исходник Обычный вид История

/*======================================================================
NinjaSCSI-3 / NinjaSCSI-32Bi PCMCIA SCSI host adapter card driver
By: YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>
Ver.2.8 Support 32bit MMIO mode
Support Synchronous Data Transfer Request (SDTR) mode
Ver.2.0 Support 32bit PIO mode
Ver.1.1.2 Fix for scatter list buffer exceeds
Ver.1.1 Support scatter list
Ver.0.1 Initial version
This software may be used and distributed according to the terms of
the GNU General Public License.
======================================================================*/
/***********************************************************************
This driver is for these PCcards.
I-O DATA PCSC-F (Workbit NinjaSCSI-3)
"WBT", "NinjaSCSI-3", "R1.0"
I-O DATA CBSC-II (Workbit NinjaSCSI-32Bi in 16bit mode)
"IO DATA", "CBSC16 ", "1"
***********************************************************************/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/stat.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <../drivers/scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi.h>
#include <scsi/scsi_ioctl.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>
#include "nsp_cs.h"
MODULE_AUTHOR("YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>");
MODULE_DESCRIPTION("WorkBit NinjaSCSI-3 / NinjaSCSI-32Bi(16bit) PCMCIA SCSI host adapter module");
MODULE_SUPPORTED_DEVICE("sd,sr,sg,st");
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif
#include "nsp_io.h"
/*====================================================================*/
/* Parameters that can be set with 'insmod' */
static int nsp_burst_mode = BURST_MEM32;
module_param(nsp_burst_mode, int, 0);
MODULE_PARM_DESC(nsp_burst_mode, "Burst transfer mode (0=io8, 1=io32, 2=mem32(default))");
/* Release IO ports after configuration? */
static int free_ports = 0;
module_param(free_ports, bool, 0);
MODULE_PARM_DESC(free_ports, "Release IO ports after configuration? (default: 0 (=no))");
static struct scsi_host_template nsp_driver_template = {
.proc_name = "nsp_cs",
.proc_info = nsp_proc_info,
.name = "WorkBit NinjaSCSI-3/32Bi(16bit)",
.info = nsp_info,
.queuecommand = nsp_queuecommand,
/* .eh_abort_handler = nsp_eh_abort,*/
.eh_bus_reset_handler = nsp_eh_bus_reset,
.eh_host_reset_handler = nsp_eh_host_reset,
.can_queue = 1,
.this_id = NSP_INITIATOR_ID,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = DISABLE_CLUSTERING,
};
static nsp_hw_data nsp_data_base; /* attach <-> detect glue */
/*
* debug, error print
*/
#ifndef NSP_DEBUG
# define NSP_DEBUG_MASK 0x000000
# define nsp_msg(type, args...) nsp_cs_message("", 0, (type), args)
# define nsp_dbg(mask, args...) /* */
#else
# define NSP_DEBUG_MASK 0xffffff
# define nsp_msg(type, args...) \
nsp_cs_message (__func__, __LINE__, (type), args)
# define nsp_dbg(mask, args...) \
nsp_cs_dmessage(__func__, __LINE__, (mask), args)
#endif
#define NSP_DEBUG_QUEUECOMMAND BIT(0)
#define NSP_DEBUG_REGISTER BIT(1)
#define NSP_DEBUG_AUTOSCSI BIT(2)
#define NSP_DEBUG_INTR BIT(3)
#define NSP_DEBUG_SGLIST BIT(4)
#define NSP_DEBUG_BUSFREE BIT(5)
#define NSP_DEBUG_CDB_CONTENTS BIT(6)
#define NSP_DEBUG_RESELECTION BIT(7)
#define NSP_DEBUG_MSGINOCCUR BIT(8)
#define NSP_DEBUG_EEPROM BIT(9)
#define NSP_DEBUG_MSGOUTOCCUR BIT(10)
#define NSP_DEBUG_BUSRESET BIT(11)
#define NSP_DEBUG_RESTART BIT(12)
#define NSP_DEBUG_SYNC BIT(13)
#define NSP_DEBUG_WAIT BIT(14)
#define NSP_DEBUG_TARGETFLAG BIT(15)
#define NSP_DEBUG_PROC BIT(16)
#define NSP_DEBUG_INIT BIT(17)
#define NSP_DEBUG_DATA_IO BIT(18)
#define NSP_SPECIAL_PRINT_REGISTER BIT(20)
#define NSP_DEBUG_BUF_LEN 150
static inline void nsp_inc_resid(struct scsi_cmnd *SCpnt, int residInc)
{
scsi_set_resid(SCpnt, scsi_get_resid(SCpnt) + residInc);
}
static void nsp_cs_message(const char *func, int line, char *type, char *fmt, ...)
{
va_list args;
char buf[NSP_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
#ifndef NSP_DEBUG
printk("%snsp_cs: %s\n", type, buf);
#else
printk("%snsp_cs: %s (%d): %s\n", type, func, line, buf);
#endif
}
#ifdef NSP_DEBUG
static void nsp_cs_dmessage(const char *func, int line, int mask, char *fmt, ...)
{
va_list args;
char buf[NSP_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
if (mask & NSP_DEBUG_MASK) {
printk("nsp_cs-debug: 0x%x %s (%d): %s\n", mask, func, line, buf);
}
}
#endif
/***********************************************************/
/*====================================================
* Clenaup parameters and call done() functions.
* You must be set SCpnt->result before call this function.
*/
static void nsp_scsi_done(struct scsi_cmnd *SCpnt)
{
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
data->CurrentSC = NULL;
SCpnt->scsi_done(SCpnt);
}
static int nsp_queuecommand(struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
#ifdef NSP_DEBUG
/*unsigned int host_id = SCpnt->device->host->this_id;*/
/*unsigned int base = SCpnt->device->host->io_port;*/
unsigned char target = scmd_id(SCpnt);
#endif
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
nsp_dbg(NSP_DEBUG_QUEUECOMMAND,
"SCpnt=0x%p target=%d lun=%d sglist=0x%p bufflen=%d sg_count=%d",
SCpnt, target, SCpnt->device->lun, scsi_sglist(SCpnt),
scsi_bufflen(SCpnt), scsi_sg_count(SCpnt));
//nsp_dbg(NSP_DEBUG_QUEUECOMMAND, "before CurrentSC=0x%p", data->CurrentSC);
SCpnt->scsi_done = done;
if (data->CurrentSC != NULL) {
nsp_msg(KERN_DEBUG, "CurrentSC!=NULL this can't be happen");
SCpnt->result = DID_BAD_TARGET << 16;
nsp_scsi_done(SCpnt);
return 0;
}
#if 0
/* XXX: pcmcia-cs generates SCSI command with "scsi_info" utility.
This makes kernel crash when suspending... */
if (data->ScsiInfo->stop != 0) {
nsp_msg(KERN_INFO, "suspending device. reject command.");
SCpnt->result = DID_BAD_TARGET << 16;
nsp_scsi_done(SCpnt);
return SCSI_MLQUEUE_HOST_BUSY;
}
#endif
show_command(SCpnt);
data->CurrentSC = SCpnt;
SCpnt->SCp.Status = CHECK_CONDITION;
SCpnt->SCp.Message = 0;
SCpnt->SCp.have_data_in = IO_UNKNOWN;
SCpnt->SCp.sent_command = 0;
SCpnt->SCp.phase = PH_UNDETERMINED;
scsi_set_resid(SCpnt, scsi_bufflen(SCpnt));
/* setup scratch area
SCp.ptr : buffer pointer
SCp.this_residual : buffer length
SCp.buffer : next buffer
SCp.buffers_residual : left buffers in list
SCp.phase : current state of the command */
if (scsi_bufflen(SCpnt)) {
SCpnt->SCp.buffer = scsi_sglist(SCpnt);
SCpnt->SCp.ptr = BUFFER_ADDR;
SCpnt->SCp.this_residual = SCpnt->SCp.buffer->length;
SCpnt->SCp.buffers_residual = scsi_sg_count(SCpnt) - 1;
} else {
SCpnt->SCp.ptr = NULL;
SCpnt->SCp.this_residual = 0;
SCpnt->SCp.buffer = NULL;
SCpnt->SCp.buffers_residual = 0;
}
if (nsphw_start_selection(SCpnt) == FALSE) {
nsp_dbg(NSP_DEBUG_QUEUECOMMAND, "selection fail");
SCpnt->result = DID_BUS_BUSY << 16;
nsp_scsi_done(SCpnt);
return 0;
}
//nsp_dbg(NSP_DEBUG_QUEUECOMMAND, "out");
#ifdef NSP_DEBUG
data->CmdId++;
#endif
return 0;
}
/*
* setup PIO FIFO transfer mode and enable/disable to data out
*/
static void nsp_setup_fifo(nsp_hw_data *data, int enabled)
{
unsigned int base = data->BaseAddress;
unsigned char transfer_mode_reg;
//nsp_dbg(NSP_DEBUG_DATA_IO, "enabled=%d", enabled);
if (enabled != FALSE) {
transfer_mode_reg = TRANSFER_GO | BRAIND;
} else {
transfer_mode_reg = 0;
}
transfer_mode_reg |= data->TransferMode;
nsp_index_write(base, TRANSFERMODE, transfer_mode_reg);
}
static void nsphw_init_sync(nsp_hw_data *data)
{
sync_data tmp_sync = { .SyncNegotiation = SYNC_NOT_YET,
.SyncPeriod = 0,
.SyncOffset = 0
};
int i;
/* setup sync data */
for ( i = 0; i < ARRAY_SIZE(data->Sync); i++ ) {
data->Sync[i] = tmp_sync;
}
}
/*
* Initialize Ninja hardware
*/
static int nsphw_init(nsp_hw_data *data)
{
unsigned int base = data->BaseAddress;
nsp_dbg(NSP_DEBUG_INIT, "in base=0x%x", base);
data->ScsiClockDiv = CLOCK_40M | FAST_20;
data->CurrentSC = NULL;
data->FifoCount = 0;
data->TransferMode = MODE_IO8;
nsphw_init_sync(data);
/* block all interrupts */
nsp_write(base, IRQCONTROL, IRQCONTROL_ALLMASK);
/* setup SCSI interface */
nsp_write(base, IFSELECT, IF_IFSEL);
nsp_index_write(base, SCSIIRQMODE, 0);
nsp_index_write(base, TRANSFERMODE, MODE_IO8);
nsp_index_write(base, CLOCKDIV, data->ScsiClockDiv);
nsp_index_write(base, PARITYCTRL, 0);
nsp_index_write(base, POINTERCLR, POINTER_CLEAR |
ACK_COUNTER_CLEAR |
REQ_COUNTER_CLEAR |
HOST_COUNTER_CLEAR);
/* setup fifo asic */
nsp_write(base, IFSELECT, IF_REGSEL);
nsp_index_write(base, TERMPWRCTRL, 0);
if ((nsp_index_read(base, OTHERCONTROL) & TPWR_SENSE) == 0) {
nsp_msg(KERN_INFO, "terminator power on");
nsp_index_write(base, TERMPWRCTRL, POWER_ON);
}
nsp_index_write(base, TIMERCOUNT, 0);
nsp_index_write(base, TIMERCOUNT, 0); /* requires 2 times!! */
nsp_index_write(base, SYNCREG, 0);
nsp_index_write(base, ACKWIDTH, 0);
/* enable interrupts and ack them */
nsp_index_write(base, SCSIIRQMODE, SCSI_PHASE_CHANGE_EI |
RESELECT_EI |
SCSI_RESET_IRQ_EI );
nsp_write(base, IRQCONTROL, IRQCONTROL_ALLCLEAR);
nsp_setup_fifo(data, FALSE);
return TRUE;
}
/*
* Start selection phase
*/
static int nsphw_start_selection(struct scsi_cmnd *SCpnt)
{
unsigned int host_id = SCpnt->device->host->this_id;
unsigned int base = SCpnt->device->host->io_port;
unsigned char target = scmd_id(SCpnt);
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
int time_out;
unsigned char phase, arbit;
//nsp_dbg(NSP_DEBUG_RESELECTION, "in");
phase = nsp_index_read(base, SCSIBUSMON);
if(phase != BUSMON_BUS_FREE) {
//nsp_dbg(NSP_DEBUG_RESELECTION, "bus busy");
return FALSE;
}
/* start arbitration */
//nsp_dbg(NSP_DEBUG_RESELECTION, "start arbit");
SCpnt->SCp.phase = PH_ARBSTART;
nsp_index_write(base, SETARBIT, ARBIT_GO);
time_out = 1000;
do {
/* XXX: what a stupid chip! */
arbit = nsp_index_read(base, ARBITSTATUS);
//nsp_dbg(NSP_DEBUG_RESELECTION, "arbit=%d, wait_count=%d", arbit, wait_count);
udelay(1); /* hold 1.2us */
} while((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 &&
(time_out-- != 0));
if (!(arbit & ARBIT_WIN)) {
//nsp_dbg(NSP_DEBUG_RESELECTION, "arbit fail");
nsp_index_write(base, SETARBIT, ARBIT_FLAG_CLEAR);
return FALSE;
}
/* assert select line */
//nsp_dbg(NSP_DEBUG_RESELECTION, "assert SEL line");
SCpnt->SCp.phase = PH_SELSTART;
udelay(3); /* wait 2.4us */
nsp_index_write(base, SCSIDATALATCH, BIT(host_id) | BIT(target));
nsp_index_write(base, SCSIBUSCTRL, SCSI_SEL | SCSI_BSY | SCSI_ATN);
udelay(2); /* wait >1.2us */
nsp_index_write(base, SCSIBUSCTRL, SCSI_SEL | SCSI_BSY | SCSI_DATAOUT_ENB | SCSI_ATN);
nsp_index_write(base, SETARBIT, ARBIT_FLAG_CLEAR);
/*udelay(1);*/ /* wait >90ns */
nsp_index_write(base, SCSIBUSCTRL, SCSI_SEL | SCSI_DATAOUT_ENB | SCSI_ATN);
/* check selection timeout */
nsp_start_timer(SCpnt, 1000/51);
data->SelectionTimeOut = 1;
return TRUE;
}
struct nsp_sync_table {
unsigned int min_period;
unsigned int max_period;
unsigned int chip_period;
unsigned int ack_width;
};
static struct nsp_sync_table nsp_sync_table_40M[] = {
{0x0c, 0x0c, 0x1, 0}, /* 20MB 50ns*/
{0x19, 0x19, 0x3, 1}, /* 10MB 100ns*/
{0x1a, 0x25, 0x5, 2}, /* 7.5MB 150ns*/
{0x26, 0x32, 0x7, 3}, /* 5MB 200ns*/
{ 0, 0, 0, 0},
};
static struct nsp_sync_table nsp_sync_table_20M[] = {
{0x19, 0x19, 0x1, 0}, /* 10MB 100ns*/
{0x1a, 0x25, 0x2, 0}, /* 7.5MB 150ns*/
{0x26, 0x32, 0x3, 1}, /* 5MB 200ns*/
{ 0, 0, 0, 0},
};
/*
* setup synchronous data transfer mode
*/
static int nsp_analyze_sdtr(struct scsi_cmnd *SCpnt)
{
unsigned char target = scmd_id(SCpnt);
// unsigned char lun = SCpnt->device->lun;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
sync_data *sync = &(data->Sync[target]);
struct nsp_sync_table *sync_table;
unsigned int period, offset;
int i;
nsp_dbg(NSP_DEBUG_SYNC, "in");
period = sync->SyncPeriod;
offset = sync->SyncOffset;
nsp_dbg(NSP_DEBUG_SYNC, "period=0x%x, offset=0x%x", period, offset);
if ((data->ScsiClockDiv & (BIT(0)|BIT(1))) == CLOCK_20M) {
sync_table = nsp_sync_table_20M;
} else {
sync_table = nsp_sync_table_40M;
}
for ( i = 0; sync_table->max_period != 0; i++, sync_table++) {
if ( period >= sync_table->min_period &&
period <= sync_table->max_period ) {
break;
}
}
if (period != 0 && sync_table->max_period == 0) {
/*
* No proper period/offset found
*/
nsp_dbg(NSP_DEBUG_SYNC, "no proper period/offset");
sync->SyncPeriod = 0;
sync->SyncOffset = 0;
sync->SyncRegister = 0;
sync->AckWidth = 0;
return FALSE;
}
sync->SyncRegister = (sync_table->chip_period << SYNCREG_PERIOD_SHIFT) |
(offset & SYNCREG_OFFSET_MASK);
sync->AckWidth = sync_table->ack_width;
nsp_dbg(NSP_DEBUG_SYNC, "sync_reg=0x%x, ack_width=0x%x", sync->SyncRegister, sync->AckWidth);
return TRUE;
}
/*
* start ninja hardware timer
*/
static void nsp_start_timer(struct scsi_cmnd *SCpnt, int time)
{
unsigned int base = SCpnt->device->host->io_port;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
//nsp_dbg(NSP_DEBUG_INTR, "in SCpnt=0x%p, time=%d", SCpnt, time);
data->TimerCount = time;
nsp_index_write(base, TIMERCOUNT, time);
}
/*
* wait for bus phase change
*/
static int nsp_negate_signal(struct scsi_cmnd *SCpnt, unsigned char mask,
char *str)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned char reg;
int time_out;
//nsp_dbg(NSP_DEBUG_INTR, "in");
time_out = 100;
do {
reg = nsp_index_read(base, SCSIBUSMON);
if (reg == 0xff) {
break;
}
} while ((--time_out != 0) && (reg & mask) != 0);
if (time_out == 0) {
nsp_msg(KERN_DEBUG, " %s signal off timeut", str);
}
return 0;
}
/*
* expect Ninja Irq
*/
static int nsp_expect_signal(struct scsi_cmnd *SCpnt,
unsigned char current_phase,
unsigned char mask)
{
unsigned int base = SCpnt->device->host->io_port;
int time_out;
unsigned char phase, i_src;
//nsp_dbg(NSP_DEBUG_INTR, "current_phase=0x%x, mask=0x%x", current_phase, mask);
time_out = 100;
do {
phase = nsp_index_read(base, SCSIBUSMON);
if (phase == 0xff) {
//nsp_dbg(NSP_DEBUG_INTR, "ret -1");
return -1;
}
i_src = nsp_read(base, IRQSTATUS);
if (i_src & IRQSTATUS_SCSI) {
//nsp_dbg(NSP_DEBUG_INTR, "ret 0 found scsi signal");
return 0;
}
if ((phase & mask) != 0 && (phase & BUSMON_PHASE_MASK) == current_phase) {
//nsp_dbg(NSP_DEBUG_INTR, "ret 1 phase=0x%x", phase);
return 1;
}
} while(time_out-- != 0);
//nsp_dbg(NSP_DEBUG_INTR, "timeout");
return -1;
}
/*
* transfer SCSI message
*/
static int nsp_xfer(struct scsi_cmnd *SCpnt, int phase)
{
unsigned int base = SCpnt->device->host->io_port;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
char *buf = data->MsgBuffer;
int len = min(MSGBUF_SIZE, data->MsgLen);
int ptr;
int ret;
//nsp_dbg(NSP_DEBUG_DATA_IO, "in");
for (ptr = 0; len > 0; len--, ptr++) {
ret = nsp_expect_signal(SCpnt, phase, BUSMON_REQ);
if (ret <= 0) {
nsp_dbg(NSP_DEBUG_DATA_IO, "xfer quit");
return 0;
}
/* if last byte, negate ATN */
if (len == 1 && SCpnt->SCp.phase == PH_MSG_OUT) {
nsp_index_write(base, SCSIBUSCTRL, AUTODIRECTION | ACKENB);
}
/* read & write message */
if (phase & BUSMON_IO) {
nsp_dbg(NSP_DEBUG_DATA_IO, "read msg");
buf[ptr] = nsp_index_read(base, SCSIDATAWITHACK);
} else {
nsp_dbg(NSP_DEBUG_DATA_IO, "write msg");
nsp_index_write(base, SCSIDATAWITHACK, buf[ptr]);
}
nsp_negate_signal(SCpnt, BUSMON_ACK, "xfer<ack>");
}
return len;
}
/*
* get extra SCSI data from fifo
*/
static int nsp_dataphase_bypass(struct scsi_cmnd *SCpnt)
{
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
unsigned int count;
//nsp_dbg(NSP_DEBUG_DATA_IO, "in");
if (SCpnt->SCp.have_data_in != IO_IN) {
return 0;
}
count = nsp_fifo_count(SCpnt);
if (data->FifoCount == count) {
//nsp_dbg(NSP_DEBUG_DATA_IO, "not use bypass quirk");
return 0;
}
/*
* XXX: NSP_QUIRK
* data phase skip only occures in case of SCSI_LOW_READ
*/
nsp_dbg(NSP_DEBUG_DATA_IO, "use bypass quirk");
SCpnt->SCp.phase = PH_DATA;
nsp_pio_read(SCpnt);
nsp_setup_fifo(data, FALSE);
return 0;
}
/*
* accept reselection
*/
static int nsp_reselected(struct scsi_cmnd *SCpnt)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned int host_id = SCpnt->device->host->this_id;
//nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
unsigned char bus_reg;
unsigned char id_reg, tmp;
int target;
nsp_dbg(NSP_DEBUG_RESELECTION, "in");
id_reg = nsp_index_read(base, RESELECTID);
tmp = id_reg & (~BIT(host_id));
target = 0;
while(tmp != 0) {
if (tmp & BIT(0)) {
break;
}
tmp >>= 1;
target++;
}
if (scmd_id(SCpnt) != target) {
nsp_msg(KERN_ERR, "XXX: reselect ID must be %d in this implementation.", target);
}
nsp_negate_signal(SCpnt, BUSMON_SEL, "reselect<SEL>");
nsp_nexus(SCpnt);
bus_reg = nsp_index_read(base, SCSIBUSCTRL) & ~(SCSI_BSY | SCSI_ATN);
nsp_index_write(base, SCSIBUSCTRL, bus_reg);
nsp_index_write(base, SCSIBUSCTRL, bus_reg | AUTODIRECTION | ACKENB);
return TRUE;
}
/*
* count how many data transferd
*/
static int nsp_fifo_count(struct scsi_cmnd *SCpnt)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned int count;
unsigned int l, m, h, dummy;
nsp_index_write(base, POINTERCLR, POINTER_CLEAR | ACK_COUNTER);
l = nsp_index_read(base, TRANSFERCOUNT);
m = nsp_index_read(base, TRANSFERCOUNT);
h = nsp_index_read(base, TRANSFERCOUNT);
dummy = nsp_index_read(base, TRANSFERCOUNT); /* required this! */
count = (h << 16) | (m << 8) | (l << 0);
//nsp_dbg(NSP_DEBUG_DATA_IO, "count=0x%x", count);
return count;
}
/* fifo size */
#define RFIFO_CRIT 64
#define WFIFO_CRIT 64
/*
* read data in DATA IN phase
*/
static void nsp_pio_read(struct scsi_cmnd *SCpnt)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned long mmio_base = SCpnt->device->host->base;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
long time_out;
int ocount, res;
unsigned char stat, fifo_stat;
ocount = data->FifoCount;
nsp_dbg(NSP_DEBUG_DATA_IO, "in SCpnt=0x%p resid=%d ocount=%d ptr=0x%p this_residual=%d buffers=0x%p nbuf=%d",
SCpnt, scsi_get_resid(SCpnt), ocount, SCpnt->SCp.ptr,
SCpnt->SCp.this_residual, SCpnt->SCp.buffer,
SCpnt->SCp.buffers_residual);
time_out = 1000;
while ((time_out-- != 0) &&
(SCpnt->SCp.this_residual > 0 || SCpnt->SCp.buffers_residual > 0 ) ) {
stat = nsp_index_read(base, SCSIBUSMON);
stat &= BUSMON_PHASE_MASK;
res = nsp_fifo_count(SCpnt) - ocount;
//nsp_dbg(NSP_DEBUG_DATA_IO, "ptr=0x%p this=0x%x ocount=0x%x res=0x%x", SCpnt->SCp.ptr, SCpnt->SCp.this_residual, ocount, res);
if (res == 0) { /* if some data avilable ? */
if (stat == BUSPHASE_DATA_IN) { /* phase changed? */
//nsp_dbg(NSP_DEBUG_DATA_IO, " wait for data this=%d", SCpnt->SCp.this_residual);
continue;
} else {
nsp_dbg(NSP_DEBUG_DATA_IO, "phase changed stat=0x%x", stat);
break;
}
}
fifo_stat = nsp_read(base, FIFOSTATUS);
if ((fifo_stat & FIFOSTATUS_FULL_EMPTY) == 0 &&
stat == BUSPHASE_DATA_IN) {
continue;
}
res = min(res, SCpnt->SCp.this_residual);
switch (data->TransferMode) {
case MODE_IO32:
res &= ~(BIT(1)|BIT(0)); /* align 4 */
nsp_fifo32_read(base, SCpnt->SCp.ptr, res >> 2);
break;
case MODE_IO8:
nsp_fifo8_read (base, SCpnt->SCp.ptr, res );
break;
case MODE_MEM32:
res &= ~(BIT(1)|BIT(0)); /* align 4 */
nsp_mmio_fifo32_read(mmio_base, SCpnt->SCp.ptr, res >> 2);
break;
default:
nsp_dbg(NSP_DEBUG_DATA_IO, "unknown read mode");
return;
}
nsp_inc_resid(SCpnt, -res);
SCpnt->SCp.ptr += res;
SCpnt->SCp.this_residual -= res;
ocount += res;
//nsp_dbg(NSP_DEBUG_DATA_IO, "ptr=0x%p this_residual=0x%x ocount=0x%x", SCpnt->SCp.ptr, SCpnt->SCp.this_residual, ocount);
/* go to next scatter list if available */
if (SCpnt->SCp.this_residual == 0 &&
SCpnt->SCp.buffers_residual != 0 ) {
//nsp_dbg(NSP_DEBUG_DATA_IO, "scatterlist next timeout=%d", time_out);
SCpnt->SCp.buffers_residual--;
SCpnt->SCp.buffer++;
SCpnt->SCp.ptr = BUFFER_ADDR;
SCpnt->SCp.this_residual = SCpnt->SCp.buffer->length;
time_out = 1000;
//nsp_dbg(NSP_DEBUG_DATA_IO, "page: 0x%p, off: 0x%x", SCpnt->SCp.buffer->page, SCpnt->SCp.buffer->offset);
}
}
data->FifoCount = ocount;
if (time_out < 0) {
nsp_msg(KERN_DEBUG, "pio read timeout resid=%d this_residual=%d buffers_residual=%d",
scsi_get_resid(SCpnt), SCpnt->SCp.this_residual,
SCpnt->SCp.buffers_residual);
}
nsp_dbg(NSP_DEBUG_DATA_IO, "read ocount=0x%x", ocount);
nsp_dbg(NSP_DEBUG_DATA_IO, "r cmd=%d resid=0x%x\n", data->CmdId,
scsi_get_resid(SCpnt));
}
/*
* write data in DATA OUT phase
*/
static void nsp_pio_write(struct scsi_cmnd *SCpnt)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned long mmio_base = SCpnt->device->host->base;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
int time_out;
int ocount, res;
unsigned char stat;
ocount = data->FifoCount;
nsp_dbg(NSP_DEBUG_DATA_IO, "in fifocount=%d ptr=0x%p this_residual=%d buffers=0x%p nbuf=%d resid=0x%x",
data->FifoCount, SCpnt->SCp.ptr, SCpnt->SCp.this_residual,
SCpnt->SCp.buffer, SCpnt->SCp.buffers_residual,
scsi_get_resid(SCpnt));
time_out = 1000;
while ((time_out-- != 0) &&
(SCpnt->SCp.this_residual > 0 || SCpnt->SCp.buffers_residual > 0)) {
stat = nsp_index_read(base, SCSIBUSMON);
stat &= BUSMON_PHASE_MASK;
if (stat != BUSPHASE_DATA_OUT) {
res = ocount - nsp_fifo_count(SCpnt);
nsp_dbg(NSP_DEBUG_DATA_IO, "phase changed stat=0x%x, res=%d\n", stat, res);
/* Put back pointer */
nsp_inc_resid(SCpnt, res);
SCpnt->SCp.ptr -= res;
SCpnt->SCp.this_residual += res;
ocount -= res;
break;
}
res = ocount - nsp_fifo_count(SCpnt);
if (res > 0) { /* write all data? */
nsp_dbg(NSP_DEBUG_DATA_IO, "wait for all data out. ocount=0x%x res=%d", ocount, res);
continue;
}
res = min(SCpnt->SCp.this_residual, WFIFO_CRIT);
//nsp_dbg(NSP_DEBUG_DATA_IO, "ptr=0x%p this=0x%x res=0x%x", SCpnt->SCp.ptr, SCpnt->SCp.this_residual, res);
switch (data->TransferMode) {
case MODE_IO32:
res &= ~(BIT(1)|BIT(0)); /* align 4 */
nsp_fifo32_write(base, SCpnt->SCp.ptr, res >> 2);
break;
case MODE_IO8:
nsp_fifo8_write (base, SCpnt->SCp.ptr, res );
break;
case MODE_MEM32:
res &= ~(BIT(1)|BIT(0)); /* align 4 */
nsp_mmio_fifo32_write(mmio_base, SCpnt->SCp.ptr, res >> 2);
break;
default:
nsp_dbg(NSP_DEBUG_DATA_IO, "unknown write mode");
break;
}
nsp_inc_resid(SCpnt, -res);
SCpnt->SCp.ptr += res;
SCpnt->SCp.this_residual -= res;
ocount += res;
/* go to next scatter list if available */
if (SCpnt->SCp.this_residual == 0 &&
SCpnt->SCp.buffers_residual != 0 ) {
//nsp_dbg(NSP_DEBUG_DATA_IO, "scatterlist next");
SCpnt->SCp.buffers_residual--;
SCpnt->SCp.buffer++;
SCpnt->SCp.ptr = BUFFER_ADDR;
SCpnt->SCp.this_residual = SCpnt->SCp.buffer->length;
time_out = 1000;
}
}
data->FifoCount = ocount;
if (time_out < 0) {
nsp_msg(KERN_DEBUG, "pio write timeout resid=0x%x",
scsi_get_resid(SCpnt));
}
nsp_dbg(NSP_DEBUG_DATA_IO, "write ocount=0x%x", ocount);
nsp_dbg(NSP_DEBUG_DATA_IO, "w cmd=%d resid=0x%x\n", data->CmdId,
scsi_get_resid(SCpnt));
}
#undef RFIFO_CRIT
#undef WFIFO_CRIT
/*
* setup synchronous/asynchronous data transfer mode
*/
static int nsp_nexus(struct scsi_cmnd *SCpnt)
{
unsigned int base = SCpnt->device->host->io_port;
unsigned char target = scmd_id(SCpnt);
// unsigned char lun = SCpnt->device->lun;
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
sync_data *sync = &(data->Sync[target]);
//nsp_dbg(NSP_DEBUG_DATA_IO, "in SCpnt=0x%p", SCpnt);
/* setup synch transfer registers */
nsp_index_write(base, SYNCREG, sync->SyncRegister);
nsp_index_write(base, ACKWIDTH, sync->AckWidth);
if (scsi_get_resid(SCpnt) % 4 != 0 ||
scsi_get_resid(SCpnt) <= PAGE_SIZE ) {
data->TransferMode = MODE_IO8;
} else if (nsp_burst_mode == BURST_MEM32) {
data->TransferMode = MODE_MEM32;
} else if (nsp_burst_mode == BURST_IO32) {
data->TransferMode = MODE_IO32;
} else {
data->TransferMode = MODE_IO8;
}
/* setup pdma fifo */
nsp_setup_fifo(data, TRUE);
/* clear ack counter */
data->FifoCount = 0;
nsp_index_write(base, POINTERCLR, POINTER_CLEAR |
ACK_COUNTER_CLEAR |
REQ_COUNTER_CLEAR |
HOST_COUNTER_CLEAR);
return 0;
}
#include "nsp_message.c"
/*
* interrupt handler
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t nspintr(int irq, void *dev_id)
{
unsigned int base;
unsigned char irq_status, irq_phase, phase;
struct scsi_cmnd *tmpSC;
unsigned char target, lun;
unsigned int *sync_neg;
int i, tmp;
nsp_hw_data *data;
//nsp_dbg(NSP_DEBUG_INTR, "dev_id=0x%p", dev_id);
//nsp_dbg(NSP_DEBUG_INTR, "host=0x%p", ((scsi_info_t *)dev_id)->host);
if ( dev_id != NULL &&
((scsi_info_t *)dev_id)->host != NULL ) {
scsi_info_t *info = (scsi_info_t *)dev_id;
data = (nsp_hw_data *)info->host->hostdata;
} else {
nsp_dbg(NSP_DEBUG_INTR, "host data wrong");
return IRQ_NONE;
}
//nsp_dbg(NSP_DEBUG_INTR, "&nsp_data_base=0x%p, dev_id=0x%p", &nsp_data_base, dev_id);
base = data->BaseAddress;
//nsp_dbg(NSP_DEBUG_INTR, "base=0x%x", base);
/*
* interrupt check
*/
nsp_write(base, IRQCONTROL, IRQCONTROL_IRQDISABLE);
irq_status = nsp_read(base, IRQSTATUS);
//nsp_dbg(NSP_DEBUG_INTR, "irq_status=0x%x", irq_status);
if ((irq_status == 0xff) || ((irq_status & IRQSTATUS_MASK) == 0)) {
nsp_write(base, IRQCONTROL, 0);
//nsp_dbg(NSP_DEBUG_INTR, "no irq/shared irq");
return IRQ_NONE;
}
/* XXX: IMPORTANT
* Do not read an irq_phase register if no scsi phase interrupt.
* Unless, you should lose a scsi phase interrupt.
*/
phase = nsp_index_read(base, SCSIBUSMON);
if((irq_status & IRQSTATUS_SCSI) != 0) {
irq_phase = nsp_index_read(base, IRQPHASESENCE);
} else {
irq_phase = 0;
}
//nsp_dbg(NSP_DEBUG_INTR, "irq_phase=0x%x", irq_phase);
/*
* timer interrupt handler (scsi vs timer interrupts)
*/
//nsp_dbg(NSP_DEBUG_INTR, "timercount=%d", data->TimerCount);
if (data->TimerCount != 0) {
//nsp_dbg(NSP_DEBUG_INTR, "stop timer");
nsp_index_write(base, TIMERCOUNT, 0);
nsp_index_write(base, TIMERCOUNT, 0);
data->TimerCount = 0;
}
if ((irq_status & IRQSTATUS_MASK) == IRQSTATUS_TIMER &&
data->SelectionTimeOut == 0) {
//nsp_dbg(NSP_DEBUG_INTR, "timer start");
nsp_write(base, IRQCONTROL, IRQCONTROL_TIMER_CLEAR);
return IRQ_HANDLED;
}
nsp_write(base, IRQCONTROL, IRQCONTROL_TIMER_CLEAR | IRQCONTROL_FIFO_CLEAR);
if ((irq_status & IRQSTATUS_SCSI) &&
(irq_phase & SCSI_RESET_IRQ)) {
nsp_msg(KERN_ERR, "bus reset (power off?)");
nsphw_init(data);
nsp_bus_reset(data);
if(data->CurrentSC != NULL) {
tmpSC = data->CurrentSC;
tmpSC->result = (DID_RESET << 16) |
((tmpSC->SCp.Message & 0xff) << 8) |
((tmpSC->SCp.Status & 0xff) << 0);
nsp_scsi_done(tmpSC);
}
return IRQ_HANDLED;
}
if (data->CurrentSC == NULL) {
nsp_msg(KERN_ERR, "CurrentSC==NULL irq_status=0x%x phase=0x%x irq_phase=0x%x this can't be happen. reset everything", irq_status, phase, irq_phase);
nsphw_init(data);
nsp_bus_reset(data);
return IRQ_HANDLED;
}
tmpSC = data->CurrentSC;
target = tmpSC->device->id;
lun = tmpSC->device->lun;
sync_neg = &(data->Sync[target].SyncNegotiation);
/*
* parse hardware SCSI irq reasons register
*/
if (irq_status & IRQSTATUS_SCSI) {
if (irq_phase & RESELECT_IRQ) {
nsp_dbg(NSP_DEBUG_INTR, "reselect");
nsp_write(base, IRQCONTROL, IRQCONTROL_RESELECT_CLEAR);
if (nsp_reselected(tmpSC) != FALSE) {
return IRQ_HANDLED;
}
}
if ((irq_phase & (PHASE_CHANGE_IRQ | LATCHED_BUS_FREE)) == 0) {
return IRQ_HANDLED;
}
}
//show_phase(tmpSC);
switch(tmpSC->SCp.phase) {
case PH_SELSTART:
// *sync_neg = SYNC_NOT_YET;
if ((phase & BUSMON_BSY) == 0) {
//nsp_dbg(NSP_DEBUG_INTR, "selection count=%d", data->SelectionTimeOut);
if (data->SelectionTimeOut >= NSP_SELTIMEOUT) {
nsp_dbg(NSP_DEBUG_INTR, "selection time out");
data->SelectionTimeOut = 0;
nsp_index_write(base, SCSIBUSCTRL, 0);
tmpSC->result = DID_TIME_OUT << 16;
nsp_scsi_done(tmpSC);
return IRQ_HANDLED;
}
data->SelectionTimeOut += 1;
nsp_start_timer(tmpSC, 1000/51);
return IRQ_HANDLED;
}
/* attention assert */
//nsp_dbg(NSP_DEBUG_INTR, "attention assert");
data->SelectionTimeOut = 0;
tmpSC->SCp.phase = PH_SELECTED;
nsp_index_write(base, SCSIBUSCTRL, SCSI_ATN);
udelay(1);
nsp_index_write(base, SCSIBUSCTRL, SCSI_ATN | AUTODIRECTION | ACKENB);
return IRQ_HANDLED;
break;
case PH_RESELECT:
//nsp_dbg(NSP_DEBUG_INTR, "phase reselect");
// *sync_neg = SYNC_NOT_YET;
if ((phase & BUSMON_PHASE_MASK) != BUSPHASE_MESSAGE_IN) {
tmpSC->result = DID_ABORT << 16;
nsp_scsi_done(tmpSC);
return IRQ_HANDLED;
}
/* fall thru */
default:
if ((irq_status & (IRQSTATUS_SCSI | IRQSTATUS_FIFO)) == 0) {
return IRQ_HANDLED;
}
break;
}
/*
* SCSI sequencer
*/
//nsp_dbg(NSP_DEBUG_INTR, "start scsi seq");
/* normal disconnect */
if (((tmpSC->SCp.phase == PH_MSG_IN) || (tmpSC->SCp.phase == PH_MSG_OUT)) &&
(irq_phase & LATCHED_BUS_FREE) != 0 ) {
nsp_dbg(NSP_DEBUG_INTR, "normal disconnect irq_status=0x%x, phase=0x%x, irq_phase=0x%x", irq_status, phase, irq_phase);
//*sync_neg = SYNC_NOT_YET;
if ((tmpSC->SCp.Message == MSG_COMMAND_COMPLETE)) { /* all command complete and return status */
tmpSC->result = (DID_OK << 16) |
((tmpSC->SCp.Message & 0xff) << 8) |
((tmpSC->SCp.Status & 0xff) << 0);
nsp_dbg(NSP_DEBUG_INTR, "command complete result=0x%x", tmpSC->result);
nsp_scsi_done(tmpSC);
return IRQ_HANDLED;
}
return IRQ_HANDLED;
}
/* check unexpected bus free state */
if (phase == 0) {
nsp_msg(KERN_DEBUG, "unexpected bus free. irq_status=0x%x, phase=0x%x, irq_phase=0x%x", irq_status, phase, irq_phase);
*sync_neg = SYNC_NG;
tmpSC->result = DID_ERROR << 16;
nsp_scsi_done(tmpSC);
return IRQ_HANDLED;
}
switch (phase & BUSMON_PHASE_MASK) {
case BUSPHASE_COMMAND:
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_COMMAND");
if ((phase & BUSMON_REQ) == 0) {
nsp_dbg(NSP_DEBUG_INTR, "REQ == 0");
return IRQ_HANDLED;
}
tmpSC->SCp.phase = PH_COMMAND;
nsp_nexus(tmpSC);
/* write scsi command */
nsp_dbg(NSP_DEBUG_INTR, "cmd_len=%d", tmpSC->cmd_len);
nsp_index_write(base, COMMANDCTRL, CLEAR_COMMAND_POINTER);
for (i = 0; i < tmpSC->cmd_len; i++) {
nsp_index_write(base, COMMANDDATA, tmpSC->cmnd[i]);
}
nsp_index_write(base, COMMANDCTRL, CLEAR_COMMAND_POINTER | AUTO_COMMAND_GO);
break;
case BUSPHASE_DATA_OUT:
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_DATA_OUT");
tmpSC->SCp.phase = PH_DATA;
tmpSC->SCp.have_data_in = IO_OUT;
nsp_pio_write(tmpSC);
break;
case BUSPHASE_DATA_IN:
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_DATA_IN");
tmpSC->SCp.phase = PH_DATA;
tmpSC->SCp.have_data_in = IO_IN;
nsp_pio_read(tmpSC);
break;
case BUSPHASE_STATUS:
nsp_dataphase_bypass(tmpSC);
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_STATUS");
tmpSC->SCp.phase = PH_STATUS;
tmpSC->SCp.Status = nsp_index_read(base, SCSIDATAWITHACK);
nsp_dbg(NSP_DEBUG_INTR, "message=0x%x status=0x%x", tmpSC->SCp.Message, tmpSC->SCp.Status);
break;
case BUSPHASE_MESSAGE_OUT:
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_MESSAGE_OUT");
if ((phase & BUSMON_REQ) == 0) {
goto timer_out;
}
tmpSC->SCp.phase = PH_MSG_OUT;
//*sync_neg = SYNC_NOT_YET;
data->MsgLen = i = 0;
data->MsgBuffer[i] = IDENTIFY(TRUE, lun); i++;
if (*sync_neg == SYNC_NOT_YET) {
data->Sync[target].SyncPeriod = 0;
data->Sync[target].SyncOffset = 0;
/**/
data->MsgBuffer[i] = MSG_EXTENDED; i++;
data->MsgBuffer[i] = 3; i++;
data->MsgBuffer[i] = MSG_EXT_SDTR; i++;
data->MsgBuffer[i] = 0x0c; i++;
data->MsgBuffer[i] = 15; i++;
/**/
}
data->MsgLen = i;
nsp_analyze_sdtr(tmpSC);
show_message(data);
nsp_message_out(tmpSC);
break;
case BUSPHASE_MESSAGE_IN:
nsp_dataphase_bypass(tmpSC);
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE_MESSAGE_IN");
if ((phase & BUSMON_REQ) == 0) {
goto timer_out;
}
tmpSC->SCp.phase = PH_MSG_IN;
nsp_message_in(tmpSC);
/**/
if (*sync_neg == SYNC_NOT_YET) {
//nsp_dbg(NSP_DEBUG_INTR, "sync target=%d,lun=%d",target,lun);
if (data->MsgLen >= 5 &&
data->MsgBuffer[0] == MSG_EXTENDED &&
data->MsgBuffer[1] == 3 &&
data->MsgBuffer[2] == MSG_EXT_SDTR ) {
data->Sync[target].SyncPeriod = data->MsgBuffer[3];
data->Sync[target].SyncOffset = data->MsgBuffer[4];
//nsp_dbg(NSP_DEBUG_INTR, "sync ok, %d %d", data->MsgBuffer[3], data->MsgBuffer[4]);
*sync_neg = SYNC_OK;
} else {
data->Sync[target].SyncPeriod = 0;
data->Sync[target].SyncOffset = 0;
*sync_neg = SYNC_NG;
}
nsp_analyze_sdtr(tmpSC);
}
/**/
/* search last messeage byte */
tmp = -1;
for (i = 0; i < data->MsgLen; i++) {
tmp = data->MsgBuffer[i];
if (data->MsgBuffer[i] == MSG_EXTENDED) {
i += (1 + data->MsgBuffer[i+1]);
}
}
tmpSC->SCp.Message = tmp;
nsp_dbg(NSP_DEBUG_INTR, "message=0x%x len=%d", tmpSC->SCp.Message, data->MsgLen);
show_message(data);
break;
case BUSPHASE_SELECT:
default:
nsp_dbg(NSP_DEBUG_INTR, "BUSPHASE other");
break;
}
//nsp_dbg(NSP_DEBUG_INTR, "out");
return IRQ_HANDLED;
timer_out:
nsp_start_timer(tmpSC, 1000/102);
return IRQ_HANDLED;
}
#ifdef NSP_DEBUG
#include "nsp_debug.c"
#endif /* NSP_DEBUG */
/*----------------------------------------------------------------*/
/* look for ninja3 card and init if found */
/*----------------------------------------------------------------*/
static struct Scsi_Host *nsp_detect(struct scsi_host_template *sht)
{
struct Scsi_Host *host; /* registered host structure */
nsp_hw_data *data_b = &nsp_data_base, *data;
nsp_dbg(NSP_DEBUG_INIT, "this_id=%d", sht->this_id);
host = scsi_host_alloc(&nsp_driver_template, sizeof(nsp_hw_data));
if (host == NULL) {
nsp_dbg(NSP_DEBUG_INIT, "host failed");
return NULL;
}
memcpy(host->hostdata, data_b, sizeof(nsp_hw_data));
data = (nsp_hw_data *)host->hostdata;
data->ScsiInfo->host = host;
#ifdef NSP_DEBUG
data->CmdId = 0;
#endif
nsp_dbg(NSP_DEBUG_INIT, "irq=%d,%d", data_b->IrqNumber, ((nsp_hw_data *)host->hostdata)->IrqNumber);
host->unique_id = data->BaseAddress;
host->io_port = data->BaseAddress;
host->n_io_port = data->NumAddress;
host->irq = data->IrqNumber;
host->base = data->MmioAddress;
spin_lock_init(&(data->Lock));
snprintf(data->nspinfo,
sizeof(data->nspinfo),
"NinjaSCSI-3/32Bi Driver $Revision: 1.23 $ IO:0x%04lx-0x%04lx MMIO(virt addr):0x%04lx IRQ:%02d",
host->io_port, host->io_port + host->n_io_port - 1,
host->base,
host->irq);
sht->name = data->nspinfo;
nsp_dbg(NSP_DEBUG_INIT, "end");
return host; /* detect done. */
}
/*----------------------------------------------------------------*/
/* return info string */
/*----------------------------------------------------------------*/
static const char *nsp_info(struct Scsi_Host *shpnt)
{
nsp_hw_data *data = (nsp_hw_data *)shpnt->hostdata;
return data->nspinfo;
}
#undef SPRINTF
#define SPRINTF(args...) \
do { \
if(length > (pos - buffer)) { \
pos += snprintf(pos, length - (pos - buffer) + 1, ## args); \
nsp_dbg(NSP_DEBUG_PROC, "buffer=0x%p pos=0x%p length=%d %d\n", buffer, pos, length, length - (pos - buffer));\
} \
} while(0)
static int nsp_proc_info(struct Scsi_Host *host, char *buffer, char **start,
off_t offset, int length, int inout)
{
int id;
char *pos = buffer;
int thislength;
int speed;
unsigned long flags;
nsp_hw_data *data;
int hostno;
if (inout) {
return -EINVAL;
}
hostno = host->host_no;
data = (nsp_hw_data *)host->hostdata;
SPRINTF("NinjaSCSI status\n\n");
SPRINTF("Driver version: $Revision: 1.23 $\n");
SPRINTF("SCSI host No.: %d\n", hostno);
SPRINTF("IRQ: %d\n", host->irq);
SPRINTF("IO: 0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1);
SPRINTF("MMIO(virtual address): 0x%lx-0x%lx\n", host->base, host->base + data->MmioLength - 1);
SPRINTF("sg_tablesize: %d\n", host->sg_tablesize);
SPRINTF("burst transfer mode: ");
switch (nsp_burst_mode) {
case BURST_IO8:
SPRINTF("io8");
break;
case BURST_IO32:
SPRINTF("io32");
break;
case BURST_MEM32:
SPRINTF("mem32");
break;
default:
SPRINTF("???");
break;
}
SPRINTF("\n");
spin_lock_irqsave(&(data->Lock), flags);
SPRINTF("CurrentSC: 0x%p\n\n", data->CurrentSC);
spin_unlock_irqrestore(&(data->Lock), flags);
SPRINTF("SDTR status\n");
for(id = 0; id < ARRAY_SIZE(data->Sync); id++) {
SPRINTF("id %d: ", id);
if (id == host->this_id) {
SPRINTF("----- NinjaSCSI-3 host adapter\n");
continue;
}
switch(data->Sync[id].SyncNegotiation) {
case SYNC_OK:
SPRINTF(" sync");
break;
case SYNC_NG:
SPRINTF("async");
break;
case SYNC_NOT_YET:
SPRINTF(" none");
break;
default:
SPRINTF("?????");
break;
}
if (data->Sync[id].SyncPeriod != 0) {
speed = 1000000 / (data->Sync[id].SyncPeriod * 4);
SPRINTF(" transfer %d.%dMB/s, offset %d",
speed / 1000,
speed % 1000,
data->Sync[id].SyncOffset
);
}
SPRINTF("\n");
}
thislength = pos - (buffer + offset);
if(thislength < 0) {
*start = NULL;
return 0;
}
thislength = min(thislength, length);
*start = buffer + offset;
return thislength;
}
#undef SPRINTF
/*---------------------------------------------------------------*/
/* error handler */
/*---------------------------------------------------------------*/
/*
static int nsp_eh_abort(struct scsi_cmnd *SCpnt)
{
nsp_dbg(NSP_DEBUG_BUSRESET, "SCpnt=0x%p", SCpnt);
return nsp_eh_bus_reset(SCpnt);
}*/
static int nsp_bus_reset(nsp_hw_data *data)
{
unsigned int base = data->BaseAddress;
int i;
nsp_write(base, IRQCONTROL, IRQCONTROL_ALLMASK);
nsp_index_write(base, SCSIBUSCTRL, SCSI_RST);
mdelay(100); /* 100ms */
nsp_index_write(base, SCSIBUSCTRL, 0);
for(i = 0; i < 5; i++) {
nsp_index_read(base, IRQPHASESENCE); /* dummy read */
}
nsphw_init_sync(data);
nsp_write(base, IRQCONTROL, IRQCONTROL_ALLCLEAR);
return SUCCESS;
}
static int nsp_eh_bus_reset(struct scsi_cmnd *SCpnt)
{
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
nsp_dbg(NSP_DEBUG_BUSRESET, "SCpnt=0x%p", SCpnt);
return nsp_bus_reset(data);
}
static int nsp_eh_host_reset(struct scsi_cmnd *SCpnt)
{
nsp_hw_data *data = (nsp_hw_data *)SCpnt->device->host->hostdata;
nsp_dbg(NSP_DEBUG_BUSRESET, "in");
nsphw_init(data);
return SUCCESS;
}
/**********************************************************************
PCMCIA functions
**********************************************************************/
/*======================================================================
nsp_cs_attach() creates an "instance" of the driver, allocating
local data structures for one device. The device is registered
with Card Services.
The dev_link structure is initialized, but we don't actually
configure the card at this point -- we wait until we receive a
card insertion event.
======================================================================*/
static int nsp_cs_probe(struct pcmcia_device *link)
{
scsi_info_t *info;
nsp_hw_data *data = &nsp_data_base;
int ret;
nsp_dbg(NSP_DEBUG_INIT, "in");
/* Create new SCSI device */
2007-07-19 12:49:03 +04:00
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL) { return -ENOMEM; }
info->p_dev = link;
link->priv = info;
data->ScsiInfo = info;
nsp_dbg(NSP_DEBUG_INIT, "info=0x%p", info);
/* The io structure describes IO port mapping */
link->io.NumPorts1 = 0x10;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
link->io.IOAddrLines = 10; /* not used */
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
/* Interrupt handler */
link->irq.Handler = &nspintr;
link->irq.Instance = info;
link->irq.Attributes |= IRQF_SHARED;
/* General socket configuration */
link->conf.Attributes = CONF_ENABLE_IRQ;
link->conf.IntType = INT_MEMORY_AND_IO;
ret = nsp_cs_config(link);
nsp_dbg(NSP_DEBUG_INIT, "link=0x%p", link);
return ret;
} /* nsp_cs_attach */
/*======================================================================
This deletes a driver "instance". The device is de-registered
with Card Services. If it has been released, all local data
structures are freed. Otherwise, the structures will be freed
when the device is released.
======================================================================*/
static void nsp_cs_detach(struct pcmcia_device *link)
{
nsp_dbg(NSP_DEBUG_INIT, "in, link=0x%p", link);
((scsi_info_t *)link->priv)->stop = 1;
nsp_cs_release(link);
kfree(link->priv);
link->priv = NULL;
} /* nsp_cs_detach */
/*======================================================================
nsp_cs_config() is scheduled to run after a CARD_INSERTION event
is received, to configure the PCMCIA socket, and to make the
ethernet device available to the system.
======================================================================*/
struct nsp_cs_configdata {
nsp_hw_data *data;
win_req_t req;
};
static int nsp_cs_config_check(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cfg,
cistpl_cftable_entry_t *dflt,
unsigned int vcc,
void *priv_data)
{
struct nsp_cs_configdata *cfg_mem = priv_data;
if (cfg->index == 0)
return -ENODEV;
/* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
p_dev->conf.Attributes |= CONF_ENABLE_SPKR;
p_dev->conf.Status = CCSR_AUDIO_ENA;
}
/* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1<<CISTPL_POWER_VNOM)) {
if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM]/10000)
return -ENODEV;
else if (dflt->vcc.present & (1<<CISTPL_POWER_VNOM)) {
if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM]/10000)
return -ENODEV;
}
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) {
p_dev->conf.Vpp =
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
} else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM)) {
p_dev->conf.Vpp =
dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
}
/* Do we need to allocate an interrupt? */
if (cfg->irq.IRQInfo1 || dflt->irq.IRQInfo1)
p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */
p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt->io.nwin > 0)) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT))
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT))
p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
p_dev->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
p_dev->io.BasePort1 = io->win[0].base;
p_dev->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) {
p_dev->io.Attributes2 = p_dev->io.Attributes1;
p_dev->io.BasePort2 = io->win[1].base;
p_dev->io.NumPorts2 = io->win[1].len;
}
/* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(p_dev, &p_dev->io) != 0)
goto next_entry;
}
if ((cfg->mem.nwin > 0) || (dflt->mem.nwin > 0)) {
memreq_t map;
cistpl_mem_t *mem =
(cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
cfg_mem->req.Attributes = WIN_DATA_WIDTH_16|WIN_MEMORY_TYPE_CM;
cfg_mem->req.Attributes |= WIN_ENABLE;
cfg_mem->req.Base = mem->win[0].host_addr;
cfg_mem->req.Size = mem->win[0].len;
if (cfg_mem->req.Size < 0x1000)
cfg_mem->req.Size = 0x1000;
cfg_mem->req.AccessSpeed = 0;
if (pcmcia_request_window(&p_dev, &cfg_mem->req, &p_dev->win) != 0)
goto next_entry;
map.Page = 0; map.CardOffset = mem->win[0].card_addr;
if (pcmcia_map_mem_page(p_dev->win, &map) != 0)
goto next_entry;
cfg_mem->data->MmioAddress = (unsigned long) ioremap_nocache(cfg_mem->req.Base, cfg_mem->req.Size);
cfg_mem->data->MmioLength = cfg_mem->req.Size;
}
/* If we got this far, we're cool! */
return 0;
}
next_entry:
nsp_dbg(NSP_DEBUG_INIT, "next");
pcmcia_disable_device(p_dev);
return -ENODEV;
}
static int nsp_cs_config(struct pcmcia_device *link)
{
int ret;
scsi_info_t *info = link->priv;
struct nsp_cs_configdata *cfg_mem;
struct Scsi_Host *host;
nsp_hw_data *data = &nsp_data_base;
nsp_dbg(NSP_DEBUG_INIT, "in");
cfg_mem = kzalloc(sizeof(cfg_mem), GFP_KERNEL);
if (!cfg_mem)
return -ENOMEM;
cfg_mem->data = data;
ret = pcmcia_loop_config(link, nsp_cs_config_check, cfg_mem);
goto cs_failed;
if (link->conf.Attributes & CONF_ENABLE_IRQ) {
if (pcmcia_request_irq(link, &link->irq))
goto cs_failed;
}
ret = pcmcia_request_configuration(link, &link->conf);
if (ret)
goto cs_failed;
if (free_ports) {
if (link->io.BasePort1) {
release_region(link->io.BasePort1, link->io.NumPorts1);
}
if (link->io.BasePort2) {
release_region(link->io.BasePort2, link->io.NumPorts2);
}
}
/* Set port and IRQ */
data->BaseAddress = link->io.BasePort1;
data->NumAddress = link->io.NumPorts1;
data->IrqNumber = link->irq.AssignedIRQ;
nsp_dbg(NSP_DEBUG_INIT, "I/O[0x%x+0x%x] IRQ %d",
data->BaseAddress, data->NumAddress, data->IrqNumber);
if(nsphw_init(data) == FALSE) {
goto cs_failed;
}
host = nsp_detect(&nsp_driver_template);
if (host == NULL) {
nsp_dbg(NSP_DEBUG_INIT, "detect failed");
goto cs_failed;
}
ret = scsi_add_host (host, NULL);
if (ret)
goto cs_failed;
scsi_scan_host(host);
snprintf(info->node.dev_name, sizeof(info->node.dev_name), "scsi%d", host->host_no);
link->dev_node = &info->node;
info->host = host;
/* Finally, report what we've done */
printk(KERN_INFO "nsp_cs: index 0x%02x: ",
link->conf.ConfigIndex);
if (link->conf.Vpp) {
printk(", Vpp %d.%d", link->conf.Vpp/10, link->conf.Vpp%10);
}
if (link->conf.Attributes & CONF_ENABLE_IRQ) {
printk(", irq %d", link->irq.AssignedIRQ);
}
if (link->io.NumPorts1) {
printk(", io 0x%04x-0x%04x", link->io.BasePort1,
link->io.BasePort1+link->io.NumPorts1-1);
}
if (link->io.NumPorts2)
printk(" & 0x%04x-0x%04x", link->io.BasePort2,
link->io.BasePort2+link->io.NumPorts2-1);
if (link->win)
printk(", mem 0x%06lx-0x%06lx", cfg_mem->req.Base,
cfg_mem->req.Base+cfg_mem->req.Size-1);
printk("\n");
kfree(cfg_mem);
return 0;
cs_failed:
nsp_dbg(NSP_DEBUG_INIT, "config fail");
nsp_cs_release(link);
kfree(cfg_mem);
return -ENODEV;
} /* nsp_cs_config */
/*======================================================================
After a card is removed, nsp_cs_release() will unregister the net
device, and release the PCMCIA configuration. If the device is
still open, this will be postponed until it is closed.
======================================================================*/
static void nsp_cs_release(struct pcmcia_device *link)
{
scsi_info_t *info = link->priv;
nsp_hw_data *data = NULL;
if (info->host == NULL) {
nsp_msg(KERN_DEBUG, "unexpected card release call.");
} else {
data = (nsp_hw_data *)info->host->hostdata;
}
nsp_dbg(NSP_DEBUG_INIT, "link=0x%p", link);
/* Unlink the device chain */
if (info->host != NULL) {
scsi_remove_host(info->host);
}
link->dev_node = NULL;
if (link->win) {
if (data != NULL) {
iounmap((void *)(data->MmioAddress));
}
}
pcmcia_disable_device(link);
if (info->host != NULL) {
scsi_host_put(info->host);
}
} /* nsp_cs_release */
static int nsp_cs_suspend(struct pcmcia_device *link)
{
scsi_info_t *info = link->priv;
nsp_hw_data *data;
nsp_dbg(NSP_DEBUG_INIT, "event: suspend");
if (info->host != NULL) {
nsp_msg(KERN_INFO, "clear SDTR status");
data = (nsp_hw_data *)info->host->hostdata;
nsphw_init_sync(data);
}
info->stop = 1;
return 0;
}
static int nsp_cs_resume(struct pcmcia_device *link)
{
scsi_info_t *info = link->priv;
nsp_hw_data *data;
nsp_dbg(NSP_DEBUG_INIT, "event: resume");
info->stop = 0;
if (info->host != NULL) {
nsp_msg(KERN_INFO, "reset host and bus");
data = (nsp_hw_data *)info->host->hostdata;
nsphw_init (data);
nsp_bus_reset(data);
}
return 0;
}
/*======================================================================*
* module entry point
*====================================================================*/
static struct pcmcia_device_id nsp_cs_ids[] = {
PCMCIA_DEVICE_PROD_ID123("IO DATA", "CBSC16 ", "1", 0x547e66dc, 0x0d63a3fd, 0x51de003a),
PCMCIA_DEVICE_PROD_ID123("KME ", "SCSI-CARD-001", "1", 0x534c02bc, 0x52008408, 0x51de003a),
PCMCIA_DEVICE_PROD_ID123("KME ", "SCSI-CARD-002", "1", 0x534c02bc, 0xcb09d5b2, 0x51de003a),
PCMCIA_DEVICE_PROD_ID123("KME ", "SCSI-CARD-003", "1", 0x534c02bc, 0xbc0ee524, 0x51de003a),
PCMCIA_DEVICE_PROD_ID123("KME ", "SCSI-CARD-004", "1", 0x534c02bc, 0x226a7087, 0x51de003a),
PCMCIA_DEVICE_PROD_ID123("WBT", "NinjaSCSI-3", "R1.0", 0xc7ba805f, 0xfdc7c97d, 0x6973710e),
PCMCIA_DEVICE_PROD_ID123("WORKBIT", "UltraNinja-16", "1", 0x28191418, 0xb70f4b09, 0x51de003a),
PCMCIA_DEVICE_NULL
};
MODULE_DEVICE_TABLE(pcmcia, nsp_cs_ids);
static struct pcmcia_driver nsp_driver = {
.owner = THIS_MODULE,
.drv = {
.name = "nsp_cs",
},
.probe = nsp_cs_probe,
.remove = nsp_cs_detach,
.id_table = nsp_cs_ids,
.suspend = nsp_cs_suspend,
.resume = nsp_cs_resume,
};
static int __init nsp_cs_init(void)
{
nsp_msg(KERN_INFO, "loading...");
return pcmcia_register_driver(&nsp_driver);
}
static void __exit nsp_cs_exit(void)
{
nsp_msg(KERN_INFO, "unloading...");
pcmcia_unregister_driver(&nsp_driver);
}
module_init(nsp_cs_init)
module_exit(nsp_cs_exit)
/* end */