WSL2-Linux-Kernel/crypto/ccm.c

958 строки
23 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* CCM: Counter with CBC-MAC
*
* (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
*/
#include <crypto/internal/aead.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
struct ccm_instance_ctx {
struct crypto_skcipher_spawn ctr;
struct crypto_ahash_spawn mac;
};
struct crypto_ccm_ctx {
struct crypto_ahash *mac;
struct crypto_skcipher *ctr;
};
struct crypto_rfc4309_ctx {
struct crypto_aead *child;
u8 nonce[3];
};
struct crypto_rfc4309_req_ctx {
struct scatterlist src[3];
struct scatterlist dst[3];
struct aead_request subreq;
};
struct crypto_ccm_req_priv_ctx {
u8 odata[16];
u8 idata[16];
u8 auth_tag[16];
u32 flags;
struct scatterlist src[3];
struct scatterlist dst[3];
union {
struct ahash_request ahreq;
struct skcipher_request skreq;
};
};
struct cbcmac_tfm_ctx {
struct crypto_cipher *child;
};
struct cbcmac_desc_ctx {
unsigned int len;
};
static inline struct crypto_ccm_req_priv_ctx *crypto_ccm_reqctx(
struct aead_request *req)
{
unsigned long align = crypto_aead_alignmask(crypto_aead_reqtfm(req));
return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), align + 1);
}
static int set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int crypto_ccm_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
struct crypto_skcipher *ctr = ctx->ctr;
struct crypto_ahash *mac = ctx->mac;
int err;
crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(ctr, key, keylen);
if (err)
return err;
crypto_ahash_clear_flags(mac, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(mac, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
return crypto_ahash_setkey(mac, key, keylen);
}
static int crypto_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int format_input(u8 *info, struct aead_request *req,
unsigned int cryptlen)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
unsigned int lp = req->iv[0];
unsigned int l = lp + 1;
unsigned int m;
m = crypto_aead_authsize(aead);
memcpy(info, req->iv, 16);
/* format control info per RFC 3610 and
* NIST Special Publication 800-38C
*/
*info |= (8 * ((m - 2) / 2));
if (req->assoclen)
*info |= 64;
return set_msg_len(info + 16 - l, cryptlen, l);
}
static int format_adata(u8 *adata, unsigned int a)
{
int len = 0;
/* add control info for associated data
* RFC 3610 and NIST Special Publication 800-38C
*/
if (a < 65280) {
*(__be16 *)adata = cpu_to_be16(a);
len = 2;
} else {
*(__be16 *)adata = cpu_to_be16(0xfffe);
*(__be32 *)&adata[2] = cpu_to_be32(a);
len = 6;
}
return len;
}
static int crypto_ccm_auth(struct aead_request *req, struct scatterlist *plain,
unsigned int cryptlen)
{
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
struct ahash_request *ahreq = &pctx->ahreq;
unsigned int assoclen = req->assoclen;
struct scatterlist sg[3];
u8 *odata = pctx->odata;
u8 *idata = pctx->idata;
int ilen, err;
/* format control data for input */
err = format_input(odata, req, cryptlen);
if (err)
goto out;
sg_init_table(sg, 3);
sg_set_buf(&sg[0], odata, 16);
/* format associated data and compute into mac */
if (assoclen) {
ilen = format_adata(idata, assoclen);
sg_set_buf(&sg[1], idata, ilen);
sg_chain(sg, 3, req->src);
crypto: ccm - Fix handling of null assoc data Its a valid use case to have null associated data in a ccm vector, but this case isn't being handled properly right now. The following ccm decryption/verification test vector, using the rfc4309 implementation regularly triggers a panic, as will any other vector with null assoc data: * key: ab2f8a74b71cd2b1ff802e487d82f8b9 * iv: c6fb7d800d13abd8a6b2d8 * Associated Data: [NULL] * Tag Length: 8 * input: d5e8939fc7892e2b The resulting panic looks like so: Unable to handle kernel paging request at ffff810064ddaec0 RIP: [<ffffffff8864c4d7>] :ccm:get_data_to_compute+0x1a6/0x1d6 PGD 8063 PUD 0 Oops: 0002 [1] SMP last sysfs file: /module/libata/version CPU 0 Modules linked in: crypto_tester_kmod(U) seqiv krng ansi_cprng chainiv rng ctr aes_generic aes_x86_64 ccm cryptomgr testmgr_cipher testmgr aead crypto_blkcipher crypto_a lgapi des ipv6 xfrm_nalgo crypto_api autofs4 hidp l2cap bluetooth nfs lockd fscache nfs_acl sunrpc ip_conntrack_netbios_ns ipt_REJECT xt_state ip_conntrack nfnetlink xt_ tcpudp iptable_filter ip_tables x_tables dm_mirror dm_log dm_multipath scsi_dh dm_mod video hwmon backlight sbs i2c_ec button battery asus_acpi acpi_memhotplug ac lp sg snd_intel8x0 snd_ac97_codec ac97_bus snd_seq_dummy snd_seq_oss joydev snd_seq_midi_event snd_seq snd_seq_device snd_pcm_oss snd_mixer_oss ide_cd snd_pcm floppy parport_p c shpchp e752x_edac snd_timer e1000 i2c_i801 edac_mc snd soundcore snd_page_alloc i2c_core cdrom parport serio_raw pcspkr ata_piix libata sd_mod scsi_mod ext3 jbd uhci_h cd ohci_hcd ehci_hcd Pid: 12844, comm: crypto-tester Tainted: G 2.6.18-128.el5.fips1 #1 RIP: 0010:[<ffffffff8864c4d7>] [<ffffffff8864c4d7>] :ccm:get_data_to_compute+0x1a6/0x1d6 RSP: 0018:ffff8100134434e8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8100104898b0 RCX: ffffffffab6aea10 RDX: 0000000000000010 RSI: ffff8100104898c0 RDI: ffff810064ddaec0 RBP: 0000000000000000 R08: ffff8100104898b0 R09: 0000000000000000 R10: ffff8100103bac84 R11: ffff8100104898b0 R12: ffff810010489858 R13: ffff8100104898b0 R14: ffff8100103bac00 R15: 0000000000000000 FS: 00002ab881adfd30(0000) GS:ffffffff803ac000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: ffff810064ddaec0 CR3: 0000000012a88000 CR4: 00000000000006e0 Process crypto-tester (pid: 12844, threadinfo ffff810013442000, task ffff81003d165860) Stack: ffff8100103bac00 ffff8100104898e8 ffff8100134436f8 ffffffff00000000 0000000000000000 ffff8100104898b0 0000000000000000 ffff810010489858 0000000000000000 ffff8100103bac00 ffff8100134436f8 ffffffff8864c634 Call Trace: [<ffffffff8864c634>] :ccm:crypto_ccm_auth+0x12d/0x140 [<ffffffff8864cf73>] :ccm:crypto_ccm_decrypt+0x161/0x23a [<ffffffff88633643>] :crypto_tester_kmod:cavs_test_rfc4309_ccm+0x4a5/0x559 [...] The above is from a RHEL5-based kernel, but upstream is susceptible too. The fix is trivial: in crypto/ccm.c:crypto_ccm_auth(), pctx->ilen contains whatever was in memory when pctx was allocated if assoclen is 0. The tested fix is to simply add an else clause setting pctx->ilen to 0 for the assoclen == 0 case, so that get_data_to_compute() doesn't try doing things its not supposed to. Signed-off-by: Jarod Wilson <jarod@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2009-01-22 11:58:15 +03:00
} else {
ilen = 0;
sg_chain(sg, 2, req->src);
}
ahash_request_set_tfm(ahreq, ctx->mac);
ahash_request_set_callback(ahreq, pctx->flags, NULL, NULL);
ahash_request_set_crypt(ahreq, sg, NULL, assoclen + ilen + 16);
err = crypto_ahash_init(ahreq);
if (err)
goto out;
err = crypto_ahash_update(ahreq);
if (err)
goto out;
/* we need to pad the MAC input to a round multiple of the block size */
ilen = 16 - (assoclen + ilen) % 16;
if (ilen < 16) {
memset(idata, 0, ilen);
sg_init_table(sg, 2);
sg_set_buf(&sg[0], idata, ilen);
if (plain)
sg_chain(sg, 2, plain);
plain = sg;
cryptlen += ilen;
}
ahash_request_set_crypt(ahreq, plain, odata, cryptlen);
err = crypto_ahash_finup(ahreq);
out:
return err;
}
static void crypto_ccm_encrypt_done(void *data, int err)
{
struct aead_request *req = data;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
u8 *odata = pctx->odata;
if (!err)
scatterwalk_map_and_copy(odata, req->dst,
req->assoclen + req->cryptlen,
crypto_aead_authsize(aead), 1);
aead_request_complete(req, err);
}
static inline int crypto_ccm_check_iv(const u8 *iv)
{
/* 2 <= L <= 8, so 1 <= L' <= 7. */
if (1 > iv[0] || iv[0] > 7)
return -EINVAL;
return 0;
}
static int crypto_ccm_init_crypt(struct aead_request *req, u8 *tag)
{
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
struct scatterlist *sg;
u8 *iv = req->iv;
int err;
err = crypto_ccm_check_iv(iv);
if (err)
return err;
pctx->flags = aead_request_flags(req);
/* Note: rfc 3610 and NIST 800-38C require counter of
* zero to encrypt auth tag.
*/
memset(iv + 15 - iv[0], 0, iv[0] + 1);
sg_init_table(pctx->src, 3);
sg_set_buf(pctx->src, tag, 16);
sg = scatterwalk_ffwd(pctx->src + 1, req->src, req->assoclen);
if (sg != pctx->src + 1)
sg_chain(pctx->src, 2, sg);
if (req->src != req->dst) {
sg_init_table(pctx->dst, 3);
sg_set_buf(pctx->dst, tag, 16);
sg = scatterwalk_ffwd(pctx->dst + 1, req->dst, req->assoclen);
if (sg != pctx->dst + 1)
sg_chain(pctx->dst, 2, sg);
}
return 0;
}
static int crypto_ccm_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
struct skcipher_request *skreq = &pctx->skreq;
struct scatterlist *dst;
unsigned int cryptlen = req->cryptlen;
u8 *odata = pctx->odata;
u8 *iv = req->iv;
int err;
err = crypto_ccm_init_crypt(req, odata);
if (err)
return err;
err = crypto_ccm_auth(req, sg_next(pctx->src), cryptlen);
if (err)
return err;
dst = pctx->src;
if (req->src != req->dst)
dst = pctx->dst;
skcipher_request_set_tfm(skreq, ctx->ctr);
skcipher_request_set_callback(skreq, pctx->flags,
crypto_ccm_encrypt_done, req);
skcipher_request_set_crypt(skreq, pctx->src, dst, cryptlen + 16, iv);
err = crypto_skcipher_encrypt(skreq);
if (err)
return err;
/* copy authtag to end of dst */
scatterwalk_map_and_copy(odata, sg_next(dst), cryptlen,
crypto_aead_authsize(aead), 1);
return err;
}
static void crypto_ccm_decrypt_done(void *data, int err)
{
struct aead_request *req = data;
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
unsigned int authsize = crypto_aead_authsize(aead);
unsigned int cryptlen = req->cryptlen - authsize;
struct scatterlist *dst;
pctx->flags = 0;
dst = sg_next(req->src == req->dst ? pctx->src : pctx->dst);
if (!err) {
err = crypto_ccm_auth(req, dst, cryptlen);
crypto: crypto_memneq - add equality testing of memory regions w/o timing leaks When comparing MAC hashes, AEAD authentication tags, or other hash values in the context of authentication or integrity checking, it is important not to leak timing information to a potential attacker, i.e. when communication happens over a network. Bytewise memory comparisons (such as memcmp) are usually optimized so that they return a nonzero value as soon as a mismatch is found. E.g, on x86_64/i5 for 512 bytes this can be ~50 cyc for a full mismatch and up to ~850 cyc for a full match (cold). This early-return behavior can leak timing information as a side channel, allowing an attacker to iteratively guess the correct result. This patch adds a new method crypto_memneq ("memory not equal to each other") to the crypto API that compares memory areas of the same length in roughly "constant time" (cache misses could change the timing, but since they don't reveal information about the content of the strings being compared, they are effectively benign). Iow, best and worst case behaviour take the same amount of time to complete (in contrast to memcmp). Note that crypto_memneq (unlike memcmp) can only be used to test for equality or inequality, NOT for lexicographical order. This, however, is not an issue for its use-cases within the crypto API. We tried to locate all of the places in the crypto API where memcmp was being used for authentication or integrity checking, and convert them over to crypto_memneq. crypto_memneq is declared noinline, placed in its own source file, and compiled with optimizations that might increase code size disabled ("Os") because a smart compiler (or LTO) might notice that the return value is always compared against zero/nonzero, and might then reintroduce the same early-return optimization that we are trying to avoid. Using #pragma or __attribute__ optimization annotations of the code for disabling optimization was avoided as it seems to be considered broken or unmaintained for long time in GCC [1]. Therefore, we work around that by specifying the compile flag for memneq.o directly in the Makefile. We found that this seems to be most appropriate. As we use ("Os"), this patch also provides a loop-free "fast-path" for frequently used 16 byte digests. Similarly to kernel library string functions, leave an option for future even further optimized architecture specific assembler implementations. This was a joint work of James Yonan and Daniel Borkmann. Also thanks for feedback from Florian Weimer on this and earlier proposals [2]. [1] http://gcc.gnu.org/ml/gcc/2012-07/msg00211.html [2] https://lkml.org/lkml/2013/2/10/131 Signed-off-by: James Yonan <james@openvpn.net> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Florian Weimer <fw@deneb.enyo.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-26 12:20:39 +04:00
if (!err && crypto_memneq(pctx->auth_tag, pctx->odata, authsize))
err = -EBADMSG;
}
aead_request_complete(req, err);
}
static int crypto_ccm_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
struct skcipher_request *skreq = &pctx->skreq;
struct scatterlist *dst;
unsigned int authsize = crypto_aead_authsize(aead);
unsigned int cryptlen = req->cryptlen;
u8 *authtag = pctx->auth_tag;
u8 *odata = pctx->odata;
u8 *iv = pctx->idata;
int err;
cryptlen -= authsize;
err = crypto_ccm_init_crypt(req, authtag);
if (err)
return err;
scatterwalk_map_and_copy(authtag, sg_next(pctx->src), cryptlen,
authsize, 0);
dst = pctx->src;
if (req->src != req->dst)
dst = pctx->dst;
memcpy(iv, req->iv, 16);
skcipher_request_set_tfm(skreq, ctx->ctr);
skcipher_request_set_callback(skreq, pctx->flags,
crypto_ccm_decrypt_done, req);
skcipher_request_set_crypt(skreq, pctx->src, dst, cryptlen + 16, iv);
err = crypto_skcipher_decrypt(skreq);
if (err)
return err;
err = crypto_ccm_auth(req, sg_next(dst), cryptlen);
if (err)
return err;
/* verify */
crypto: crypto_memneq - add equality testing of memory regions w/o timing leaks When comparing MAC hashes, AEAD authentication tags, or other hash values in the context of authentication or integrity checking, it is important not to leak timing information to a potential attacker, i.e. when communication happens over a network. Bytewise memory comparisons (such as memcmp) are usually optimized so that they return a nonzero value as soon as a mismatch is found. E.g, on x86_64/i5 for 512 bytes this can be ~50 cyc for a full mismatch and up to ~850 cyc for a full match (cold). This early-return behavior can leak timing information as a side channel, allowing an attacker to iteratively guess the correct result. This patch adds a new method crypto_memneq ("memory not equal to each other") to the crypto API that compares memory areas of the same length in roughly "constant time" (cache misses could change the timing, but since they don't reveal information about the content of the strings being compared, they are effectively benign). Iow, best and worst case behaviour take the same amount of time to complete (in contrast to memcmp). Note that crypto_memneq (unlike memcmp) can only be used to test for equality or inequality, NOT for lexicographical order. This, however, is not an issue for its use-cases within the crypto API. We tried to locate all of the places in the crypto API where memcmp was being used for authentication or integrity checking, and convert them over to crypto_memneq. crypto_memneq is declared noinline, placed in its own source file, and compiled with optimizations that might increase code size disabled ("Os") because a smart compiler (or LTO) might notice that the return value is always compared against zero/nonzero, and might then reintroduce the same early-return optimization that we are trying to avoid. Using #pragma or __attribute__ optimization annotations of the code for disabling optimization was avoided as it seems to be considered broken or unmaintained for long time in GCC [1]. Therefore, we work around that by specifying the compile flag for memneq.o directly in the Makefile. We found that this seems to be most appropriate. As we use ("Os"), this patch also provides a loop-free "fast-path" for frequently used 16 byte digests. Similarly to kernel library string functions, leave an option for future even further optimized architecture specific assembler implementations. This was a joint work of James Yonan and Daniel Borkmann. Also thanks for feedback from Florian Weimer on this and earlier proposals [2]. [1] http://gcc.gnu.org/ml/gcc/2012-07/msg00211.html [2] https://lkml.org/lkml/2013/2/10/131 Signed-off-by: James Yonan <james@openvpn.net> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Florian Weimer <fw@deneb.enyo.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-26 12:20:39 +04:00
if (crypto_memneq(authtag, odata, authsize))
return -EBADMSG;
return err;
}
static int crypto_ccm_init_tfm(struct crypto_aead *tfm)
{
struct aead_instance *inst = aead_alg_instance(tfm);
struct ccm_instance_ctx *ictx = aead_instance_ctx(inst);
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_ahash *mac;
struct crypto_skcipher *ctr;
unsigned long align;
int err;
mac = crypto_spawn_ahash(&ictx->mac);
if (IS_ERR(mac))
return PTR_ERR(mac);
ctr = crypto_spawn_skcipher(&ictx->ctr);
err = PTR_ERR(ctr);
if (IS_ERR(ctr))
goto err_free_mac;
ctx->mac = mac;
ctx->ctr = ctr;
align = crypto_aead_alignmask(tfm);
align &= ~(crypto_tfm_ctx_alignment() - 1);
crypto_aead_set_reqsize(
tfm,
align + sizeof(struct crypto_ccm_req_priv_ctx) +
max(crypto_ahash_reqsize(mac), crypto_skcipher_reqsize(ctr)));
return 0;
err_free_mac:
crypto_free_ahash(mac);
return err;
}
static void crypto_ccm_exit_tfm(struct crypto_aead *tfm)
{
struct crypto_ccm_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_ahash(ctx->mac);
crypto_free_skcipher(ctx->ctr);
}
static void crypto_ccm_free(struct aead_instance *inst)
{
struct ccm_instance_ctx *ctx = aead_instance_ctx(inst);
crypto_drop_ahash(&ctx->mac);
crypto_drop_skcipher(&ctx->ctr);
kfree(inst);
}
static int crypto_ccm_create_common(struct crypto_template *tmpl,
struct rtattr **tb,
const char *ctr_name,
const char *mac_name)
{
u32 mask;
struct aead_instance *inst;
struct ccm_instance_ctx *ictx;
struct skcipher_alg *ctr;
struct hash_alg_common *mac;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AEAD, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ictx = aead_instance_ctx(inst);
err = crypto_grab_ahash(&ictx->mac, aead_crypto_instance(inst),
mac_name, 0, mask | CRYPTO_ALG_ASYNC);
if (err)
goto err_free_inst;
mac = crypto_spawn_ahash_alg(&ictx->mac);
err = -EINVAL;
if (strncmp(mac->base.cra_name, "cbcmac(", 7) != 0 ||
mac->digestsize != 16)
goto err_free_inst;
err = crypto_grab_skcipher(&ictx->ctr, aead_crypto_instance(inst),
ctr_name, 0, mask);
if (err)
goto err_free_inst;
ctr = crypto_spawn_skcipher_alg(&ictx->ctr);
2019-04-19 00:44:27 +03:00
/* The skcipher algorithm must be CTR mode, using 16-byte blocks. */
err = -EINVAL;
2019-04-19 00:44:27 +03:00
if (strncmp(ctr->base.cra_name, "ctr(", 4) != 0 ||
crypto_skcipher_alg_ivsize(ctr) != 16 ||
ctr->base.cra_blocksize != 1)
goto err_free_inst;
2019-04-19 00:44:27 +03:00
/* ctr and cbcmac must use the same underlying block cipher. */
if (strcmp(ctr->base.cra_name + 4, mac->base.cra_name + 7) != 0)
goto err_free_inst;
err = -ENAMETOOLONG;
2019-04-19 00:44:27 +03:00
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"ccm(%s", ctr->base.cra_name + 4) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
2019-04-19 00:44:27 +03:00
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"ccm_base(%s,%s)", ctr->base.cra_driver_name,
mac->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_priority = (mac->base.cra_priority +
ctr->base.cra_priority) / 2;
inst->alg.base.cra_blocksize = 1;
inst->alg.base.cra_alignmask = mac->base.cra_alignmask |
ctr->base.cra_alignmask;
inst->alg.ivsize = 16;
inst->alg.chunksize = crypto_skcipher_alg_chunksize(ctr);
inst->alg.maxauthsize = 16;
inst->alg.base.cra_ctxsize = sizeof(struct crypto_ccm_ctx);
inst->alg.init = crypto_ccm_init_tfm;
inst->alg.exit = crypto_ccm_exit_tfm;
inst->alg.setkey = crypto_ccm_setkey;
inst->alg.setauthsize = crypto_ccm_setauthsize;
inst->alg.encrypt = crypto_ccm_encrypt;
inst->alg.decrypt = crypto_ccm_decrypt;
inst->free = crypto_ccm_free;
err = aead_register_instance(tmpl, inst);
if (err) {
err_free_inst:
crypto_ccm_free(inst);
}
return err;
}
static int crypto_ccm_create(struct crypto_template *tmpl, struct rtattr **tb)
{
const char *cipher_name;
char ctr_name[CRYPTO_MAX_ALG_NAME];
char mac_name[CRYPTO_MAX_ALG_NAME];
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return PTR_ERR(cipher_name);
if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(mac_name, CRYPTO_MAX_ALG_NAME, "cbcmac(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
2019-04-19 00:44:27 +03:00
return crypto_ccm_create_common(tmpl, tb, ctr_name, mac_name);
}
static int crypto_ccm_base_create(struct crypto_template *tmpl,
struct rtattr **tb)
{
const char *ctr_name;
2019-04-19 00:44:27 +03:00
const char *mac_name;
ctr_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(ctr_name))
return PTR_ERR(ctr_name);
2019-04-19 00:44:27 +03:00
mac_name = crypto_attr_alg_name(tb[2]);
if (IS_ERR(mac_name))
return PTR_ERR(mac_name);
2019-04-19 00:44:27 +03:00
return crypto_ccm_create_common(tmpl, tb, ctr_name, mac_name);
}
static int crypto_rfc4309_setkey(struct crypto_aead *parent, const u8 *key,
unsigned int keylen)
{
struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent);
struct crypto_aead *child = ctx->child;
if (keylen < 3)
return -EINVAL;
keylen -= 3;
memcpy(ctx->nonce, key + keylen, 3);
crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(child, crypto_aead_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
return crypto_aead_setkey(child, key, keylen);
}
static int crypto_rfc4309_setauthsize(struct crypto_aead *parent,
unsigned int authsize)
{
struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent);
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
return crypto_aead_setauthsize(ctx->child, authsize);
}
static struct aead_request *crypto_rfc4309_crypt(struct aead_request *req)
{
struct crypto_rfc4309_req_ctx *rctx = aead_request_ctx(req);
struct aead_request *subreq = &rctx->subreq;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(aead);
struct crypto_aead *child = ctx->child;
struct scatterlist *sg;
u8 *iv = PTR_ALIGN((u8 *)(subreq + 1) + crypto_aead_reqsize(child),
crypto_aead_alignmask(child) + 1);
/* L' */
iv[0] = 3;
memcpy(iv + 1, ctx->nonce, 3);
memcpy(iv + 4, req->iv, 8);
scatterwalk_map_and_copy(iv + 16, req->src, 0, req->assoclen - 8, 0);
sg_init_table(rctx->src, 3);
sg_set_buf(rctx->src, iv + 16, req->assoclen - 8);
sg = scatterwalk_ffwd(rctx->src + 1, req->src, req->assoclen);
if (sg != rctx->src + 1)
sg_chain(rctx->src, 2, sg);
if (req->src != req->dst) {
sg_init_table(rctx->dst, 3);
sg_set_buf(rctx->dst, iv + 16, req->assoclen - 8);
sg = scatterwalk_ffwd(rctx->dst + 1, req->dst, req->assoclen);
if (sg != rctx->dst + 1)
sg_chain(rctx->dst, 2, sg);
}
aead_request_set_tfm(subreq, child);
aead_request_set_callback(subreq, req->base.flags, req->base.complete,
req->base.data);
aead_request_set_crypt(subreq, rctx->src,
req->src == req->dst ? rctx->src : rctx->dst,
req->cryptlen, iv);
aead_request_set_ad(subreq, req->assoclen - 8);
return subreq;
}
static int crypto_rfc4309_encrypt(struct aead_request *req)
{
if (req->assoclen != 16 && req->assoclen != 20)
return -EINVAL;
req = crypto_rfc4309_crypt(req);
return crypto_aead_encrypt(req);
}
static int crypto_rfc4309_decrypt(struct aead_request *req)
{
if (req->assoclen != 16 && req->assoclen != 20)
return -EINVAL;
req = crypto_rfc4309_crypt(req);
return crypto_aead_decrypt(req);
}
static int crypto_rfc4309_init_tfm(struct crypto_aead *tfm)
{
struct aead_instance *inst = aead_alg_instance(tfm);
struct crypto_aead_spawn *spawn = aead_instance_ctx(inst);
struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *aead;
unsigned long align;
aead = crypto_spawn_aead(spawn);
if (IS_ERR(aead))
return PTR_ERR(aead);
ctx->child = aead;
align = crypto_aead_alignmask(aead);
align &= ~(crypto_tfm_ctx_alignment() - 1);
crypto_aead_set_reqsize(
tfm,
sizeof(struct crypto_rfc4309_req_ctx) +
ALIGN(crypto_aead_reqsize(aead), crypto_tfm_ctx_alignment()) +
align + 32);
return 0;
}
static void crypto_rfc4309_exit_tfm(struct crypto_aead *tfm)
{
struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_aead(ctx->child);
}
static void crypto_rfc4309_free(struct aead_instance *inst)
{
crypto_drop_aead(aead_instance_ctx(inst));
kfree(inst);
}
static int crypto_rfc4309_create(struct crypto_template *tmpl,
struct rtattr **tb)
{
u32 mask;
struct aead_instance *inst;
struct crypto_aead_spawn *spawn;
struct aead_alg *alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AEAD, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return -ENOMEM;
spawn = aead_instance_ctx(inst);
err = crypto_grab_aead(spawn, aead_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
alg = crypto_spawn_aead_alg(spawn);
err = -EINVAL;
/* We only support 16-byte blocks. */
if (crypto_aead_alg_ivsize(alg) != 16)
goto err_free_inst;
/* Not a stream cipher? */
if (alg->base.cra_blocksize != 1)
goto err_free_inst;
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"rfc4309(%s)", alg->base.cra_name) >=
CRYPTO_MAX_ALG_NAME ||
snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"rfc4309(%s)", alg->base.cra_driver_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = 1;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
inst->alg.ivsize = 8;
inst->alg.chunksize = crypto_aead_alg_chunksize(alg);
inst->alg.maxauthsize = 16;
inst->alg.base.cra_ctxsize = sizeof(struct crypto_rfc4309_ctx);
inst->alg.init = crypto_rfc4309_init_tfm;
inst->alg.exit = crypto_rfc4309_exit_tfm;
inst->alg.setkey = crypto_rfc4309_setkey;
inst->alg.setauthsize = crypto_rfc4309_setauthsize;
inst->alg.encrypt = crypto_rfc4309_encrypt;
inst->alg.decrypt = crypto_rfc4309_decrypt;
inst->free = crypto_rfc4309_free;
err = aead_register_instance(tmpl, inst);
if (err) {
err_free_inst:
crypto_rfc4309_free(inst);
}
return err;
}
static int crypto_cbcmac_digest_setkey(struct crypto_shash *parent,
const u8 *inkey, unsigned int keylen)
{
struct cbcmac_tfm_ctx *ctx = crypto_shash_ctx(parent);
return crypto_cipher_setkey(ctx->child, inkey, keylen);
}
static int crypto_cbcmac_digest_init(struct shash_desc *pdesc)
{
struct cbcmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
int bs = crypto_shash_digestsize(pdesc->tfm);
u8 *dg = (u8 *)ctx + crypto_shash_descsize(pdesc->tfm) - bs;
ctx->len = 0;
memset(dg, 0, bs);
return 0;
}
static int crypto_cbcmac_digest_update(struct shash_desc *pdesc, const u8 *p,
unsigned int len)
{
struct crypto_shash *parent = pdesc->tfm;
struct cbcmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
struct cbcmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
struct crypto_cipher *tfm = tctx->child;
int bs = crypto_shash_digestsize(parent);
u8 *dg = (u8 *)ctx + crypto_shash_descsize(parent) - bs;
while (len > 0) {
unsigned int l = min(len, bs - ctx->len);
crypto_xor(dg + ctx->len, p, l);
ctx->len +=l;
len -= l;
p += l;
if (ctx->len == bs) {
crypto_cipher_encrypt_one(tfm, dg, dg);
ctx->len = 0;
}
}
return 0;
}
static int crypto_cbcmac_digest_final(struct shash_desc *pdesc, u8 *out)
{
struct crypto_shash *parent = pdesc->tfm;
struct cbcmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
struct cbcmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
struct crypto_cipher *tfm = tctx->child;
int bs = crypto_shash_digestsize(parent);
u8 *dg = (u8 *)ctx + crypto_shash_descsize(parent) - bs;
if (ctx->len)
crypto_cipher_encrypt_one(tfm, dg, dg);
memcpy(out, dg, bs);
return 0;
}
static int cbcmac_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_cipher *cipher;
struct crypto_instance *inst = (void *)tfm->__crt_alg;
struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
struct cbcmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
cipher = crypto_spawn_cipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
return 0;
};
static void cbcmac_exit_tfm(struct crypto_tfm *tfm)
{
struct cbcmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(ctx->child);
}
static int cbcmac_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct shash_instance *inst;
struct crypto_cipher_spawn *spawn;
struct crypto_alg *alg;
u32 mask;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return -ENOMEM;
spawn = shash_instance_ctx(inst);
err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
alg = crypto_spawn_cipher_alg(spawn);
err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
if (err)
goto err_free_inst;
inst->alg.base.cra_priority = alg->cra_priority;
inst->alg.base.cra_blocksize = 1;
inst->alg.digestsize = alg->cra_blocksize;
inst->alg.descsize = ALIGN(sizeof(struct cbcmac_desc_ctx),
alg->cra_alignmask + 1) +
alg->cra_blocksize;
inst->alg.base.cra_ctxsize = sizeof(struct cbcmac_tfm_ctx);
inst->alg.base.cra_init = cbcmac_init_tfm;
inst->alg.base.cra_exit = cbcmac_exit_tfm;
inst->alg.init = crypto_cbcmac_digest_init;
inst->alg.update = crypto_cbcmac_digest_update;
inst->alg.final = crypto_cbcmac_digest_final;
inst->alg.setkey = crypto_cbcmac_digest_setkey;
inst->free = shash_free_singlespawn_instance;
err = shash_register_instance(tmpl, inst);
if (err) {
err_free_inst:
shash_free_singlespawn_instance(inst);
}
return err;
}
static struct crypto_template crypto_ccm_tmpls[] = {
{
.name = "cbcmac",
.create = cbcmac_create,
.module = THIS_MODULE,
}, {
.name = "ccm_base",
.create = crypto_ccm_base_create,
.module = THIS_MODULE,
}, {
.name = "ccm",
.create = crypto_ccm_create,
.module = THIS_MODULE,
}, {
.name = "rfc4309",
.create = crypto_rfc4309_create,
.module = THIS_MODULE,
},
};
static int __init crypto_ccm_module_init(void)
{
return crypto_register_templates(crypto_ccm_tmpls,
ARRAY_SIZE(crypto_ccm_tmpls));
}
static void __exit crypto_ccm_module_exit(void)
{
crypto_unregister_templates(crypto_ccm_tmpls,
ARRAY_SIZE(crypto_ccm_tmpls));
}
subsys_initcall(crypto_ccm_module_init);
module_exit(crypto_ccm_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Counter with CBC MAC");
MODULE_ALIAS_CRYPTO("ccm_base");
MODULE_ALIAS_CRYPTO("rfc4309");
MODULE_ALIAS_CRYPTO("ccm");
MODULE_ALIAS_CRYPTO("cbcmac");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);