WSL2-Linux-Kernel/arch/arm/mm/cache-uniphier.c

556 строки
16 KiB
C
Исходник Обычный вид История

/*
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "uniphier: " fmt
#include <linux/init.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/hardware/cache-uniphier.h>
#include <asm/outercache.h>
/* control registers */
#define UNIPHIER_SSCC 0x0 /* Control Register */
#define UNIPHIER_SSCC_BST BIT(20) /* UCWG burst read */
#define UNIPHIER_SSCC_ACT BIT(19) /* Inst-Data separate */
#define UNIPHIER_SSCC_WTG BIT(18) /* WT gathering on */
#define UNIPHIER_SSCC_PRD BIT(17) /* enable pre-fetch */
#define UNIPHIER_SSCC_ON BIT(0) /* enable cache */
#define UNIPHIER_SSCLPDAWCR 0x30 /* Unified/Data Active Way Control */
#define UNIPHIER_SSCLPIAWCR 0x34 /* Instruction Active Way Control */
/* revision registers */
#define UNIPHIER_SSCID 0x0 /* ID Register */
/* operation registers */
#define UNIPHIER_SSCOPE 0x244 /* Cache Operation Primitive Entry */
#define UNIPHIER_SSCOPE_CM_INV 0x0 /* invalidate */
#define UNIPHIER_SSCOPE_CM_CLEAN 0x1 /* clean */
#define UNIPHIER_SSCOPE_CM_FLUSH 0x2 /* flush */
#define UNIPHIER_SSCOPE_CM_SYNC 0x8 /* sync (drain bufs) */
#define UNIPHIER_SSCOPE_CM_FLUSH_PREFETCH 0x9 /* flush p-fetch buf */
#define UNIPHIER_SSCOQM 0x248 /* Cache Operation Queue Mode */
#define UNIPHIER_SSCOQM_TID_MASK (0x3 << 21)
#define UNIPHIER_SSCOQM_TID_LRU_DATA (0x0 << 21)
#define UNIPHIER_SSCOQM_TID_LRU_INST (0x1 << 21)
#define UNIPHIER_SSCOQM_TID_WAY (0x2 << 21)
#define UNIPHIER_SSCOQM_S_MASK (0x3 << 17)
#define UNIPHIER_SSCOQM_S_RANGE (0x0 << 17)
#define UNIPHIER_SSCOQM_S_ALL (0x1 << 17)
#define UNIPHIER_SSCOQM_S_WAY (0x2 << 17)
#define UNIPHIER_SSCOQM_CE BIT(15) /* notify completion */
#define UNIPHIER_SSCOQM_CM_INV 0x0 /* invalidate */
#define UNIPHIER_SSCOQM_CM_CLEAN 0x1 /* clean */
#define UNIPHIER_SSCOQM_CM_FLUSH 0x2 /* flush */
#define UNIPHIER_SSCOQM_CM_PREFETCH 0x3 /* prefetch to cache */
#define UNIPHIER_SSCOQM_CM_PREFETCH_BUF 0x4 /* prefetch to pf-buf */
#define UNIPHIER_SSCOQM_CM_TOUCH 0x5 /* touch */
#define UNIPHIER_SSCOQM_CM_TOUCH_ZERO 0x6 /* touch to zero */
#define UNIPHIER_SSCOQM_CM_TOUCH_DIRTY 0x7 /* touch with dirty */
#define UNIPHIER_SSCOQAD 0x24c /* Cache Operation Queue Address */
#define UNIPHIER_SSCOQSZ 0x250 /* Cache Operation Queue Size */
#define UNIPHIER_SSCOQMASK 0x254 /* Cache Operation Queue Address Mask */
#define UNIPHIER_SSCOQWN 0x258 /* Cache Operation Queue Way Number */
#define UNIPHIER_SSCOPPQSEF 0x25c /* Cache Operation Queue Set Complete*/
#define UNIPHIER_SSCOPPQSEF_FE BIT(1)
#define UNIPHIER_SSCOPPQSEF_OE BIT(0)
#define UNIPHIER_SSCOLPQS 0x260 /* Cache Operation Queue Status */
#define UNIPHIER_SSCOLPQS_EF BIT(2)
#define UNIPHIER_SSCOLPQS_EST BIT(1)
#define UNIPHIER_SSCOLPQS_QST BIT(0)
/* Is the touch/pre-fetch destination specified by ways? */
#define UNIPHIER_SSCOQM_TID_IS_WAY(op) \
((op & UNIPHIER_SSCOQM_TID_MASK) == UNIPHIER_SSCOQM_TID_WAY)
/* Is the operation region specified by address range? */
#define UNIPHIER_SSCOQM_S_IS_RANGE(op) \
((op & UNIPHIER_SSCOQM_S_MASK) == UNIPHIER_SSCOQM_S_RANGE)
/**
* uniphier_cache_data - UniPhier outer cache specific data
*
* @ctrl_base: virtual base address of control registers
* @rev_base: virtual base address of revision registers
* @op_base: virtual base address of operation registers
* @way_present_mask: each bit specifies if the way is present
* @way_locked_mask: each bit specifies if the way is locked
* @nsets: number of associativity sets
* @line_size: line size in bytes
* @range_op_max_size: max size that can be handled by a single range operation
* @list: list node to include this level in the whole cache hierarchy
*/
struct uniphier_cache_data {
void __iomem *ctrl_base;
void __iomem *rev_base;
void __iomem *op_base;
u32 way_present_mask;
u32 way_locked_mask;
u32 nsets;
u32 line_size;
u32 range_op_max_size;
struct list_head list;
};
/*
* List of the whole outer cache hierarchy. This list is only modified during
* the early boot stage, so no mutex is taken for the access to the list.
*/
static LIST_HEAD(uniphier_cache_list);
/**
* __uniphier_cache_sync - perform a sync point for a particular cache level
*
* @data: cache controller specific data
*/
static void __uniphier_cache_sync(struct uniphier_cache_data *data)
{
/* This sequence need not be atomic. Do not disable IRQ. */
writel_relaxed(UNIPHIER_SSCOPE_CM_SYNC,
data->op_base + UNIPHIER_SSCOPE);
/* need a read back to confirm */
readl_relaxed(data->op_base + UNIPHIER_SSCOPE);
}
/**
* __uniphier_cache_maint_common - run a queue operation for a particular level
*
* @data: cache controller specific data
* @start: start address of range operation (don't care for "all" operation)
* @size: data size of range operation (don't care for "all" operation)
* @operation: flags to specify the desired cache operation
*/
static void __uniphier_cache_maint_common(struct uniphier_cache_data *data,
unsigned long start,
unsigned long size,
u32 operation)
{
unsigned long flags;
/*
* No spin lock is necessary here because:
*
* [1] This outer cache controller is able to accept maintenance
* operations from multiple CPUs at a time in an SMP system; if a
* maintenance operation is under way and another operation is issued,
* the new one is stored in the queue. The controller performs one
* operation after another. If the queue is full, the status register,
* UNIPHIER_SSCOPPQSEF, indicates that the queue registration has
* failed. The status registers, UNIPHIER_{SSCOPPQSEF, SSCOLPQS}, have
* different instances for each CPU, i.e. each CPU can track the status
* of the maintenance operations triggered by itself.
*
* [2] The cache command registers, UNIPHIER_{SSCOQM, SSCOQAD, SSCOQSZ,
* SSCOQWN}, are shared between multiple CPUs, but the hardware still
* guarantees the registration sequence is atomic; the write access to
* them are arbitrated by the hardware. The first accessor to the
* register, UNIPHIER_SSCOQM, holds the access right and it is released
* by reading the status register, UNIPHIER_SSCOPPQSEF. While one CPU
* is holding the access right, other CPUs fail to register operations.
* One CPU should not hold the access right for a long time, so local
* IRQs should be disabled while the following sequence.
*/
local_irq_save(flags);
/* clear the complete notification flag */
writel_relaxed(UNIPHIER_SSCOLPQS_EF, data->op_base + UNIPHIER_SSCOLPQS);
do {
/* set cache operation */
writel_relaxed(UNIPHIER_SSCOQM_CE | operation,
data->op_base + UNIPHIER_SSCOQM);
/* set address range if needed */
if (likely(UNIPHIER_SSCOQM_S_IS_RANGE(operation))) {
writel_relaxed(start, data->op_base + UNIPHIER_SSCOQAD);
writel_relaxed(size, data->op_base + UNIPHIER_SSCOQSZ);
}
/* set target ways if needed */
if (unlikely(UNIPHIER_SSCOQM_TID_IS_WAY(operation)))
writel_relaxed(data->way_locked_mask,
data->op_base + UNIPHIER_SSCOQWN);
} while (unlikely(readl_relaxed(data->op_base + UNIPHIER_SSCOPPQSEF) &
(UNIPHIER_SSCOPPQSEF_FE | UNIPHIER_SSCOPPQSEF_OE)));
/* wait until the operation is completed */
while (likely(readl_relaxed(data->op_base + UNIPHIER_SSCOLPQS) !=
UNIPHIER_SSCOLPQS_EF))
cpu_relax();
local_irq_restore(flags);
}
static void __uniphier_cache_maint_all(struct uniphier_cache_data *data,
u32 operation)
{
__uniphier_cache_maint_common(data, 0, 0,
UNIPHIER_SSCOQM_S_ALL | operation);
__uniphier_cache_sync(data);
}
static void __uniphier_cache_maint_range(struct uniphier_cache_data *data,
unsigned long start, unsigned long end,
u32 operation)
{
unsigned long size;
/*
* If the start address is not aligned,
* perform a cache operation for the first cache-line
*/
start = start & ~(data->line_size - 1);
size = end - start;
if (unlikely(size >= (unsigned long)(-data->line_size))) {
/* this means cache operation for all range */
__uniphier_cache_maint_all(data, operation);
return;
}
/*
* If the end address is not aligned,
* perform a cache operation for the last cache-line
*/
size = ALIGN(size, data->line_size);
while (size) {
unsigned long chunk_size = min_t(unsigned long, size,
data->range_op_max_size);
__uniphier_cache_maint_common(data, start, chunk_size,
UNIPHIER_SSCOQM_S_RANGE | operation);
start += chunk_size;
size -= chunk_size;
}
__uniphier_cache_sync(data);
}
static void __uniphier_cache_enable(struct uniphier_cache_data *data, bool on)
{
u32 val = 0;
if (on)
val = UNIPHIER_SSCC_WTG | UNIPHIER_SSCC_PRD | UNIPHIER_SSCC_ON;
writel_relaxed(val, data->ctrl_base + UNIPHIER_SSCC);
}
static void __init __uniphier_cache_set_locked_ways(
struct uniphier_cache_data *data,
u32 way_mask)
{
data->way_locked_mask = way_mask & data->way_present_mask;
writel_relaxed(~data->way_locked_mask & data->way_present_mask,
data->ctrl_base + UNIPHIER_SSCLPDAWCR);
}
static void uniphier_cache_maint_range(unsigned long start, unsigned long end,
u32 operation)
{
struct uniphier_cache_data *data;
list_for_each_entry(data, &uniphier_cache_list, list)
__uniphier_cache_maint_range(data, start, end, operation);
}
static void uniphier_cache_maint_all(u32 operation)
{
struct uniphier_cache_data *data;
list_for_each_entry(data, &uniphier_cache_list, list)
__uniphier_cache_maint_all(data, operation);
}
static void uniphier_cache_inv_range(unsigned long start, unsigned long end)
{
uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_INV);
}
static void uniphier_cache_clean_range(unsigned long start, unsigned long end)
{
uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_CLEAN);
}
static void uniphier_cache_flush_range(unsigned long start, unsigned long end)
{
uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_FLUSH);
}
static void __init uniphier_cache_inv_all(void)
{
uniphier_cache_maint_all(UNIPHIER_SSCOQM_CM_INV);
}
static void uniphier_cache_flush_all(void)
{
uniphier_cache_maint_all(UNIPHIER_SSCOQM_CM_FLUSH);
}
static void uniphier_cache_disable(void)
{
struct uniphier_cache_data *data;
list_for_each_entry_reverse(data, &uniphier_cache_list, list)
__uniphier_cache_enable(data, false);
uniphier_cache_flush_all();
}
static void __init uniphier_cache_enable(void)
{
struct uniphier_cache_data *data;
uniphier_cache_inv_all();
list_for_each_entry(data, &uniphier_cache_list, list) {
__uniphier_cache_enable(data, true);
__uniphier_cache_set_locked_ways(data, 0);
}
}
static void uniphier_cache_sync(void)
{
struct uniphier_cache_data *data;
list_for_each_entry(data, &uniphier_cache_list, list)
__uniphier_cache_sync(data);
}
int __init uniphier_cache_l2_is_enabled(void)
{
struct uniphier_cache_data *data;
data = list_first_entry_or_null(&uniphier_cache_list,
struct uniphier_cache_data, list);
if (!data)
return 0;
return !!(readl_relaxed(data->ctrl_base + UNIPHIER_SSCC) &
UNIPHIER_SSCC_ON);
}
void __init uniphier_cache_l2_touch_range(unsigned long start,
unsigned long end)
{
struct uniphier_cache_data *data;
data = list_first_entry_or_null(&uniphier_cache_list,
struct uniphier_cache_data, list);
if (data)
__uniphier_cache_maint_range(data, start, end,
UNIPHIER_SSCOQM_TID_WAY |
UNIPHIER_SSCOQM_CM_TOUCH);
}
void __init uniphier_cache_l2_set_locked_ways(u32 way_mask)
{
struct uniphier_cache_data *data;
data = list_first_entry_or_null(&uniphier_cache_list,
struct uniphier_cache_data, list);
if (data)
__uniphier_cache_set_locked_ways(data, way_mask);
}
static const struct of_device_id uniphier_cache_match[] __initconst = {
{
.compatible = "socionext,uniphier-system-cache",
},
{ /* sentinel */ }
};
static struct device_node * __init uniphier_cache_get_next_level_node(
struct device_node *np)
{
u32 phandle;
if (of_property_read_u32(np, "next-level-cache", &phandle))
return NULL;
return of_find_node_by_phandle(phandle);
}
static int __init __uniphier_cache_init(struct device_node *np,
unsigned int *cache_level)
{
struct uniphier_cache_data *data;
u32 level, cache_size;
struct device_node *next_np;
int ret = 0;
if (!of_match_node(uniphier_cache_match, np)) {
pr_err("L%d: not compatible with uniphier cache\n",
*cache_level);
return -EINVAL;
}
if (of_property_read_u32(np, "cache-level", &level)) {
pr_err("L%d: cache-level is not specified\n", *cache_level);
return -EINVAL;
}
if (level != *cache_level) {
pr_err("L%d: cache-level is unexpected value %d\n",
*cache_level, level);
return -EINVAL;
}
if (!of_property_read_bool(np, "cache-unified")) {
pr_err("L%d: cache-unified is not specified\n", *cache_level);
return -EINVAL;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
if (of_property_read_u32(np, "cache-line-size", &data->line_size) ||
!is_power_of_2(data->line_size)) {
pr_err("L%d: cache-line-size is unspecified or invalid\n",
*cache_level);
ret = -EINVAL;
goto err;
}
if (of_property_read_u32(np, "cache-sets", &data->nsets) ||
!is_power_of_2(data->nsets)) {
pr_err("L%d: cache-sets is unspecified or invalid\n",
*cache_level);
ret = -EINVAL;
goto err;
}
if (of_property_read_u32(np, "cache-size", &cache_size) ||
cache_size == 0 || cache_size % (data->nsets * data->line_size)) {
pr_err("L%d: cache-size is unspecified or invalid\n",
*cache_level);
ret = -EINVAL;
goto err;
}
data->way_present_mask =
((u32)1 << cache_size / data->nsets / data->line_size) - 1;
data->ctrl_base = of_iomap(np, 0);
if (!data->ctrl_base) {
pr_err("L%d: failed to map control register\n", *cache_level);
ret = -ENOMEM;
goto err;
}
data->rev_base = of_iomap(np, 1);
if (!data->rev_base) {
pr_err("L%d: failed to map revision register\n", *cache_level);
ret = -ENOMEM;
goto err;
}
data->op_base = of_iomap(np, 2);
if (!data->op_base) {
pr_err("L%d: failed to map operation register\n", *cache_level);
ret = -ENOMEM;
goto err;
}
if (*cache_level == 2) {
u32 revision = readl(data->rev_base + UNIPHIER_SSCID);
/*
* The size of range operation is limited to (1 << 22) or less
* for PH-sLD8 or older SoCs.
*/
if (revision <= 0x16)
data->range_op_max_size = (u32)1 << 22;
}
data->range_op_max_size -= data->line_size;
INIT_LIST_HEAD(&data->list);
list_add_tail(&data->list, &uniphier_cache_list); /* no mutex */
/*
* OK, this level has been successfully initialized. Look for the next
* level cache. Do not roll back even if the initialization of the
* next level cache fails because we want to continue with available
* cache levels.
*/
next_np = uniphier_cache_get_next_level_node(np);
if (next_np) {
(*cache_level)++;
ret = __uniphier_cache_init(next_np, cache_level);
}
of_node_put(next_np);
return ret;
err:
iounmap(data->op_base);
iounmap(data->rev_base);
iounmap(data->ctrl_base);
kfree(data);
return ret;
}
int __init uniphier_cache_init(void)
{
struct device_node *np = NULL;
unsigned int cache_level;
int ret = 0;
/* look for level 2 cache */
while ((np = of_find_matching_node(np, uniphier_cache_match)))
if (!of_property_read_u32(np, "cache-level", &cache_level) &&
cache_level == 2)
break;
if (!np)
return -ENODEV;
ret = __uniphier_cache_init(np, &cache_level);
of_node_put(np);
if (ret) {
/*
* Error out iif L2 initialization fails. Continue with any
* error on L3 or outer because they are optional.
*/
if (cache_level == 2) {
pr_err("failed to initialize L2 cache\n");
return ret;
}
cache_level--;
ret = 0;
}
outer_cache.inv_range = uniphier_cache_inv_range;
outer_cache.clean_range = uniphier_cache_clean_range;
outer_cache.flush_range = uniphier_cache_flush_range;
outer_cache.flush_all = uniphier_cache_flush_all;
outer_cache.disable = uniphier_cache_disable;
outer_cache.sync = uniphier_cache_sync;
uniphier_cache_enable();
pr_info("enabled outer cache (cache level: %d)\n", cache_level);
return ret;
}