WSL2-Linux-Kernel/net/ipv4/ip_fragment.c

624 строки
14 KiB
C
Исходник Обычный вид История

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The IP fragmentation functionality.
*
* Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
*
* Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
* Alan Cox <Alan.Cox@linux.org>
*
* Fixes:
* Alan Cox : Split from ip.c , see ip_input.c for history.
* David S. Miller : Begin massive cleanup...
* Andi Kleen : Add sysctls.
* xxxx : Overlapfrag bug.
* Ultima : ip_expire() kernel panic.
* Bill Hawes : Frag accounting and evictor fixes.
* John McDonald : 0 length frag bug.
* Alexey Kuznetsov: SMP races, threading, cleanup.
* Patrick McHardy : LRU queue of frag heads for evictor.
*/
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/jiffies.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/icmp.h>
#include <linux/netdevice.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <net/sock.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <net/inet_frag.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/inet.h>
#include <linux/netfilter_ipv4.h>
/* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
* code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
* as well. Or notify me, at least. --ANK
*/
int sysctl_ipfrag_max_dist __read_mostly = 64;
struct ipfrag_skb_cb
{
struct inet_skb_parm h;
int offset;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
/* Describe an entry in the "incomplete datagrams" queue. */
struct ipq {
struct inet_frag_queue q;
u32 user;
__be32 saddr;
__be32 daddr;
__be16 id;
u8 protocol;
int iif;
unsigned int rid;
struct inet_peer *peer;
};
struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
/*
* Fragment cache limits. We will commit 256K at one time. Should we
* cross that limit we will prune down to 192K. This should cope with
* even the most extreme cases without allowing an attacker to
* measurably harm machine performance.
*/
.high_thresh = 256 * 1024,
.low_thresh = 192 * 1024,
/*
* Important NOTE! Fragment queue must be destroyed before MSL expires.
* RFC791 is wrong proposing to prolongate timer each fragment arrival
* by TTL.
*/
.timeout = IP_FRAG_TIME,
.secret_interval = 10 * 60 * HZ,
};
static struct inet_frags ip4_frags;
int ip_frag_nqueues(void)
{
return ip4_frags.nqueues;
}
int ip_frag_mem(void)
{
return atomic_read(&ip4_frags.mem);
}
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
struct net_device *dev);
struct ip4_create_arg {
struct iphdr *iph;
u32 user;
};
static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
{
return jhash_3words((__force u32)id << 16 | prot,
(__force u32)saddr, (__force u32)daddr,
ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
}
static unsigned int ip4_hashfn(struct inet_frag_queue *q)
{
struct ipq *ipq;
ipq = container_of(q, struct ipq, q);
return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
}
static int ip4_frag_match(struct inet_frag_queue *q, void *a)
{
struct ipq *qp;
struct ip4_create_arg *arg = a;
qp = container_of(q, struct ipq, q);
return (qp->id == arg->iph->id &&
qp->saddr == arg->iph->saddr &&
qp->daddr == arg->iph->daddr &&
qp->protocol == arg->iph->protocol &&
qp->user == arg->user);
}
/* Memory Tracking Functions. */
static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
{
if (work)
*work -= skb->truesize;
atomic_sub(skb->truesize, &ip4_frags.mem);
kfree_skb(skb);
}
static void ip4_frag_init(struct inet_frag_queue *q, void *a)
{
struct ipq *qp = container_of(q, struct ipq, q);
struct ip4_create_arg *arg = a;
qp->protocol = arg->iph->protocol;
qp->id = arg->iph->id;
qp->saddr = arg->iph->saddr;
qp->daddr = arg->iph->daddr;
qp->user = arg->user;
qp->peer = sysctl_ipfrag_max_dist ?
inet_getpeer(arg->iph->saddr, 1) : NULL;
}
static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
{
struct ipq *qp;
qp = container_of(q, struct ipq, q);
if (qp->peer)
inet_putpeer(qp->peer);
}
/* Destruction primitives. */
static __inline__ void ipq_put(struct ipq *ipq)
{
inet_frag_put(&ipq->q, &ip4_frags);
}
/* Kill ipq entry. It is not destroyed immediately,
* because caller (and someone more) holds reference count.
*/
static void ipq_kill(struct ipq *ipq)
{
inet_frag_kill(&ipq->q, &ip4_frags);
}
/* Memory limiting on fragments. Evictor trashes the oldest
* fragment queue until we are back under the threshold.
*/
static void ip_evictor(void)
{
int evicted;
evicted = inet_frag_evictor(&ip4_frags);
if (evicted)
IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
}
/*
* Oops, a fragment queue timed out. Kill it and send an ICMP reply.
*/
static void ip_expire(unsigned long arg)
{
struct ipq *qp;
qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
spin_lock(&qp->q.lock);
if (qp->q.last_in & COMPLETE)
goto out;
ipq_kill(qp);
IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
struct sk_buff *head = qp->q.fragments;
/* Send an ICMP "Fragment Reassembly Timeout" message. */
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
dev_put(head->dev);
}
}
out:
spin_unlock(&qp->q.lock);
ipq_put(qp);
}
/* Find the correct entry in the "incomplete datagrams" queue for
* this IP datagram, and create new one, if nothing is found.
*/
static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
{
struct inet_frag_queue *q;
struct ip4_create_arg arg;
unsigned int hash;
arg.iph = iph;
arg.user = user;
hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
q = inet_frag_find(&ip4_frags, &arg, hash);
if (q == NULL)
goto out_nomem;
return container_of(q, struct ipq, q);
out_nomem:
LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
return NULL;
}
/* Is the fragment too far ahead to be part of ipq? */
static inline int ip_frag_too_far(struct ipq *qp)
{
struct inet_peer *peer = qp->peer;
unsigned int max = sysctl_ipfrag_max_dist;
unsigned int start, end;
int rc;
if (!peer || !max)
return 0;
start = qp->rid;
end = atomic_inc_return(&peer->rid);
qp->rid = end;
rc = qp->q.fragments && (end - start) > max;
if (rc) {
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
}
return rc;
}
static int ip_frag_reinit(struct ipq *qp)
{
struct sk_buff *fp;
if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
atomic_inc(&qp->q.refcnt);
return -ETIMEDOUT;
}
fp = qp->q.fragments;
do {
struct sk_buff *xp = fp->next;
frag_kfree_skb(fp, NULL);
fp = xp;
} while (fp);
qp->q.last_in = 0;
qp->q.len = 0;
qp->q.meat = 0;
qp->q.fragments = NULL;
qp->iif = 0;
return 0;
}
/* Add new segment to existing queue. */
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{
struct sk_buff *prev, *next;
struct net_device *dev;
int flags, offset;
int ihl, end;
int err = -ENOENT;
if (qp->q.last_in & COMPLETE)
goto err;
if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
unlikely(ip_frag_too_far(qp)) &&
unlikely(err = ip_frag_reinit(qp))) {
ipq_kill(qp);
goto err;
}
offset = ntohs(ip_hdr(skb)->frag_off);
flags = offset & ~IP_OFFSET;
offset &= IP_OFFSET;
offset <<= 3; /* offset is in 8-byte chunks */
ihl = ip_hdrlen(skb);
/* Determine the position of this fragment. */
end = offset + skb->len - ihl;
err = -EINVAL;
/* Is this the final fragment? */
if ((flags & IP_MF) == 0) {
/* If we already have some bits beyond end
* or have different end, the segment is corrrupted.
*/
if (end < qp->q.len ||
((qp->q.last_in & LAST_IN) && end != qp->q.len))
goto err;
qp->q.last_in |= LAST_IN;
qp->q.len = end;
} else {
if (end&7) {
end &= ~7;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
if (end > qp->q.len) {
/* Some bits beyond end -> corruption. */
if (qp->q.last_in & LAST_IN)
goto err;
qp->q.len = end;
}
}
if (end == offset)
goto err;
err = -ENOMEM;
if (pskb_pull(skb, ihl) == NULL)
goto err;
err = pskb_trim_rcsum(skb, end - offset);
if (err)
goto err;
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = NULL;
for (next = qp->q.fragments; next != NULL; next = next->next) {
if (FRAG_CB(next)->offset >= offset)
break; /* bingo! */
prev = next;
}
/* We found where to put this one. Check for overlap with
* preceding fragment, and, if needed, align things so that
* any overlaps are eliminated.
*/
if (prev) {
int i = (FRAG_CB(prev)->offset + prev->len) - offset;
if (i > 0) {
offset += i;
err = -EINVAL;
if (end <= offset)
goto err;
err = -ENOMEM;
if (!pskb_pull(skb, i))
goto err;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
}
err = -ENOMEM;
while (next && FRAG_CB(next)->offset < end) {
int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
if (i < next->len) {
/* Eat head of the next overlapped fragment
* and leave the loop. The next ones cannot overlap.
*/
if (!pskb_pull(next, i))
goto err;
FRAG_CB(next)->offset += i;
qp->q.meat -= i;
if (next->ip_summed != CHECKSUM_UNNECESSARY)
next->ip_summed = CHECKSUM_NONE;
break;
} else {
struct sk_buff *free_it = next;
/* Old fragment is completely overridden with
* new one drop it.
*/
next = next->next;
if (prev)
prev->next = next;
else
qp->q.fragments = next;
qp->q.meat -= free_it->len;
frag_kfree_skb(free_it, NULL);
}
}
FRAG_CB(skb)->offset = offset;
/* Insert this fragment in the chain of fragments. */
skb->next = next;
if (prev)
prev->next = skb;
else
qp->q.fragments = skb;
dev = skb->dev;
if (dev) {
qp->iif = dev->ifindex;
skb->dev = NULL;
}
qp->q.stamp = skb->tstamp;
qp->q.meat += skb->len;
atomic_add(skb->truesize, &ip4_frags.mem);
if (offset == 0)
qp->q.last_in |= FIRST_IN;
if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
return ip_frag_reasm(qp, prev, dev);
write_lock(&ip4_frags.lock);
list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
write_unlock(&ip4_frags.lock);
return -EINPROGRESS;
err:
kfree_skb(skb);
return err;
}
/* Build a new IP datagram from all its fragments. */
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
struct net_device *dev)
{
struct iphdr *iph;
struct sk_buff *fp, *head = qp->q.fragments;
int len;
int ihlen;
int err;
ipq_kill(qp);
/* Make the one we just received the head. */
if (prev) {
head = prev->next;
fp = skb_clone(head, GFP_ATOMIC);
if (!fp)
goto out_nomem;
fp->next = head->next;
prev->next = fp;
skb_morph(head, qp->q.fragments);
head->next = qp->q.fragments->next;
kfree_skb(qp->q.fragments);
qp->q.fragments = head;
}
BUG_TRAP(head != NULL);
BUG_TRAP(FRAG_CB(head)->offset == 0);
/* Allocate a new buffer for the datagram. */
ihlen = ip_hdrlen(head);
len = ihlen + qp->q.len;
err = -E2BIG;
if (len > 65535)
goto out_oversize;
/* Head of list must not be cloned. */
if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
goto out_nomem;
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_shinfo(head)->frag_list) {
struct sk_buff *clone;
int i, plen = 0;
if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
goto out_nomem;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_shinfo(head)->frag_list = NULL;
for (i=0; i<skb_shinfo(head)->nr_frags; i++)
plen += skb_shinfo(head)->frags[i].size;
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
atomic_add(clone->truesize, &ip4_frags.mem);
}
skb_shinfo(head)->frag_list = head->next;
skb_push(head, head->data - skb_network_header(head));
atomic_sub(head->truesize, &ip4_frags.mem);
for (fp=head->next; fp; fp = fp->next) {
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
atomic_sub(fp->truesize, &ip4_frags.mem);
}
head->next = NULL;
head->dev = dev;
head->tstamp = qp->q.stamp;
iph = ip_hdr(head);
iph->frag_off = 0;
iph->tot_len = htons(len);
IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
qp->q.fragments = NULL;
return 0;
out_nomem:
LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
"queue %p\n", qp);
err = -ENOMEM;
goto out_fail;
out_oversize:
if (net_ratelimit())
printk(KERN_INFO
"Oversized IP packet from %d.%d.%d.%d.\n",
NIPQUAD(qp->saddr));
out_fail:
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
return err;
}
/* Process an incoming IP datagram fragment. */
int ip_defrag(struct sk_buff *skb, u32 user)
{
struct ipq *qp;
IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
/* Start by cleaning up the memory. */
if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
ip_evictor();
/* Lookup (or create) queue header */
if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
int ret;
spin_lock(&qp->q.lock);
ret = ip_frag_queue(qp, skb);
spin_unlock(&qp->q.lock);
ipq_put(qp);
return ret;
}
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return -ENOMEM;
}
void __init ipfrag_init(void)
{
ip4_frags.ctl = &ip4_frags_ctl;
ip4_frags.hashfn = ip4_hashfn;
ip4_frags.constructor = ip4_frag_init;
ip4_frags.destructor = ip4_frag_free;
ip4_frags.skb_free = NULL;
ip4_frags.qsize = sizeof(struct ipq);
ip4_frags.match = ip4_frag_match;
ip4_frags.frag_expire = ip_expire;
inet_frags_init(&ip4_frags);
}
EXPORT_SYMBOL(ip_defrag);