WSL2-Linux-Kernel/sound/soc/codecs/tlv320aic3x.c

1333 строки
42 KiB
C
Исходник Обычный вид История

/*
* ALSA SoC TLV320AIC3X codec driver
*
* Author: Vladimir Barinov, <vbarinov@ru.mvista.com>
* Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
*
* Based on sound/soc/codecs/wm8753.c by Liam Girdwood
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Notes:
* The AIC3X is a driver for a low power stereo audio
* codecs aic31, aic32, aic33.
*
* It supports full aic33 codec functionality.
* The compatibility with aic32, aic31 is as follows:
* aic32 | aic31
* ---------------------------------------
* MONO_LOUT -> N/A | MONO_LOUT -> N/A
* | IN1L -> LINE1L
* | IN1R -> LINE1R
* | IN2L -> LINE2L
* | IN2R -> LINE2R
* | MIC3L/R -> N/A
* truncated internal functionality in
* accordance with documentation
* ---------------------------------------
*
* Hence the machine layer should disable unsupported inputs/outputs by
* snd_soc_dapm_set_endpoint(codec, "MONO_LOUT", 0), etc.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include "tlv320aic3x.h"
#define AUDIO_NAME "aic3x"
#define AIC3X_VERSION "0.2"
/* codec private data */
struct aic3x_priv {
unsigned int sysclk;
int master;
};
/*
* AIC3X register cache
* We can't read the AIC3X register space when we are
* using 2 wire for device control, so we cache them instead.
* There is no point in caching the reset register
*/
static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
0x00, 0x00, 0x00, 0x10, /* 0 */
0x04, 0x00, 0x00, 0x00, /* 4 */
0x00, 0x00, 0x00, 0x01, /* 8 */
0x00, 0x00, 0x00, 0x80, /* 12 */
0x80, 0xff, 0xff, 0x78, /* 16 */
0x78, 0x78, 0x78, 0x78, /* 20 */
0x78, 0x00, 0x00, 0xfe, /* 24 */
0x00, 0x00, 0xfe, 0x00, /* 28 */
0x18, 0x18, 0x00, 0x00, /* 32 */
0x00, 0x00, 0x00, 0x00, /* 36 */
0x00, 0x00, 0x00, 0x80, /* 40 */
0x80, 0x00, 0x00, 0x00, /* 44 */
0x00, 0x00, 0x00, 0x04, /* 48 */
0x00, 0x00, 0x00, 0x00, /* 52 */
0x00, 0x00, 0x04, 0x00, /* 56 */
0x00, 0x00, 0x00, 0x00, /* 60 */
0x00, 0x04, 0x00, 0x00, /* 64 */
0x00, 0x00, 0x00, 0x00, /* 68 */
0x04, 0x00, 0x00, 0x00, /* 72 */
0x00, 0x00, 0x00, 0x00, /* 76 */
0x00, 0x00, 0x00, 0x00, /* 80 */
0x00, 0x00, 0x00, 0x00, /* 84 */
0x00, 0x00, 0x00, 0x00, /* 88 */
0x00, 0x00, 0x00, 0x00, /* 92 */
0x00, 0x00, 0x00, 0x00, /* 96 */
0x00, 0x00, 0x02, /* 100 */
};
/*
* read aic3x register cache
*/
static inline unsigned int aic3x_read_reg_cache(struct snd_soc_codec *codec,
unsigned int reg)
{
u8 *cache = codec->reg_cache;
if (reg >= AIC3X_CACHEREGNUM)
return -1;
return cache[reg];
}
/*
* write aic3x register cache
*/
static inline void aic3x_write_reg_cache(struct snd_soc_codec *codec,
u8 reg, u8 value)
{
u8 *cache = codec->reg_cache;
if (reg >= AIC3X_CACHEREGNUM)
return;
cache[reg] = value;
}
/*
* write to the aic3x register space
*/
static int aic3x_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u8 data[2];
/* data is
* D15..D8 aic3x register offset
* D7...D0 register data
*/
data[0] = reg & 0xff;
data[1] = value & 0xff;
aic3x_write_reg_cache(codec, data[0], data[1]);
if (codec->hw_write(codec->control_data, data, 2) == 2)
return 0;
else
return -EIO;
}
/*
* read from the aic3x register space
*/
static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
u8 *value)
{
*value = reg & 0xff;
if (codec->hw_read(codec->control_data, value, 1) != 1)
return -EIO;
aic3x_write_reg_cache(codec, reg, *value);
return 0;
}
#define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_volsw, \
.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
.private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
/*
* All input lines are connected when !0xf and disconnected with 0xf bit field,
* so we have to use specific dapm_put call for input mixer
*/
static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
unsigned short val, val_mask;
int ret;
struct snd_soc_dapm_path *path;
int found = 0;
val = (ucontrol->value.integer.value[0] & mask);
mask = 0xf;
if (val)
val = mask;
if (invert)
val = mask - val;
val_mask = mask << shift;
val = val << shift;
mutex_lock(&widget->codec->mutex);
if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
/* find dapm widget path assoc with kcontrol */
list_for_each_entry(path, &widget->codec->dapm_paths, list) {
if (path->kcontrol != kcontrol)
continue;
/* found, now check type */
found = 1;
if (val)
/* new connection */
path->connect = invert ? 0 : 1;
else
/* old connection must be powered down */
path->connect = invert ? 1 : 0;
break;
}
if (found)
snd_soc_dapm_sync_endpoints(widget->codec);
}
ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
mutex_unlock(&widget->codec->mutex);
return ret;
}
static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
static const char *aic3x_left_hpcom_mux[] =
{ "differential of HPLOUT", "constant VCM", "single-ended" };
static const char *aic3x_right_hpcom_mux[] =
{ "differential of HPROUT", "constant VCM", "single-ended",
"differential of HPLCOM", "external feedback" };
static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
#define LDAC_ENUM 0
#define RDAC_ENUM 1
#define LHPCOM_ENUM 2
#define RHPCOM_ENUM 3
#define LINE1L_ENUM 4
#define LINE1R_ENUM 5
#define LINE2L_ENUM 6
#define LINE2R_ENUM 7
static const struct soc_enum aic3x_enum[] = {
SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
};
static const struct snd_kcontrol_new aic3x_snd_controls[] = {
/* Output */
SOC_DOUBLE_R("PCM Playback Volume", LDAC_VOL, RDAC_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("Line DAC Playback Volume", DACL1_2_LLOPM_VOL,
DACR1_2_RLOPM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("Line DAC Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
0x01, 0),
SOC_DOUBLE_R("Line PGA Bypass Playback Volume", PGAL_2_LLOPM_VOL,
PGAR_2_RLOPM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("Line Line2 Bypass Playback Volume", LINE2L_2_LLOPM_VOL,
LINE2R_2_RLOPM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("Mono DAC Playback Volume", DACL1_2_MONOLOPM_VOL,
DACR1_2_MONOLOPM_VOL, 0, 0x7f, 1),
SOC_SINGLE("Mono DAC Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
SOC_DOUBLE_R("Mono PGA Bypass Playback Volume", PGAL_2_MONOLOPM_VOL,
PGAR_2_MONOLOPM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("Mono Line2 Bypass Playback Volume", LINE2L_2_MONOLOPM_VOL,
LINE2R_2_MONOLOPM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HP DAC Playback Volume", DACL1_2_HPLOUT_VOL,
DACR1_2_HPROUT_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HP DAC Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
0x01, 0),
SOC_DOUBLE_R("HP PGA Bypass Playback Volume", PGAL_2_HPLOUT_VOL,
PGAR_2_HPROUT_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HP Line2 Bypass Playback Volume", LINE2L_2_HPLOUT_VOL,
LINE2R_2_HPROUT_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HPCOM DAC Playback Volume", DACL1_2_HPLCOM_VOL,
DACR1_2_HPRCOM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HPCOM DAC Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
0x01, 0),
SOC_DOUBLE_R("HPCOM PGA Bypass Playback Volume", PGAL_2_HPLCOM_VOL,
PGAR_2_HPRCOM_VOL, 0, 0x7f, 1),
SOC_DOUBLE_R("HPCOM Line2 Bypass Playback Volume", LINE2L_2_HPLCOM_VOL,
LINE2R_2_HPRCOM_VOL, 0, 0x7f, 1),
/*
* Note: enable Automatic input Gain Controller with care. It can
* adjust PGA to max value when ADC is on and will never go back.
*/
SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
/* Input */
SOC_DOUBLE_R("PGA Capture Volume", LADC_VOL, RADC_VOL, 0, 0x7f, 0),
SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
};
/* add non dapm controls */
static int aic3x_add_controls(struct snd_soc_codec *codec)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(aic3x_snd_controls); i++) {
err = snd_ctl_add(codec->card,
snd_soc_cnew(&aic3x_snd_controls[i],
codec, NULL));
if (err < 0)
return err;
}
return 0;
}
/* Left DAC Mux */
static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
/* Right DAC Mux */
static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
/* Left HPCOM Mux */
static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
/* Right HPCOM Mux */
static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
/* Left DAC_L1 Mixer */
static const struct snd_kcontrol_new aic3x_left_dac_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
};
/* Right DAC_R1 Mixer */
static const struct snd_kcontrol_new aic3x_right_dac_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
};
/* Left PGA Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
};
/* Right PGA Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
};
/* Left Line1 Mux */
static const struct snd_kcontrol_new aic3x_left_line1_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]);
/* Right Line1 Mux */
static const struct snd_kcontrol_new aic3x_right_line1_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]);
/* Left Line2 Mux */
static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
/* Right Line2 Mux */
static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
/* Left PGA Bypass Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_bp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
};
/* Right PGA Bypass Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_bp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
};
/* Left Line2 Bypass Mixer */
static const struct snd_kcontrol_new aic3x_left_line2_bp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
};
/* Right Line2 Bypass Mixer */
static const struct snd_kcontrol_new aic3x_right_line2_bp_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("Mono Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HP Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
SOC_DAPM_SINGLE("HPCOM Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
};
static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
/* Left DAC to Left Outputs */
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_dac_mux_controls),
SND_SOC_DAPM_MIXER("Left DAC_L1 Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_dac_mixer_controls[0],
ARRAY_SIZE(aic3x_left_dac_mixer_controls)),
SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_hpcom_mux_controls),
SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
/* Right DAC to Right Outputs */
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_dac_mux_controls),
SND_SOC_DAPM_MIXER("Right DAC_R1 Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_dac_mixer_controls[0],
ARRAY_SIZE(aic3x_right_dac_mixer_controls)),
SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_hpcom_mux_controls),
SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
/* Mono Output */
SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
/* Left Inputs to Left ADC */
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_pga_mixer_controls[0],
ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_line1_mux_controls),
SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
&aic3x_left_line2_mux_controls),
/* Right Inputs to Right ADC */
SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
LINE1R_2_RADC_CTRL, 2, 0),
SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_pga_mixer_controls[0],
ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_line1_mux_controls),
SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
&aic3x_right_line2_mux_controls),
/*
* Not a real mic bias widget but similar function. This is for dynamic
* control of GPIO1 digital mic modulator clock output function when
* using digital mic.
*/
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
AIC3X_GPIO1_REG, 4, 0xf,
AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
AIC3X_GPIO1_FUNC_DISABLED),
/*
* Also similar function like mic bias. Selects digital mic with
* configurable oversampling rate instead of ADC converter.
*/
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
/* Mic Bias */
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
MICBIAS_CTRL, 6, 3, 1, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
MICBIAS_CTRL, 6, 3, 2, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
MICBIAS_CTRL, 6, 3, 3, 0),
/* Left PGA to Left Output bypass */
SND_SOC_DAPM_MIXER("Left PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_pga_bp_mixer_controls[0],
ARRAY_SIZE(aic3x_left_pga_bp_mixer_controls)),
/* Right PGA to Right Output bypass */
SND_SOC_DAPM_MIXER("Right PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_pga_bp_mixer_controls[0],
ARRAY_SIZE(aic3x_right_pga_bp_mixer_controls)),
/* Left Line2 to Left Output bypass */
SND_SOC_DAPM_MIXER("Left Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_left_line2_bp_mixer_controls[0],
ARRAY_SIZE(aic3x_left_line2_bp_mixer_controls)),
/* Right Line2 to Right Output bypass */
SND_SOC_DAPM_MIXER("Right Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
&aic3x_right_line2_bp_mixer_controls[0],
ARRAY_SIZE(aic3x_right_line2_bp_mixer_controls)),
SND_SOC_DAPM_OUTPUT("LLOUT"),
SND_SOC_DAPM_OUTPUT("RLOUT"),
SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
SND_SOC_DAPM_OUTPUT("HPLOUT"),
SND_SOC_DAPM_OUTPUT("HPROUT"),
SND_SOC_DAPM_OUTPUT("HPLCOM"),
SND_SOC_DAPM_OUTPUT("HPRCOM"),
SND_SOC_DAPM_INPUT("MIC3L"),
SND_SOC_DAPM_INPUT("MIC3R"),
SND_SOC_DAPM_INPUT("LINE1L"),
SND_SOC_DAPM_INPUT("LINE1R"),
SND_SOC_DAPM_INPUT("LINE2L"),
SND_SOC_DAPM_INPUT("LINE2R"),
};
static const struct snd_soc_dapm_route intercon[] = {
/* Left Output */
{"Left DAC Mux", "DAC_L1", "Left DAC"},
{"Left DAC Mux", "DAC_L2", "Left DAC"},
{"Left DAC Mux", "DAC_L3", "Left DAC"},
{"Left DAC_L1 Mixer", "Line Switch", "Left DAC Mux"},
{"Left DAC_L1 Mixer", "Mono Switch", "Left DAC Mux"},
{"Left DAC_L1 Mixer", "HP Switch", "Left DAC Mux"},
{"Left DAC_L1 Mixer", "HPCOM Switch", "Left DAC Mux"},
{"Left Line Out", NULL, "Left DAC Mux"},
{"Left HP Out", NULL, "Left DAC Mux"},
{"Left HPCOM Mux", "differential of HPLOUT", "Left DAC_L1 Mixer"},
{"Left HPCOM Mux", "constant VCM", "Left DAC_L1 Mixer"},
{"Left HPCOM Mux", "single-ended", "Left DAC_L1 Mixer"},
{"Left Line Out", NULL, "Left DAC_L1 Mixer"},
{"Mono Out", NULL, "Left DAC_L1 Mixer"},
{"Left HP Out", NULL, "Left DAC_L1 Mixer"},
{"Left HP Com", NULL, "Left HPCOM Mux"},
{"LLOUT", NULL, "Left Line Out"},
{"LLOUT", NULL, "Left Line Out"},
{"HPLOUT", NULL, "Left HP Out"},
{"HPLCOM", NULL, "Left HP Com"},
/* Right Output */
{"Right DAC Mux", "DAC_R1", "Right DAC"},
{"Right DAC Mux", "DAC_R2", "Right DAC"},
{"Right DAC Mux", "DAC_R3", "Right DAC"},
{"Right DAC_R1 Mixer", "Line Switch", "Right DAC Mux"},
{"Right DAC_R1 Mixer", "Mono Switch", "Right DAC Mux"},
{"Right DAC_R1 Mixer", "HP Switch", "Right DAC Mux"},
{"Right DAC_R1 Mixer", "HPCOM Switch", "Right DAC Mux"},
{"Right Line Out", NULL, "Right DAC Mux"},
{"Right HP Out", NULL, "Right DAC Mux"},
{"Right HPCOM Mux", "differential of HPROUT", "Right DAC_R1 Mixer"},
{"Right HPCOM Mux", "constant VCM", "Right DAC_R1 Mixer"},
{"Right HPCOM Mux", "single-ended", "Right DAC_R1 Mixer"},
{"Right HPCOM Mux", "differential of HPLCOM", "Right DAC_R1 Mixer"},
{"Right HPCOM Mux", "external feedback", "Right DAC_R1 Mixer"},
{"Right Line Out", NULL, "Right DAC_R1 Mixer"},
{"Mono Out", NULL, "Right DAC_R1 Mixer"},
{"Right HP Out", NULL, "Right DAC_R1 Mixer"},
{"Right HP Com", NULL, "Right HPCOM Mux"},
{"RLOUT", NULL, "Right Line Out"},
{"RLOUT", NULL, "Right Line Out"},
{"HPROUT", NULL, "Right HP Out"},
{"HPRCOM", NULL, "Right HP Com"},
/* Mono Output */
{"MONO_LOUT", NULL, "Mono Out"},
{"MONO_LOUT", NULL, "Mono Out"},
/* Left Input */
{"Left Line1L Mux", "single-ended", "LINE1L"},
{"Left Line1L Mux", "differential", "LINE1L"},
{"Left Line2L Mux", "single-ended", "LINE2L"},
{"Left Line2L Mux", "differential", "LINE2L"},
{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
{"Left ADC", NULL, "Left PGA Mixer"},
{"Left ADC", NULL, "GPIO1 dmic modclk"},
/* Right Input */
{"Right Line1R Mux", "single-ended", "LINE1R"},
{"Right Line1R Mux", "differential", "LINE1R"},
{"Right Line2R Mux", "single-ended", "LINE2R"},
{"Right Line2R Mux", "differential", "LINE2R"},
{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
{"Right ADC", NULL, "Right PGA Mixer"},
{"Right ADC", NULL, "GPIO1 dmic modclk"},
/* Left PGA Bypass */
{"Left PGA Bypass Mixer", "Line Switch", "Left PGA Mixer"},
{"Left PGA Bypass Mixer", "Mono Switch", "Left PGA Mixer"},
{"Left PGA Bypass Mixer", "HP Switch", "Left PGA Mixer"},
{"Left PGA Bypass Mixer", "HPCOM Switch", "Left PGA Mixer"},
{"Left HPCOM Mux", "differential of HPLOUT", "Left PGA Bypass Mixer"},
{"Left HPCOM Mux", "constant VCM", "Left PGA Bypass Mixer"},
{"Left HPCOM Mux", "single-ended", "Left PGA Bypass Mixer"},
{"Left Line Out", NULL, "Left PGA Bypass Mixer"},
{"Mono Out", NULL, "Left PGA Bypass Mixer"},
{"Left HP Out", NULL, "Left PGA Bypass Mixer"},
/* Right PGA Bypass */
{"Right PGA Bypass Mixer", "Line Switch", "Right PGA Mixer"},
{"Right PGA Bypass Mixer", "Mono Switch", "Right PGA Mixer"},
{"Right PGA Bypass Mixer", "HP Switch", "Right PGA Mixer"},
{"Right PGA Bypass Mixer", "HPCOM Switch", "Right PGA Mixer"},
{"Right HPCOM Mux", "differential of HPROUT", "Right PGA Bypass Mixer"},
{"Right HPCOM Mux", "constant VCM", "Right PGA Bypass Mixer"},
{"Right HPCOM Mux", "single-ended", "Right PGA Bypass Mixer"},
{"Right HPCOM Mux", "differential of HPLCOM", "Right PGA Bypass Mixer"},
{"Right HPCOM Mux", "external feedback", "Right PGA Bypass Mixer"},
{"Right Line Out", NULL, "Right PGA Bypass Mixer"},
{"Mono Out", NULL, "Right PGA Bypass Mixer"},
{"Right HP Out", NULL, "Right PGA Bypass Mixer"},
/* Left Line2 Bypass */
{"Left Line2 Bypass Mixer", "Line Switch", "Left Line2L Mux"},
{"Left Line2 Bypass Mixer", "Mono Switch", "Left Line2L Mux"},
{"Left Line2 Bypass Mixer", "HP Switch", "Left Line2L Mux"},
{"Left Line2 Bypass Mixer", "HPCOM Switch", "Left Line2L Mux"},
{"Left HPCOM Mux", "differential of HPLOUT", "Left Line2 Bypass Mixer"},
{"Left HPCOM Mux", "constant VCM", "Left Line2 Bypass Mixer"},
{"Left HPCOM Mux", "single-ended", "Left Line2 Bypass Mixer"},
{"Left Line Out", NULL, "Left Line2 Bypass Mixer"},
{"Mono Out", NULL, "Left Line2 Bypass Mixer"},
{"Left HP Out", NULL, "Left Line2 Bypass Mixer"},
/* Right Line2 Bypass */
{"Right Line2 Bypass Mixer", "Line Switch", "Right Line2R Mux"},
{"Right Line2 Bypass Mixer", "Mono Switch", "Right Line2R Mux"},
{"Right Line2 Bypass Mixer", "HP Switch", "Right Line2R Mux"},
{"Right Line2 Bypass Mixer", "HPCOM Switch", "Right Line2R Mux"},
{"Right HPCOM Mux", "differential of HPROUT", "Right Line2 Bypass Mixer"},
{"Right HPCOM Mux", "constant VCM", "Right Line2 Bypass Mixer"},
{"Right HPCOM Mux", "single-ended", "Right Line2 Bypass Mixer"},
{"Right HPCOM Mux", "differential of HPLCOM", "Right Line2 Bypass Mixer"},
{"Right HPCOM Mux", "external feedback", "Right Line2 Bypass Mixer"},
{"Right Line Out", NULL, "Right Line2 Bypass Mixer"},
{"Mono Out", NULL, "Right Line2 Bypass Mixer"},
{"Right HP Out", NULL, "Right Line2 Bypass Mixer"},
/*
* Logical path between digital mic enable and GPIO1 modulator clock
* output function
*/
{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
};
static int aic3x_add_widgets(struct snd_soc_codec *codec)
{
snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets,
ARRAY_SIZE(aic3x_dapm_widgets));
/* set up audio path interconnects */
snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));
snd_soc_dapm_new_widgets(codec);
return 0;
}
static int aic3x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->codec;
struct aic3x_priv *aic3x = codec->private_data;
int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
u8 data, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
u16 pll_d = 1;
/* select data word length */
data =
aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
break;
case SNDRV_PCM_FORMAT_S20_3LE:
data |= (0x01 << 4);
break;
case SNDRV_PCM_FORMAT_S24_LE:
data |= (0x02 << 4);
break;
case SNDRV_PCM_FORMAT_S32_LE:
data |= (0x03 << 4);
break;
}
aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, data);
/* Fsref can be 44100 or 48000 */
fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
/* Try to find a value for Q which allows us to bypass the PLL and
* generate CODEC_CLK directly. */
for (pll_q = 2; pll_q < 18; pll_q++)
if (aic3x->sysclk / (128 * pll_q) == fsref) {
bypass_pll = 1;
break;
}
if (bypass_pll) {
pll_q &= 0xf;
aic3x_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
} else
aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
/* Route Left DAC to left channel input and
* right DAC to right channel input */
data = (LDAC2LCH | RDAC2RCH);
data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
if (params_rate(params) >= 64000)
data |= DUAL_RATE_MODE;
aic3x_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
/* codec sample rate select */
data = (fsref * 20) / params_rate(params);
if (params_rate(params) < 64000)
data /= 2;
data /= 5;
data -= 2;
data |= (data << 4);
aic3x_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
if (bypass_pll)
return 0;
/* Use PLL
* find an apropriate setup for j, d, r and p by iterating over
* p and r - j and d are calculated for each fraction.
* Up to 128 values are probed, the closest one wins the game.
* The sysclk is divided by 1000 to prevent integer overflows.
*/
codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
for (r = 1; r <= 16; r++)
for (p = 1; p <= 8; p++) {
int clk, tmp = (codec_clk * pll_r * 10) / pll_p;
u8 j = tmp / 10000;
u16 d = tmp % 10000;
if (j > 63)
continue;
if (d != 0 && aic3x->sysclk < 10000000)
continue;
/* This is actually 1000 * ((j + (d/10000)) * r) / p
* The term had to be converted to get rid of the
* division by 10000 */
clk = ((10000 * j * r) + (d * r)) / (10 * p);
/* check whether this values get closer than the best
* ones we had before */
if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
pll_j = j; pll_d = d; pll_r = r; pll_p = p;
last_clk = clk;
}
/* Early exit for exact matches */
if (clk == codec_clk)
break;
}
if (last_clk == 0) {
printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
return -EINVAL;
}
data = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
aic3x_write(codec, AIC3X_PLL_PROGA_REG, data | (pll_p << PLLP_SHIFT));
aic3x_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG, pll_r << PLLR_SHIFT);
aic3x_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
aic3x_write(codec, AIC3X_PLL_PROGC_REG, (pll_d >> 6) << PLLD_MSB_SHIFT);
aic3x_write(codec, AIC3X_PLL_PROGD_REG,
(pll_d & 0x3F) << PLLD_LSB_SHIFT);
return 0;
}
static int aic3x_mute(struct snd_soc_codec_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
u8 ldac_reg = aic3x_read_reg_cache(codec, LDAC_VOL) & ~MUTE_ON;
u8 rdac_reg = aic3x_read_reg_cache(codec, RDAC_VOL) & ~MUTE_ON;
if (mute) {
aic3x_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
aic3x_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
} else {
aic3x_write(codec, LDAC_VOL, ldac_reg);
aic3x_write(codec, RDAC_VOL, rdac_reg);
}
return 0;
}
static int aic3x_set_dai_sysclk(struct snd_soc_codec_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct aic3x_priv *aic3x = codec->private_data;
aic3x->sysclk = freq;
return 0;
}
static int aic3x_set_dai_fmt(struct snd_soc_codec_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct aic3x_priv *aic3x = codec->private_data;
u8 iface_areg, iface_breg;
iface_areg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
iface_breg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
aic3x->master = 1;
iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
aic3x->master = 0;
break;
default:
return -EINVAL;
}
/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
case SND_SOC_DAIFMT_DSP_A:
iface_breg |= (0x01 << 6);
break;
case SND_SOC_DAIFMT_RIGHT_J:
iface_breg |= (0x02 << 6);
break;
case SND_SOC_DAIFMT_LEFT_J:
iface_breg |= (0x03 << 6);
break;
default:
return -EINVAL;
}
/* set iface */
aic3x_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
return 0;
}
static int aic3x_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct aic3x_priv *aic3x = codec->private_data;
u8 reg;
switch (level) {
case SND_SOC_BIAS_ON:
/* all power is driven by DAPM system */
if (aic3x->master) {
/* enable pll */
reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
aic3x_write(codec, AIC3X_PLL_PROGA_REG,
reg | PLL_ENABLE);
}
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
/*
* all power is driven by DAPM system,
* so output power is safe if bypass was set
*/
if (aic3x->master) {
/* disable pll */
reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
aic3x_write(codec, AIC3X_PLL_PROGA_REG,
reg & ~PLL_ENABLE);
}
break;
case SND_SOC_BIAS_OFF:
/* force all power off */
reg = aic3x_read_reg_cache(codec, LINE1L_2_LADC_CTRL);
aic3x_write(codec, LINE1L_2_LADC_CTRL, reg & ~LADC_PWR_ON);
reg = aic3x_read_reg_cache(codec, LINE1R_2_RADC_CTRL);
aic3x_write(codec, LINE1R_2_RADC_CTRL, reg & ~RADC_PWR_ON);
reg = aic3x_read_reg_cache(codec, DAC_PWR);
aic3x_write(codec, DAC_PWR, reg & ~(LDAC_PWR_ON | RDAC_PWR_ON));
reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL);
aic3x_write(codec, HPLOUT_CTRL, reg & ~HPLOUT_PWR_ON);
reg = aic3x_read_reg_cache(codec, HPROUT_CTRL);
aic3x_write(codec, HPROUT_CTRL, reg & ~HPROUT_PWR_ON);
reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL);
aic3x_write(codec, HPLCOM_CTRL, reg & ~HPLCOM_PWR_ON);
reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL);
aic3x_write(codec, HPRCOM_CTRL, reg & ~HPRCOM_PWR_ON);
reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL);
aic3x_write(codec, MONOLOPM_CTRL, reg & ~MONOLOPM_PWR_ON);
reg = aic3x_read_reg_cache(codec, LLOPM_CTRL);
aic3x_write(codec, LLOPM_CTRL, reg & ~LLOPM_PWR_ON);
reg = aic3x_read_reg_cache(codec, RLOPM_CTRL);
aic3x_write(codec, RLOPM_CTRL, reg & ~RLOPM_PWR_ON);
if (aic3x->master) {
/* disable pll */
reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
aic3x_write(codec, AIC3X_PLL_PROGA_REG,
reg & ~PLL_ENABLE);
}
break;
}
codec->bias_level = level;
return 0;
}
void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
{
u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
u8 bit = gpio ? 3: 0;
u8 val = aic3x_read_reg_cache(codec, reg) & ~(1 << bit);
aic3x_write(codec, reg, val | (!!state << bit));
}
EXPORT_SYMBOL_GPL(aic3x_set_gpio);
int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
{
u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
u8 val, bit = gpio ? 2: 1;
aic3x_read(codec, reg, &val);
return (val >> bit) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_get_gpio);
int aic3x_headset_detected(struct snd_soc_codec *codec)
{
u8 val;
aic3x_read(codec, AIC3X_RT_IRQ_FLAGS_REG, &val);
return (val >> 2) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_headset_detected);
#define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
struct snd_soc_codec_dai aic3x_dai = {
.name = "aic3x",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = AIC3X_RATES,
.formats = AIC3X_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = AIC3X_RATES,
.formats = AIC3X_FORMATS,},
.ops = {
.hw_params = aic3x_hw_params,
},
.dai_ops = {
.digital_mute = aic3x_mute,
.set_sysclk = aic3x_set_dai_sysclk,
.set_fmt = aic3x_set_dai_fmt,
}
};
EXPORT_SYMBOL_GPL(aic3x_dai);
static int aic3x_suspend(struct platform_device *pdev, pm_message_t state)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int aic3x_resume(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
int i;
u8 data[2];
u8 *cache = codec->reg_cache;
/* Sync reg_cache with the hardware */
for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++) {
data[0] = i;
data[1] = cache[i];
codec->hw_write(codec->control_data, data, 2);
}
aic3x_set_bias_level(codec, codec->suspend_bias_level);
return 0;
}
/*
* initialise the AIC3X driver
* register the mixer and dsp interfaces with the kernel
*/
static int aic3x_init(struct snd_soc_device *socdev)
{
struct snd_soc_codec *codec = socdev->codec;
struct aic3x_setup_data *setup = socdev->codec_data;
int reg, ret = 0;
codec->name = "aic3x";
codec->owner = THIS_MODULE;
codec->read = aic3x_read_reg_cache;
codec->write = aic3x_write;
codec->set_bias_level = aic3x_set_bias_level;
codec->dai = &aic3x_dai;
codec->num_dai = 1;
codec->reg_cache_size = ARRAY_SIZE(aic3x_reg);
codec->reg_cache = kmemdup(aic3x_reg, sizeof(aic3x_reg), GFP_KERNEL);
if (codec->reg_cache == NULL)
return -ENOMEM;
aic3x_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
aic3x_write(codec, AIC3X_RESET, SOFT_RESET);
/* register pcms */
ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
if (ret < 0) {
printk(KERN_ERR "aic3x: failed to create pcms\n");
goto pcm_err;
}
/* DAC default volume and mute */
aic3x_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
aic3x_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
/* DAC to HP default volume and route to Output mixer */
aic3x_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
aic3x_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
aic3x_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
aic3x_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
/* DAC to Line Out default volume and route to Output mixer */
aic3x_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
aic3x_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
/* DAC to Mono Line Out default volume and route to Output mixer */
aic3x_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
aic3x_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
/* unmute all outputs */
reg = aic3x_read_reg_cache(codec, LLOPM_CTRL);
aic3x_write(codec, LLOPM_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, RLOPM_CTRL);
aic3x_write(codec, RLOPM_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL);
aic3x_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL);
aic3x_write(codec, HPLOUT_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, HPROUT_CTRL);
aic3x_write(codec, HPROUT_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL);
aic3x_write(codec, HPLCOM_CTRL, reg | UNMUTE);
reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL);
aic3x_write(codec, HPRCOM_CTRL, reg | UNMUTE);
/* ADC default volume and unmute */
aic3x_write(codec, LADC_VOL, DEFAULT_GAIN);
aic3x_write(codec, RADC_VOL, DEFAULT_GAIN);
/* By default route Line1 to ADC PGA mixer */
aic3x_write(codec, LINE1L_2_LADC_CTRL, 0x0);
aic3x_write(codec, LINE1R_2_RADC_CTRL, 0x0);
/* PGA to HP Bypass default volume, disconnect from Output Mixer */
aic3x_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
aic3x_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
aic3x_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
aic3x_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
/* PGA to Line Out default volume, disconnect from Output Mixer */
aic3x_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
aic3x_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
aic3x_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
aic3x_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
aic3x_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
aic3x_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
aic3x_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
aic3x_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
/* Line2 Line Out default volume, disconnect from Output Mixer */
aic3x_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
aic3x_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
/* Line2 to Mono Out default volume, disconnect from Output Mixer */
aic3x_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
aic3x_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
/* off, with power on */
aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
/* setup GPIO functions */
aic3x_write(codec, AIC3X_GPIO1_REG, (setup->gpio_func[0] & 0xf) << 4);
aic3x_write(codec, AIC3X_GPIO2_REG, (setup->gpio_func[1] & 0xf) << 4);
aic3x_add_controls(codec);
aic3x_add_widgets(codec);
ret = snd_soc_register_card(socdev);
if (ret < 0) {
printk(KERN_ERR "aic3x: failed to register card\n");
goto card_err;
}
return ret;
card_err:
snd_soc_free_pcms(socdev);
snd_soc_dapm_free(socdev);
pcm_err:
kfree(codec->reg_cache);
return ret;
}
static struct snd_soc_device *aic3x_socdev;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
/*
* AIC3X 2 wire address can be up to 4 devices with device addresses
* 0x18, 0x19, 0x1A, 0x1B
*/
static unsigned short normal_i2c[] = { 0, I2C_CLIENT_END };
/* Magic definition of all other variables and things */
I2C_CLIENT_INSMOD;
static struct i2c_driver aic3x_i2c_driver;
static struct i2c_client client_template;
/*
* If the i2c layer weren't so broken, we could pass this kind of data
* around
*/
static int aic3x_codec_probe(struct i2c_adapter *adap, int addr, int kind)
{
struct snd_soc_device *socdev = aic3x_socdev;
struct aic3x_setup_data *setup = socdev->codec_data;
struct snd_soc_codec *codec = socdev->codec;
struct i2c_client *i2c;
int ret;
if (addr != setup->i2c_address)
return -ENODEV;
client_template.adapter = adap;
client_template.addr = addr;
i2c = kmemdup(&client_template, sizeof(client_template), GFP_KERNEL);
if (i2c == NULL) {
kfree(codec);
return -ENOMEM;
}
i2c_set_clientdata(i2c, codec);
codec->control_data = i2c;
ret = i2c_attach_client(i2c);
if (ret < 0) {
printk(KERN_ERR "aic3x: failed to attach codec at addr %x\n",
addr);
goto err;
}
ret = aic3x_init(socdev);
if (ret < 0) {
printk(KERN_ERR "aic3x: failed to initialise AIC3X\n");
goto err;
}
return ret;
err:
kfree(codec);
kfree(i2c);
return ret;
}
static int aic3x_i2c_detach(struct i2c_client *client)
{
struct snd_soc_codec *codec = i2c_get_clientdata(client);
i2c_detach_client(client);
kfree(codec->reg_cache);
kfree(client);
return 0;
}
static int aic3x_i2c_attach(struct i2c_adapter *adap)
{
return i2c_probe(adap, &addr_data, aic3x_codec_probe);
}
/* machine i2c codec control layer */
static struct i2c_driver aic3x_i2c_driver = {
.driver = {
.name = "aic3x I2C Codec",
.owner = THIS_MODULE,
},
.attach_adapter = aic3x_i2c_attach,
.detach_client = aic3x_i2c_detach,
};
static struct i2c_client client_template = {
.name = "AIC3X",
.driver = &aic3x_i2c_driver,
};
static int aic3x_i2c_read(struct i2c_client *client, u8 *value, int len)
{
value[0] = i2c_smbus_read_byte_data(client, value[0]);
return (len == 1);
}
#endif
static int aic3x_probe(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct aic3x_setup_data *setup;
struct snd_soc_codec *codec;
struct aic3x_priv *aic3x;
int ret = 0;
printk(KERN_INFO "AIC3X Audio Codec %s\n", AIC3X_VERSION);
setup = socdev->codec_data;
codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
if (codec == NULL)
return -ENOMEM;
aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
if (aic3x == NULL) {
kfree(codec);
return -ENOMEM;
}
codec->private_data = aic3x;
socdev->codec = codec;
mutex_init(&codec->mutex);
INIT_LIST_HEAD(&codec->dapm_widgets);
INIT_LIST_HEAD(&codec->dapm_paths);
aic3x_socdev = socdev;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
if (setup->i2c_address) {
normal_i2c[0] = setup->i2c_address;
codec->hw_write = (hw_write_t) i2c_master_send;
codec->hw_read = (hw_read_t) aic3x_i2c_read;
ret = i2c_add_driver(&aic3x_i2c_driver);
if (ret != 0)
printk(KERN_ERR "can't add i2c driver");
}
#else
/* Add other interfaces here */
#endif
return ret;
}
static int aic3x_remove(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
/* power down chip */
if (codec->control_data)
aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
snd_soc_free_pcms(socdev);
snd_soc_dapm_free(socdev);
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
i2c_del_driver(&aic3x_i2c_driver);
#endif
kfree(codec->private_data);
kfree(codec);
return 0;
}
struct snd_soc_codec_device soc_codec_dev_aic3x = {
.probe = aic3x_probe,
.remove = aic3x_remove,
.suspend = aic3x_suspend,
.resume = aic3x_resume,
};
EXPORT_SYMBOL_GPL(soc_codec_dev_aic3x);
MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");