WSL2-Linux-Kernel/drivers/base/power/domain_governor.c

241 строка
6.3 KiB
C
Исходник Обычный вид История

/*
* drivers/base/power/domain_governor.c - Governors for device PM domains.
*
* Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
*
* This file is released under the GPLv2.
*/
#include <linux/kernel.h>
#include <linux/pm_domain.h>
#include <linux/pm_qos.h>
#include <linux/hrtimer.h>
static int dev_update_qos_constraint(struct device *dev, void *data)
{
s64 *constraint_ns_p = data;
s32 constraint_ns = -1;
if (dev->power.subsys_data && dev->power.subsys_data->domain_data)
constraint_ns = dev_gpd_data(dev)->td.effective_constraint_ns;
if (constraint_ns < 0) {
constraint_ns = dev_pm_qos_read_value(dev);
constraint_ns *= NSEC_PER_USEC;
}
if (constraint_ns == 0)
return 0;
/*
* constraint_ns cannot be negative here, because the device has been
* suspended.
*/
if (constraint_ns < *constraint_ns_p || *constraint_ns_p == 0)
*constraint_ns_p = constraint_ns;
return 0;
}
/**
* default_suspend_ok - Default PM domain governor routine to suspend devices.
* @dev: Device to check.
*/
static bool default_suspend_ok(struct device *dev)
{
struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
unsigned long flags;
s64 constraint_ns;
dev_dbg(dev, "%s()\n", __func__);
spin_lock_irqsave(&dev->power.lock, flags);
if (!td->constraint_changed) {
bool ret = td->cached_suspend_ok;
spin_unlock_irqrestore(&dev->power.lock, flags);
return ret;
}
td->constraint_changed = false;
td->cached_suspend_ok = false;
td->effective_constraint_ns = -1;
constraint_ns = __dev_pm_qos_read_value(dev);
spin_unlock_irqrestore(&dev->power.lock, flags);
if (constraint_ns < 0)
return false;
constraint_ns *= NSEC_PER_USEC;
/*
* We can walk the children without any additional locking, because
* they all have been suspended at this point and their
* effective_constraint_ns fields won't be modified in parallel with us.
*/
if (!dev->power.ignore_children)
device_for_each_child(dev, &constraint_ns,
dev_update_qos_constraint);
if (constraint_ns > 0) {
constraint_ns -= td->suspend_latency_ns +
td->resume_latency_ns;
if (constraint_ns == 0)
return false;
}
td->effective_constraint_ns = constraint_ns;
td->cached_suspend_ok = constraint_ns >= 0;
/*
* The children have been suspended already, so we don't need to take
* their suspend latencies into account here.
*/
return td->cached_suspend_ok;
}
/**
* default_power_down_ok - Default generic PM domain power off governor routine.
* @pd: PM domain to check.
*
* This routine must be executed under the PM domain's lock.
*/
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
static bool __default_power_down_ok(struct dev_pm_domain *pd,
unsigned int state)
{
struct generic_pm_domain *genpd = pd_to_genpd(pd);
struct gpd_link *link;
struct pm_domain_data *pdd;
s64 min_off_time_ns;
s64 off_on_time_ns;
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
off_on_time_ns = genpd->states[state].power_off_latency_ns +
genpd->states[state].power_on_latency_ns;
min_off_time_ns = -1;
/*
* Check if subdomains can be off for enough time.
*
* All subdomains have been powered off already at this point.
*/
list_for_each_entry(link, &genpd->master_links, master_node) {
struct generic_pm_domain *sd = link->slave;
s64 sd_max_off_ns = sd->max_off_time_ns;
if (sd_max_off_ns < 0)
continue;
/*
* Check if the subdomain is allowed to be off long enough for
* the current domain to turn off and on (that's how much time
* it will have to wait worst case).
*/
if (sd_max_off_ns <= off_on_time_ns)
return false;
if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0)
min_off_time_ns = sd_max_off_ns;
}
/*
* Check if the devices in the domain can be off enough time.
*/
list_for_each_entry(pdd, &genpd->dev_list, list_node) {
struct gpd_timing_data *td;
s64 constraint_ns;
/*
* Check if the device is allowed to be off long enough for the
* domain to turn off and on (that's how much time it will
* have to wait worst case).
*/
td = &to_gpd_data(pdd)->td;
constraint_ns = td->effective_constraint_ns;
/* default_suspend_ok() need not be called before us. */
if (constraint_ns < 0) {
constraint_ns = dev_pm_qos_read_value(pdd->dev);
constraint_ns *= NSEC_PER_USEC;
}
if (constraint_ns == 0)
continue;
/*
* constraint_ns cannot be negative here, because the device has
* been suspended.
*/
if (constraint_ns <= off_on_time_ns)
return false;
if (min_off_time_ns > constraint_ns || min_off_time_ns < 0)
min_off_time_ns = constraint_ns;
}
/*
* If the computed minimum device off time is negative, there are no
* latency constraints, so the domain can spend arbitrary time in the
* "off" state.
*/
if (min_off_time_ns < 0)
return true;
/*
* The difference between the computed minimum subdomain or device off
* time and the time needed to turn the domain on is the maximum
* theoretical time this domain can spend in the "off" state.
*/
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
genpd->max_off_time_ns = min_off_time_ns -
genpd->states[state].power_on_latency_ns;
return true;
}
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
static bool default_power_down_ok(struct dev_pm_domain *pd)
{
struct generic_pm_domain *genpd = pd_to_genpd(pd);
struct gpd_link *link;
if (!genpd->max_off_time_changed)
return genpd->cached_power_down_ok;
/*
* We have to invalidate the cached results for the masters, so
* use the observation that default_power_down_ok() is not
* going to be called for any master until this instance
* returns.
*/
list_for_each_entry(link, &genpd->slave_links, slave_node)
link->master->max_off_time_changed = true;
genpd->max_off_time_ns = -1;
genpd->max_off_time_changed = false;
genpd->cached_power_down_ok = true;
genpd->state_idx = genpd->state_count - 1;
/* Find a state to power down to, starting from the deepest. */
while (!__default_power_down_ok(pd, genpd->state_idx)) {
if (genpd->state_idx == 0) {
genpd->cached_power_down_ok = false;
break;
}
genpd->state_idx--;
}
return genpd->cached_power_down_ok;
}
static bool always_on_power_down_ok(struct dev_pm_domain *domain)
{
return false;
}
struct dev_power_governor simple_qos_governor = {
.suspend_ok = default_suspend_ok,
.power_down_ok = default_power_down_ok,
};
/**
* pm_genpd_gov_always_on - A governor implementing an always-on policy
*/
struct dev_power_governor pm_domain_always_on_gov = {
.power_down_ok = always_on_power_down_ok,
.suspend_ok = default_suspend_ok,
};