WSL2-Linux-Kernel/mm/hugetlb_vmemmap.c

579 строки
16 KiB
C
Исходник Обычный вид История

mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* HugeTLB Vmemmap Optimization (HVO)
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
*
* Copyright (c) 2020, ByteDance. All rights reserved.
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
*
* Author: Muchun Song <songmuchun@bytedance.com>
*
* See Documentation/mm/vmemmap_dedup.rst
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
*/
mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap Add a kernel parameter hugetlb_free_vmemmap to enable the feature of freeing unused vmemmap pages associated with each hugetlb page on boot. We disable PMD mapping of vmemmap pages for x86-64 arch when this feature is enabled. Because vmemmap_remap_free() depends on vmemmap being base page mapped. Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Barry Song <song.bao.hua@hisilicon.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:25 +03:00
#define pr_fmt(fmt) "HugeTLB: " fmt
#include <linux/pgtable.h>
#include <linux/bootmem_info.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
#include "hugetlb_vmemmap.h"
/**
* struct vmemmap_remap_walk - walk vmemmap page table
*
* @remap_pte: called for each lowest-level entry (PTE).
* @nr_walked: the number of walked pte.
* @reuse_page: the page which is reused for the tail vmemmap pages.
* @reuse_addr: the virtual address of the @reuse_page page.
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
* or is mapped from.
*/
struct vmemmap_remap_walk {
void (*remap_pte)(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk);
unsigned long nr_walked;
struct page *reuse_page;
unsigned long reuse_addr;
struct list_head *vmemmap_pages;
};
static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
{
pmd_t __pmd;
int i;
unsigned long addr = start;
struct page *page = pmd_page(*pmd);
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
if (!pgtable)
return -ENOMEM;
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
pgprot_t pgprot = PAGE_KERNEL;
entry = mk_pte(page + i, pgprot);
pte = pte_offset_kernel(&__pmd, addr);
set_pte_at(&init_mm, addr, pte, entry);
}
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_leaf(*pmd))) {
/*
* Higher order allocations from buddy allocator must be able to
* be treated as indepdenent small pages (as they can be freed
* individually).
*/
if (!PageReserved(page))
split_page(page, get_order(PMD_SIZE));
/* Make pte visible before pmd. See comment in pmd_install(). */
smp_wmb();
pmd_populate_kernel(&init_mm, pmd, pgtable);
flush_tlb_kernel_range(start, start + PMD_SIZE);
} else {
pte_free_kernel(&init_mm, pgtable);
}
spin_unlock(&init_mm.page_table_lock);
return 0;
}
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
{
int leaf;
spin_lock(&init_mm.page_table_lock);
leaf = pmd_leaf(*pmd);
spin_unlock(&init_mm.page_table_lock);
if (!leaf)
return 0;
return __split_vmemmap_huge_pmd(pmd, start);
}
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
/*
* The reuse_page is found 'first' in table walk before we start
* remapping (which is calling @walk->remap_pte).
*/
if (!walk->reuse_page) {
walk->reuse_page = pte_page(*pte);
/*
* Because the reuse address is part of the range that we are
* walking, skip the reuse address range.
*/
addr += PAGE_SIZE;
pte++;
walk->nr_walked++;
}
for (; addr != end; addr += PAGE_SIZE, pte++) {
walk->remap_pte(pte, addr, walk);
walk->nr_walked++;
}
}
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
int ret;
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
if (ret)
return ret;
next = pmd_addr_end(addr, end);
vmemmap_pte_range(pmd, addr, next, walk);
} while (pmd++, addr = next, addr != end);
return 0;
}
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(p4d, addr);
do {
int ret;
next = pud_addr_end(addr, end);
ret = vmemmap_pmd_range(pud, addr, next, walk);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
int ret;
next = p4d_addr_end(addr, end);
ret = vmemmap_pud_range(p4d, addr, next, walk);
if (ret)
return ret;
} while (p4d++, addr = next, addr != end);
return 0;
}
static int vmemmap_remap_range(unsigned long start, unsigned long end,
struct vmemmap_remap_walk *walk)
{
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
pgd = pgd_offset_k(addr);
do {
int ret;
next = pgd_addr_end(addr, end);
ret = vmemmap_p4d_range(pgd, addr, next, walk);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
/*
* We only change the mapping of the vmemmap virtual address range
* [@start + PAGE_SIZE, end), so we only need to flush the TLB which
* belongs to the range.
*/
flush_tlb_kernel_range(start + PAGE_SIZE, end);
return 0;
}
/*
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
* allocator or buddy allocator. If the PG_reserved flag is set, it means
* that it allocated from the memblock allocator, just free it via the
* free_bootmem_page(). Otherwise, use __free_page().
*/
static inline void free_vmemmap_page(struct page *page)
{
if (PageReserved(page))
free_bootmem_page(page);
else
__free_page(page);
}
/* Free a list of the vmemmap pages */
static void free_vmemmap_page_list(struct list_head *list)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
list_del(&page->lru);
free_vmemmap_page(page);
}
}
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
/*
* Remap the tail pages as read-only to catch illegal write operation
* to the tail pages.
*/
pgprot_t pgprot = PAGE_KERNEL_RO;
pte_t entry = mk_pte(walk->reuse_page, pgprot);
struct page *page = pte_page(*pte);
list_add_tail(&page->lru, walk->vmemmap_pages);
set_pte_at(&init_mm, addr, pte, entry);
}
/*
* How many struct page structs need to be reset. When we reuse the head
* struct page, the special metadata (e.g. page->flags or page->mapping)
* cannot copy to the tail struct page structs. The invalid value will be
* checked in the free_tail_pages_check(). In order to avoid the message
* of "corrupted mapping in tail page". We need to reset at least 3 (one
* head struct page struct and two tail struct page structs) struct page
* structs.
*/
#define NR_RESET_STRUCT_PAGE 3
static inline void reset_struct_pages(struct page *start)
{
int i;
struct page *from = start + NR_RESET_STRUCT_PAGE;
for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
memcpy(start + i, from, sizeof(*from));
}
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
pgprot_t pgprot = PAGE_KERNEL;
struct page *page;
void *to;
BUG_ON(pte_page(*pte) != walk->reuse_page);
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
list_del(&page->lru);
to = page_to_virt(page);
copy_page(to, (void *)walk->reuse_addr);
reset_struct_pages(to);
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}
/**
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
* to the page which @reuse is mapped to, then free vmemmap
* which the range are mapped to.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_free(unsigned long start, unsigned long end,
unsigned long reuse)
{
int ret;
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_remap_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/*
* In order to make remapping routine most efficient for the huge pages,
* the routine of vmemmap page table walking has the following rules
* (see more details from the vmemmap_pte_range()):
*
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
* should be continuous.
* - The @reuse address is part of the range [@reuse, @end) that we are
* walking which is passed to vmemmap_remap_range().
* - The @reuse address is the first in the complete range.
*
* So we need to make sure that @start and @reuse meet the above rules.
*/
BUG_ON(start - reuse != PAGE_SIZE);
mmap_read_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
if (ret && walk.nr_walked) {
end = reuse + walk.nr_walked * PAGE_SIZE;
/*
* vmemmap_pages contains pages from the previous
* vmemmap_remap_range call which failed. These
* are pages which were removed from the vmemmap.
* They will be restored in the following call.
*/
walk = (struct vmemmap_remap_walk) {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
vmemmap_remap_range(reuse, end, &walk);
}
mmap_read_unlock(&init_mm);
free_vmemmap_page_list(&vmemmap_pages);
return ret;
}
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
gfp_t gfp_mask, struct list_head *list)
{
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
int nid = page_to_nid((struct page *)start);
struct page *page, *next;
while (nr_pages--) {
page = alloc_pages_node(nid, gfp_mask, 0);
if (!page)
goto out;
list_add_tail(&page->lru, list);
}
return 0;
out:
list_for_each_entry_safe(page, next, list, lru)
__free_pages(page, 0);
return -ENOMEM;
}
/**
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
* to the page which is from the @vmemmap_pages
* respectively.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
* @gfp_mask: GFP flag for allocating vmemmap pages.
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
unsigned long reuse, gfp_t gfp_mask)
{
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
return -ENOMEM;
mmap_read_lock(&init_mm);
vmemmap_remap_range(reuse, end, &walk);
mmap_read_unlock(&init_mm);
return 0;
}
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap Add a kernel parameter hugetlb_free_vmemmap to enable the feature of freeing unused vmemmap pages associated with each hugetlb page on boot. We disable PMD mapping of vmemmap pages for x86-64 arch when this feature is enabled. Because vmemmap_remap_free() depends on vmemmap being base page mapped. Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Barry Song <song.bao.hua@hisilicon.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:25 +03:00
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
/**
* hugetlb_vmemmap_restore - restore previously optimized (by
* hugetlb_vmemmap_optimize()) vmemmap pages which
* will be reallocated and remapped.
* @h: struct hstate.
* @head: the head page whose vmemmap pages will be restored.
*
* Return: %0 if @head's vmemmap pages have been reallocated and remapped,
* negative error code otherwise.
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
*/
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
{
int ret;
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
unsigned long vmemmap_reuse;
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
if (!HPageVmemmapOptimized(head))
return 0;
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
/*
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
* The pages which the vmemmap virtual address range [@vmemmap_start,
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
* the range is mapped to the page which @vmemmap_reuse is mapped to.
* When a HugeTLB page is freed to the buddy allocator, previously
* discarded vmemmap pages must be allocated and remapping.
*/
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
if (!ret) {
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
ClearHPageVmemmapOptimized(head);
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
static_branch_dec(&hugetlb_optimize_vmemmap_key);
}
mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:21 +03:00
return ret;
}
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
mm: memory_hotplug: make hugetlb_optimize_vmemmap compatible with memmap_on_memory For now, the feature of hugetlb_free_vmemmap is not compatible with the feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes precedence over memory_hotplug.memmap_on_memory. However, someone wants to make memory_hotplug.memmap_on_memory takes precedence over hugetlb_free_vmemmap since memmap_on_memory makes it more likely to succeed memory hotplug in close-to-OOM situations. So the decision of making hugetlb_free_vmemmap take precedence is not wise and elegant. The proper approach is to have hugetlb_vmemmap.c do the check whether the section which the HugeTLB pages belong to can be optimized. If the section's vmemmap pages are allocated from the added memory block itself, hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do the optimization. Then both kernel parameters are compatible. So this patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page can be optimized. [songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive] Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Co-developed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-17 16:56:50 +03:00
{
if (!READ_ONCE(vmemmap_optimize_enabled))
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
return false;
if (!hugetlb_vmemmap_optimizable(h))
return false;
mm: memory_hotplug: make hugetlb_optimize_vmemmap compatible with memmap_on_memory For now, the feature of hugetlb_free_vmemmap is not compatible with the feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes precedence over memory_hotplug.memmap_on_memory. However, someone wants to make memory_hotplug.memmap_on_memory takes precedence over hugetlb_free_vmemmap since memmap_on_memory makes it more likely to succeed memory hotplug in close-to-OOM situations. So the decision of making hugetlb_free_vmemmap take precedence is not wise and elegant. The proper approach is to have hugetlb_vmemmap.c do the check whether the section which the HugeTLB pages belong to can be optimized. If the section's vmemmap pages are allocated from the added memory block itself, hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do the optimization. Then both kernel parameters are compatible. So this patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page can be optimized. [songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive] Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Co-developed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-17 16:56:50 +03:00
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
pmd_t *pmdp, pmd;
struct page *vmemmap_page;
unsigned long vaddr = (unsigned long)head;
/*
* Only the vmemmap page's vmemmap page can be self-hosted.
* Walking the page tables to find the backing page of the
* vmemmap page.
*/
pmdp = pmd_off_k(vaddr);
/*
* The READ_ONCE() is used to stabilize *pmdp in a register or
* on the stack so that it will stop changing under the code.
* The only concurrent operation where it can be changed is
* split_vmemmap_huge_pmd() (*pmdp will be stable after this
* operation).
*/
pmd = READ_ONCE(*pmdp);
if (pmd_leaf(pmd))
vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
else
vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
/*
* Due to HugeTLB alignment requirements and the vmemmap pages
* being at the start of the hotplugged memory region in
* memory_hotplug.memmap_on_memory case. Checking any vmemmap
* page's vmemmap page if it is marked as VmemmapSelfHosted is
* sufficient.
*
* [ hotplugged memory ]
* [ section ][...][ section ]
* [ vmemmap ][ usable memory ]
* ^ | | |
* +---+ | |
* ^ | |
* +-------+ |
* ^ |
* +-------------------------------------------+
*/
if (PageVmemmapSelfHosted(vmemmap_page))
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
return false;
mm: memory_hotplug: make hugetlb_optimize_vmemmap compatible with memmap_on_memory For now, the feature of hugetlb_free_vmemmap is not compatible with the feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes precedence over memory_hotplug.memmap_on_memory. However, someone wants to make memory_hotplug.memmap_on_memory takes precedence over hugetlb_free_vmemmap since memmap_on_memory makes it more likely to succeed memory hotplug in close-to-OOM situations. So the decision of making hugetlb_free_vmemmap take precedence is not wise and elegant. The proper approach is to have hugetlb_vmemmap.c do the check whether the section which the HugeTLB pages belong to can be optimized. If the section's vmemmap pages are allocated from the added memory block itself, hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do the optimization. Then both kernel parameters are compatible. So this patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page can be optimized. [songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive] Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Co-developed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-17 16:56:50 +03:00
}
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
return true;
mm: memory_hotplug: make hugetlb_optimize_vmemmap compatible with memmap_on_memory For now, the feature of hugetlb_free_vmemmap is not compatible with the feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes precedence over memory_hotplug.memmap_on_memory. However, someone wants to make memory_hotplug.memmap_on_memory takes precedence over hugetlb_free_vmemmap since memmap_on_memory makes it more likely to succeed memory hotplug in close-to-OOM situations. So the decision of making hugetlb_free_vmemmap take precedence is not wise and elegant. The proper approach is to have hugetlb_vmemmap.c do the check whether the section which the HugeTLB pages belong to can be optimized. If the section's vmemmap pages are allocated from the added memory block itself, hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do the optimization. Then both kernel parameters are compatible. So this patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page can be optimized. [songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive] Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Co-developed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-17 16:56:50 +03:00
}
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
/**
* hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
* @h: struct hstate.
* @head: the head page whose vmemmap pages will be optimized.
*
* This function only tries to optimize @head's vmemmap pages and does not
* guarantee that the optimization will succeed after it returns. The caller
* can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
* have been optimized.
*/
void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
{
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
unsigned long vmemmap_reuse;
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
if (!vmemmap_should_optimize(h, head))
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
return;
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
static_branch_inc(&hugetlb_optimize_vmemmap_key);
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
/*
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
* Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
* to the page which @vmemmap_reuse is mapped to, then free the pages
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
* which the range [@vmemmap_start, @vmemmap_end] is mapped to.
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
*/
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
static_branch_dec(&hugetlb_optimize_vmemmap_key);
else
mm: sparsemem: split the huge PMD mapping of vmemmap pages Patch series "Split huge PMD mapping of vmemmap pages", v4. In order to reduce the difficulty of code review in series[1]. We disable huge PMD mapping of vmemmap pages when that feature is enabled. In this series, we do not disable huge PMD mapping of vmemmap pages anymore. We will split huge PMD mapping when needed. When HugeTLB pages are freed from the pool we do not attempt coalasce and move back to a PMD mapping because it is much more complex. [1] https://lore.kernel.org/linux-doc/20210510030027.56044-1-songmuchun@bytedance.com/ This patch (of 3): In [1], PMD mappings of vmemmap pages were disabled if the the feature hugetlb_free_vmemmap was enabled. This was done to simplify the initial implementation of vmmemap freeing for hugetlb pages. Now, remove this simplification by allowing PMD mapping and switching to PTE mappings as needed for allocated hugetlb pages. When a hugetlb page is allocated, the vmemmap page tables are walked to free vmemmap pages. During this walk, split huge PMD mappings to PTE mappings as required. In the unlikely case PTE pages can not be allocated, return error(ENOMEM) and do not optimize vmemmap of the hugetlb page. When HugeTLB pages are freed from the pool, we do not attempt to coalesce and move back to a PMD mapping because it is much more complex. [1] https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210616094915.34432-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210616094915.34432-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:48:22 +03:00
SetHPageVmemmapOptimized(head);
mm: hugetlb: free the vmemmap pages associated with each HugeTLB page Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:13 +03:00
}
mm: hugetlb: introduce nr_free_vmemmap_pages in the struct hstate All the infrastructure is ready, so we introduce nr_free_vmemmap_pages field in the hstate to indicate how many vmemmap pages associated with a HugeTLB page that can be freed to buddy allocator. And initialize it in the hugetlb_vmemmap_init(). This patch is actual enablement of the feature. There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP, so add a BUILD_BUG_ON to catch invalid usage of the tail struct page. Link: https://lkml.kernel.org/r/20210510030027.56044-10-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 04:47:33 +03:00
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
static struct ctl_table hugetlb_vmemmap_sysctls[] = {
{
.procname = "hugetlb_optimize_vmemmap",
.data = &vmemmap_optimize_enabled,
.maxlen = sizeof(int),
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
.mode = 0644,
.proc_handler = proc_dobool,
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
},
{ }
};
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
static int __init hugetlb_vmemmap_init(void)
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
{
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
const struct hstate *h;
for_each_hstate(h) {
if (hugetlb_vmemmap_optimizable(h)) {
register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
break;
}
}
}
mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-14 02:48:56 +03:00
return 0;
}
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-28 12:22:33 +03:00
late_initcall(hugetlb_vmemmap_init);