530 строки
16 KiB
C
530 строки
16 KiB
C
|
/*
|
||
|
* Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
|
||
|
* Code was from the public domain, copyright abandoned. Code was
|
||
|
* subsequently included in the kernel, thus was re-licensed under the
|
||
|
* GNU GPL v2.
|
||
|
*
|
||
|
* Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
||
|
* Same crc32 function was used in 5 other places in the kernel.
|
||
|
* I made one version, and deleted the others.
|
||
|
* There are various incantations of crc32(). Some use a seed of 0 or ~0.
|
||
|
* Some xor at the end with ~0. The generic crc32() function takes
|
||
|
* seed as an argument, and doesn't xor at the end. Then individual
|
||
|
* users can do whatever they need.
|
||
|
* drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
|
||
|
* fs/jffs2 uses seed 0, doesn't xor with ~0.
|
||
|
* fs/partitions/efi.c uses seed ~0, xor's with ~0.
|
||
|
*
|
||
|
* This source code is licensed under the GNU General Public License,
|
||
|
* Version 2. See the file COPYING for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include "crc32defs.h"
|
||
|
#if CRC_LE_BITS == 8
|
||
|
#define tole(x) __constant_cpu_to_le32(x)
|
||
|
#define tobe(x) __constant_cpu_to_be32(x)
|
||
|
#else
|
||
|
#define tole(x) (x)
|
||
|
#define tobe(x) (x)
|
||
|
#endif
|
||
|
#include "crc32table.h"
|
||
|
|
||
|
MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
|
||
|
MODULE_DESCRIPTION("Ethernet CRC32 calculations");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
#if CRC_LE_BITS == 1
|
||
|
/*
|
||
|
* In fact, the table-based code will work in this case, but it can be
|
||
|
* simplified by inlining the table in ?: form.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
|
||
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
||
|
* other uses, or the previous crc32 value if computing incrementally.
|
||
|
* @p - pointer to buffer over which CRC is run
|
||
|
* @len - length of buffer @p
|
||
|
*
|
||
|
*/
|
||
|
u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
|
||
|
{
|
||
|
int i;
|
||
|
while (len--) {
|
||
|
crc ^= *p++;
|
||
|
for (i = 0; i < 8; i++)
|
||
|
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
|
||
|
}
|
||
|
return crc;
|
||
|
}
|
||
|
#else /* Table-based approach */
|
||
|
|
||
|
/**
|
||
|
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
|
||
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
||
|
* other uses, or the previous crc32 value if computing incrementally.
|
||
|
* @p - pointer to buffer over which CRC is run
|
||
|
* @len - length of buffer @p
|
||
|
*
|
||
|
*/
|
||
|
u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
|
||
|
{
|
||
|
# if CRC_LE_BITS == 8
|
||
|
const u32 *b =(u32 *)p;
|
||
|
const u32 *tab = crc32table_le;
|
||
|
|
||
|
# ifdef __LITTLE_ENDIAN
|
||
|
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
|
||
|
# else
|
||
|
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
|
||
|
# endif
|
||
|
|
||
|
crc = __cpu_to_le32(crc);
|
||
|
/* Align it */
|
||
|
if(unlikely(((long)b)&3 && len)){
|
||
|
do {
|
||
|
u8 *p = (u8 *)b;
|
||
|
DO_CRC(*p++);
|
||
|
b = (void *)p;
|
||
|
} while ((--len) && ((long)b)&3 );
|
||
|
}
|
||
|
if(likely(len >= 4)){
|
||
|
/* load data 32 bits wide, xor data 32 bits wide. */
|
||
|
size_t save_len = len & 3;
|
||
|
len = len >> 2;
|
||
|
--b; /* use pre increment below(*++b) for speed */
|
||
|
do {
|
||
|
crc ^= *++b;
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
} while (--len);
|
||
|
b++; /* point to next byte(s) */
|
||
|
len = save_len;
|
||
|
}
|
||
|
/* And the last few bytes */
|
||
|
if(len){
|
||
|
do {
|
||
|
u8 *p = (u8 *)b;
|
||
|
DO_CRC(*p++);
|
||
|
b = (void *)p;
|
||
|
} while (--len);
|
||
|
}
|
||
|
|
||
|
return __le32_to_cpu(crc);
|
||
|
#undef ENDIAN_SHIFT
|
||
|
#undef DO_CRC
|
||
|
|
||
|
# elif CRC_LE_BITS == 4
|
||
|
while (len--) {
|
||
|
crc ^= *p++;
|
||
|
crc = (crc >> 4) ^ crc32table_le[crc & 15];
|
||
|
crc = (crc >> 4) ^ crc32table_le[crc & 15];
|
||
|
}
|
||
|
return crc;
|
||
|
# elif CRC_LE_BITS == 2
|
||
|
while (len--) {
|
||
|
crc ^= *p++;
|
||
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
||
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
||
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
||
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
||
|
}
|
||
|
return crc;
|
||
|
# endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if CRC_BE_BITS == 1
|
||
|
/*
|
||
|
* In fact, the table-based code will work in this case, but it can be
|
||
|
* simplified by inlining the table in ?: form.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
||
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
||
|
* other uses, or the previous crc32 value if computing incrementally.
|
||
|
* @p - pointer to buffer over which CRC is run
|
||
|
* @len - length of buffer @p
|
||
|
*
|
||
|
*/
|
||
|
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
|
||
|
{
|
||
|
int i;
|
||
|
while (len--) {
|
||
|
crc ^= *p++ << 24;
|
||
|
for (i = 0; i < 8; i++)
|
||
|
crc =
|
||
|
(crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
|
||
|
0);
|
||
|
}
|
||
|
return crc;
|
||
|
}
|
||
|
|
||
|
#else /* Table-based approach */
|
||
|
/**
|
||
|
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
||
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
||
|
* other uses, or the previous crc32 value if computing incrementally.
|
||
|
* @p - pointer to buffer over which CRC is run
|
||
|
* @len - length of buffer @p
|
||
|
*
|
||
|
*/
|
||
|
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
|
||
|
{
|
||
|
# if CRC_BE_BITS == 8
|
||
|
const u32 *b =(u32 *)p;
|
||
|
const u32 *tab = crc32table_be;
|
||
|
|
||
|
# ifdef __LITTLE_ENDIAN
|
||
|
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
|
||
|
# else
|
||
|
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
|
||
|
# endif
|
||
|
|
||
|
crc = __cpu_to_be32(crc);
|
||
|
/* Align it */
|
||
|
if(unlikely(((long)b)&3 && len)){
|
||
|
do {
|
||
|
u8 *p = (u8 *)b;
|
||
|
DO_CRC(*p++);
|
||
|
b = (u32 *)p;
|
||
|
} while ((--len) && ((long)b)&3 );
|
||
|
}
|
||
|
if(likely(len >= 4)){
|
||
|
/* load data 32 bits wide, xor data 32 bits wide. */
|
||
|
size_t save_len = len & 3;
|
||
|
len = len >> 2;
|
||
|
--b; /* use pre increment below(*++b) for speed */
|
||
|
do {
|
||
|
crc ^= *++b;
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
DO_CRC(0);
|
||
|
} while (--len);
|
||
|
b++; /* point to next byte(s) */
|
||
|
len = save_len;
|
||
|
}
|
||
|
/* And the last few bytes */
|
||
|
if(len){
|
||
|
do {
|
||
|
u8 *p = (u8 *)b;
|
||
|
DO_CRC(*p++);
|
||
|
b = (void *)p;
|
||
|
} while (--len);
|
||
|
}
|
||
|
return __be32_to_cpu(crc);
|
||
|
#undef ENDIAN_SHIFT
|
||
|
#undef DO_CRC
|
||
|
|
||
|
# elif CRC_BE_BITS == 4
|
||
|
while (len--) {
|
||
|
crc ^= *p++ << 24;
|
||
|
crc = (crc << 4) ^ crc32table_be[crc >> 28];
|
||
|
crc = (crc << 4) ^ crc32table_be[crc >> 28];
|
||
|
}
|
||
|
return crc;
|
||
|
# elif CRC_BE_BITS == 2
|
||
|
while (len--) {
|
||
|
crc ^= *p++ << 24;
|
||
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
||
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
||
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
||
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
||
|
}
|
||
|
return crc;
|
||
|
# endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
u32 bitreverse(u32 x)
|
||
|
{
|
||
|
x = (x >> 16) | (x << 16);
|
||
|
x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00);
|
||
|
x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0);
|
||
|
x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc);
|
||
|
x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa);
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(crc32_le);
|
||
|
EXPORT_SYMBOL(crc32_be);
|
||
|
EXPORT_SYMBOL(bitreverse);
|
||
|
|
||
|
/*
|
||
|
* A brief CRC tutorial.
|
||
|
*
|
||
|
* A CRC is a long-division remainder. You add the CRC to the message,
|
||
|
* and the whole thing (message+CRC) is a multiple of the given
|
||
|
* CRC polynomial. To check the CRC, you can either check that the
|
||
|
* CRC matches the recomputed value, *or* you can check that the
|
||
|
* remainder computed on the message+CRC is 0. This latter approach
|
||
|
* is used by a lot of hardware implementations, and is why so many
|
||
|
* protocols put the end-of-frame flag after the CRC.
|
||
|
*
|
||
|
* It's actually the same long division you learned in school, except that
|
||
|
* - We're working in binary, so the digits are only 0 and 1, and
|
||
|
* - When dividing polynomials, there are no carries. Rather than add and
|
||
|
* subtract, we just xor. Thus, we tend to get a bit sloppy about
|
||
|
* the difference between adding and subtracting.
|
||
|
*
|
||
|
* A 32-bit CRC polynomial is actually 33 bits long. But since it's
|
||
|
* 33 bits long, bit 32 is always going to be set, so usually the CRC
|
||
|
* is written in hex with the most significant bit omitted. (If you're
|
||
|
* familiar with the IEEE 754 floating-point format, it's the same idea.)
|
||
|
*
|
||
|
* Note that a CRC is computed over a string of *bits*, so you have
|
||
|
* to decide on the endianness of the bits within each byte. To get
|
||
|
* the best error-detecting properties, this should correspond to the
|
||
|
* order they're actually sent. For example, standard RS-232 serial is
|
||
|
* little-endian; the most significant bit (sometimes used for parity)
|
||
|
* is sent last. And when appending a CRC word to a message, you should
|
||
|
* do it in the right order, matching the endianness.
|
||
|
*
|
||
|
* Just like with ordinary division, the remainder is always smaller than
|
||
|
* the divisor (the CRC polynomial) you're dividing by. Each step of the
|
||
|
* division, you take one more digit (bit) of the dividend and append it
|
||
|
* to the current remainder. Then you figure out the appropriate multiple
|
||
|
* of the divisor to subtract to being the remainder back into range.
|
||
|
* In binary, it's easy - it has to be either 0 or 1, and to make the
|
||
|
* XOR cancel, it's just a copy of bit 32 of the remainder.
|
||
|
*
|
||
|
* When computing a CRC, we don't care about the quotient, so we can
|
||
|
* throw the quotient bit away, but subtract the appropriate multiple of
|
||
|
* the polynomial from the remainder and we're back to where we started,
|
||
|
* ready to process the next bit.
|
||
|
*
|
||
|
* A big-endian CRC written this way would be coded like:
|
||
|
* for (i = 0; i < input_bits; i++) {
|
||
|
* multiple = remainder & 0x80000000 ? CRCPOLY : 0;
|
||
|
* remainder = (remainder << 1 | next_input_bit()) ^ multiple;
|
||
|
* }
|
||
|
* Notice how, to get at bit 32 of the shifted remainder, we look
|
||
|
* at bit 31 of the remainder *before* shifting it.
|
||
|
*
|
||
|
* But also notice how the next_input_bit() bits we're shifting into
|
||
|
* the remainder don't actually affect any decision-making until
|
||
|
* 32 bits later. Thus, the first 32 cycles of this are pretty boring.
|
||
|
* Also, to add the CRC to a message, we need a 32-bit-long hole for it at
|
||
|
* the end, so we have to add 32 extra cycles shifting in zeros at the
|
||
|
* end of every message,
|
||
|
*
|
||
|
* So the standard trick is to rearrage merging in the next_input_bit()
|
||
|
* until the moment it's needed. Then the first 32 cycles can be precomputed,
|
||
|
* and merging in the final 32 zero bits to make room for the CRC can be
|
||
|
* skipped entirely.
|
||
|
* This changes the code to:
|
||
|
* for (i = 0; i < input_bits; i++) {
|
||
|
* remainder ^= next_input_bit() << 31;
|
||
|
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
|
||
|
* remainder = (remainder << 1) ^ multiple;
|
||
|
* }
|
||
|
* With this optimization, the little-endian code is simpler:
|
||
|
* for (i = 0; i < input_bits; i++) {
|
||
|
* remainder ^= next_input_bit();
|
||
|
* multiple = (remainder & 1) ? CRCPOLY : 0;
|
||
|
* remainder = (remainder >> 1) ^ multiple;
|
||
|
* }
|
||
|
*
|
||
|
* Note that the other details of endianness have been hidden in CRCPOLY
|
||
|
* (which must be bit-reversed) and next_input_bit().
|
||
|
*
|
||
|
* However, as long as next_input_bit is returning the bits in a sensible
|
||
|
* order, we can actually do the merging 8 or more bits at a time rather
|
||
|
* than one bit at a time:
|
||
|
* for (i = 0; i < input_bytes; i++) {
|
||
|
* remainder ^= next_input_byte() << 24;
|
||
|
* for (j = 0; j < 8; j++) {
|
||
|
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
|
||
|
* remainder = (remainder << 1) ^ multiple;
|
||
|
* }
|
||
|
* }
|
||
|
* Or in little-endian:
|
||
|
* for (i = 0; i < input_bytes; i++) {
|
||
|
* remainder ^= next_input_byte();
|
||
|
* for (j = 0; j < 8; j++) {
|
||
|
* multiple = (remainder & 1) ? CRCPOLY : 0;
|
||
|
* remainder = (remainder << 1) ^ multiple;
|
||
|
* }
|
||
|
* }
|
||
|
* If the input is a multiple of 32 bits, you can even XOR in a 32-bit
|
||
|
* word at a time and increase the inner loop count to 32.
|
||
|
*
|
||
|
* You can also mix and match the two loop styles, for example doing the
|
||
|
* bulk of a message byte-at-a-time and adding bit-at-a-time processing
|
||
|
* for any fractional bytes at the end.
|
||
|
*
|
||
|
* The only remaining optimization is to the byte-at-a-time table method.
|
||
|
* Here, rather than just shifting one bit of the remainder to decide
|
||
|
* in the correct multiple to subtract, we can shift a byte at a time.
|
||
|
* This produces a 40-bit (rather than a 33-bit) intermediate remainder,
|
||
|
* but again the multiple of the polynomial to subtract depends only on
|
||
|
* the high bits, the high 8 bits in this case.
|
||
|
*
|
||
|
* The multile we need in that case is the low 32 bits of a 40-bit
|
||
|
* value whose high 8 bits are given, and which is a multiple of the
|
||
|
* generator polynomial. This is simply the CRC-32 of the given
|
||
|
* one-byte message.
|
||
|
*
|
||
|
* Two more details: normally, appending zero bits to a message which
|
||
|
* is already a multiple of a polynomial produces a larger multiple of that
|
||
|
* polynomial. To enable a CRC to detect this condition, it's common to
|
||
|
* invert the CRC before appending it. This makes the remainder of the
|
||
|
* message+crc come out not as zero, but some fixed non-zero value.
|
||
|
*
|
||
|
* The same problem applies to zero bits prepended to the message, and
|
||
|
* a similar solution is used. Instead of starting with a remainder of
|
||
|
* 0, an initial remainder of all ones is used. As long as you start
|
||
|
* the same way on decoding, it doesn't make a difference.
|
||
|
*/
|
||
|
|
||
|
#ifdef UNITTEST
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#if 0 /*Not used at present */
|
||
|
static void
|
||
|
buf_dump(char const *prefix, unsigned char const *buf, size_t len)
|
||
|
{
|
||
|
fputs(prefix, stdout);
|
||
|
while (len--)
|
||
|
printf(" %02x", *buf++);
|
||
|
putchar('\n');
|
||
|
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void bytereverse(unsigned char *buf, size_t len)
|
||
|
{
|
||
|
while (len--) {
|
||
|
unsigned char x = *buf;
|
||
|
x = (x >> 4) | (x << 4);
|
||
|
x = (x >> 2 & 0x33) | (x << 2 & 0xcc);
|
||
|
x = (x >> 1 & 0x55) | (x << 1 & 0xaa);
|
||
|
*buf++ = x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void random_garbage(unsigned char *buf, size_t len)
|
||
|
{
|
||
|
while (len--)
|
||
|
*buf++ = (unsigned char) random();
|
||
|
}
|
||
|
|
||
|
#if 0 /* Not used at present */
|
||
|
static void store_le(u32 x, unsigned char *buf)
|
||
|
{
|
||
|
buf[0] = (unsigned char) x;
|
||
|
buf[1] = (unsigned char) (x >> 8);
|
||
|
buf[2] = (unsigned char) (x >> 16);
|
||
|
buf[3] = (unsigned char) (x >> 24);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void store_be(u32 x, unsigned char *buf)
|
||
|
{
|
||
|
buf[0] = (unsigned char) (x >> 24);
|
||
|
buf[1] = (unsigned char) (x >> 16);
|
||
|
buf[2] = (unsigned char) (x >> 8);
|
||
|
buf[3] = (unsigned char) x;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This checks that CRC(buf + CRC(buf)) = 0, and that
|
||
|
* CRC commutes with bit-reversal. This has the side effect
|
||
|
* of bytewise bit-reversing the input buffer, and returns
|
||
|
* the CRC of the reversed buffer.
|
||
|
*/
|
||
|
static u32 test_step(u32 init, unsigned char *buf, size_t len)
|
||
|
{
|
||
|
u32 crc1, crc2;
|
||
|
size_t i;
|
||
|
|
||
|
crc1 = crc32_be(init, buf, len);
|
||
|
store_be(crc1, buf + len);
|
||
|
crc2 = crc32_be(init, buf, len + 4);
|
||
|
if (crc2)
|
||
|
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
|
||
|
crc2);
|
||
|
|
||
|
for (i = 0; i <= len + 4; i++) {
|
||
|
crc2 = crc32_be(init, buf, i);
|
||
|
crc2 = crc32_be(crc2, buf + i, len + 4 - i);
|
||
|
if (crc2)
|
||
|
printf("\nCRC split fail: 0x%08x\n", crc2);
|
||
|
}
|
||
|
|
||
|
/* Now swap it around for the other test */
|
||
|
|
||
|
bytereverse(buf, len + 4);
|
||
|
init = bitreverse(init);
|
||
|
crc2 = bitreverse(crc1);
|
||
|
if (crc1 != bitreverse(crc2))
|
||
|
printf("\nBit reversal fail: 0x%08x -> %0x08x -> 0x%08x\n",
|
||
|
crc1, crc2, bitreverse(crc2));
|
||
|
crc1 = crc32_le(init, buf, len);
|
||
|
if (crc1 != crc2)
|
||
|
printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
|
||
|
crc2);
|
||
|
crc2 = crc32_le(init, buf, len + 4);
|
||
|
if (crc2)
|
||
|
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
|
||
|
crc2);
|
||
|
|
||
|
for (i = 0; i <= len + 4; i++) {
|
||
|
crc2 = crc32_le(init, buf, i);
|
||
|
crc2 = crc32_le(crc2, buf + i, len + 4 - i);
|
||
|
if (crc2)
|
||
|
printf("\nCRC split fail: 0x%08x\n", crc2);
|
||
|
}
|
||
|
|
||
|
return crc1;
|
||
|
}
|
||
|
|
||
|
#define SIZE 64
|
||
|
#define INIT1 0
|
||
|
#define INIT2 0
|
||
|
|
||
|
int main(void)
|
||
|
{
|
||
|
unsigned char buf1[SIZE + 4];
|
||
|
unsigned char buf2[SIZE + 4];
|
||
|
unsigned char buf3[SIZE + 4];
|
||
|
int i, j;
|
||
|
u32 crc1, crc2, crc3;
|
||
|
|
||
|
for (i = 0; i <= SIZE; i++) {
|
||
|
printf("\rTesting length %d...", i);
|
||
|
fflush(stdout);
|
||
|
random_garbage(buf1, i);
|
||
|
random_garbage(buf2, i);
|
||
|
for (j = 0; j < i; j++)
|
||
|
buf3[j] = buf1[j] ^ buf2[j];
|
||
|
|
||
|
crc1 = test_step(INIT1, buf1, i);
|
||
|
crc2 = test_step(INIT2, buf2, i);
|
||
|
/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
|
||
|
crc3 = test_step(INIT1 ^ INIT2, buf3, i);
|
||
|
if (crc3 != (crc1 ^ crc2))
|
||
|
printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
|
||
|
crc3, crc1, crc2);
|
||
|
}
|
||
|
printf("\nAll test complete. No failures expected.\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif /* UNITTEST */
|