WSL2-Linux-Kernel/sound/firewire/dice/dice.h

193 строки
5.6 KiB
C
Исходник Обычный вид История

/*
* dice.h - a part of driver for Dice based devices
*
* Copyright (c) Clemens Ladisch
* Copyright (c) 2014 Takashi Sakamoto
*
* Licensed under the terms of the GNU General Public License, version 2.
*/
#ifndef SOUND_DICE_H_INCLUDED
#define SOUND_DICE_H_INCLUDED
#include <linux/compat.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/firewire.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/rawmidi.h>
#include "../amdtp-am824.h"
#include "../iso-resources.h"
#include "../lib.h"
#include "dice-interface.h"
struct snd_dice {
struct snd_card *card;
struct fw_unit *unit;
spinlock_t lock;
struct mutex mutex;
ALSA: dice: postpone card registration Some models based on ASIC for Dice II series (STD, CP) change their hardware configurations after appearing on IEEE 1394 bus. This is due to interactions of boot loader (RedBoot), firmwares (eCos) and vendor's configurations. This causes current ALSA dice driver to get wrong information about the hardware's capability because its probe function runs just after detecting unit of the model. As long as I investigated, it takes a bit time (less than 1 second) to load the firmware after bootstrap. Just after loaded, the driver can get information about the unit. Then the hardware is initialized according to vendor's configurations. After, the got information becomes wrong. Between bootstrap, firmware loading and post configuration, some bus resets are observed. This commit offloads most processing of probe function into workqueue and schedules the workqueue after successive bus resets. This has an effect to get correct hardware information and avoid involvement to bus reset storm. For code simplicity, this change effects all of Dice-based models, i.e. Dice II, Dice Jr., Dice Mini and Dice III. I use a loose strategy to manage a race condition between the work and the bus reset. This is due to a specification of dice transaction. When bus reset occurs, registered address for the transaction is cleared. Drivers must re-register their own address again. While, this operation is required for the work because the work includes to wait for the transaction. This commit uses no lock primitives for the race condition. Instead, checking 'registered' member of 'struct snd_dice' avoid executing the work again. If sound card is not registered, the work can be scheduled again by bus reset handler. When .remove callback is executed, the sound card is going to be released. The work should not be pending or executed in the releasing. This commit uses cancel_delayed_work_sync() in .remove callback and wait till the pending work finished. After .remove callback, .update callback is not executed, therefore no works are scheduled again. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-12-31 07:58:12 +03:00
bool registered;
struct delayed_work dwork;
/* Offsets for sub-addresses */
unsigned int global_offset;
unsigned int rx_offset;
unsigned int tx_offset;
unsigned int sync_offset;
unsigned int rsrv_offset;
unsigned int clock_caps;
unsigned int tx_channels[3];
unsigned int rx_channels[3];
unsigned int tx_midi_ports[3];
unsigned int rx_midi_ports[3];
struct fw_address_handler notification_handler;
int owner_generation;
u32 notification_bits;
/* For uapi */
int dev_lock_count; /* > 0 driver, < 0 userspace */
bool dev_lock_changed;
wait_queue_head_t hwdep_wait;
/* For streaming */
struct fw_iso_resources tx_resources;
struct fw_iso_resources rx_resources;
struct amdtp_stream tx_stream;
struct amdtp_stream rx_stream;
bool global_enabled;
struct completion clock_accepted;
unsigned int substreams_counter;
};
enum snd_dice_addr_type {
SND_DICE_ADDR_TYPE_PRIVATE,
SND_DICE_ADDR_TYPE_GLOBAL,
SND_DICE_ADDR_TYPE_TX,
SND_DICE_ADDR_TYPE_RX,
SND_DICE_ADDR_TYPE_SYNC,
SND_DICE_ADDR_TYPE_RSRV,
};
int snd_dice_transaction_write(struct snd_dice *dice,
enum snd_dice_addr_type type,
unsigned int offset,
void *buf, unsigned int len);
int snd_dice_transaction_read(struct snd_dice *dice,
enum snd_dice_addr_type type, unsigned int offset,
void *buf, unsigned int len);
static inline int snd_dice_transaction_write_global(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_write(dice,
SND_DICE_ADDR_TYPE_GLOBAL, offset,
buf, len);
}
static inline int snd_dice_transaction_read_global(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_read(dice,
SND_DICE_ADDR_TYPE_GLOBAL, offset,
buf, len);
}
static inline int snd_dice_transaction_write_tx(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_write(dice, SND_DICE_ADDR_TYPE_TX, offset,
buf, len);
}
static inline int snd_dice_transaction_read_tx(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_read(dice, SND_DICE_ADDR_TYPE_TX, offset,
buf, len);
}
static inline int snd_dice_transaction_write_rx(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_write(dice, SND_DICE_ADDR_TYPE_RX, offset,
buf, len);
}
static inline int snd_dice_transaction_read_rx(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_read(dice, SND_DICE_ADDR_TYPE_RX, offset,
buf, len);
}
static inline int snd_dice_transaction_write_sync(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_write(dice, SND_DICE_ADDR_TYPE_SYNC, offset,
buf, len);
}
static inline int snd_dice_transaction_read_sync(struct snd_dice *dice,
unsigned int offset,
void *buf, unsigned int len)
{
return snd_dice_transaction_read(dice, SND_DICE_ADDR_TYPE_SYNC, offset,
buf, len);
}
int snd_dice_transaction_get_clock_source(struct snd_dice *dice,
unsigned int *source);
int snd_dice_transaction_set_rate(struct snd_dice *dice, unsigned int rate);
int snd_dice_transaction_get_rate(struct snd_dice *dice, unsigned int *rate);
int snd_dice_transaction_set_enable(struct snd_dice *dice);
void snd_dice_transaction_clear_enable(struct snd_dice *dice);
int snd_dice_transaction_init(struct snd_dice *dice);
int snd_dice_transaction_reinit(struct snd_dice *dice);
void snd_dice_transaction_destroy(struct snd_dice *dice);
#define SND_DICE_RATES_COUNT 7
extern const unsigned int snd_dice_rates[SND_DICE_RATES_COUNT];
int snd_dice_stream_get_rate_mode(struct snd_dice *dice,
unsigned int rate, unsigned int *mode);
int snd_dice_stream_start_duplex(struct snd_dice *dice, unsigned int rate);
void snd_dice_stream_stop_duplex(struct snd_dice *dice);
int snd_dice_stream_init_duplex(struct snd_dice *dice);
void snd_dice_stream_destroy_duplex(struct snd_dice *dice);
void snd_dice_stream_update_duplex(struct snd_dice *dice);
int snd_dice_stream_lock_try(struct snd_dice *dice);
void snd_dice_stream_lock_release(struct snd_dice *dice);
int snd_dice_create_pcm(struct snd_dice *dice);
int snd_dice_create_hwdep(struct snd_dice *dice);
void snd_dice_create_proc(struct snd_dice *dice);
int snd_dice_create_midi(struct snd_dice *dice);
#endif