WSL2-Linux-Kernel/fs/hfsplus/btree.c

512 строки
12 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/hfsplus/btree.c
*
* Copyright (C) 2001
* Brad Boyer (flar@allandria.com)
* (C) 2003 Ardis Technologies <roman@ardistech.com>
*
* Handle opening/closing btree
*/
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/log2.h>
#include "hfsplus_fs.h"
#include "hfsplus_raw.h"
/*
* Initial source code of clump size calculation is gotten
* from http://opensource.apple.com/tarballs/diskdev_cmds/
*/
#define CLUMP_ENTRIES 15
static short clumptbl[CLUMP_ENTRIES * 3] = {
/*
* Volume Attributes Catalog Extents
* Size Clump (MB) Clump (MB) Clump (MB)
*/
/* 1GB */ 4, 4, 4,
/* 2GB */ 6, 6, 4,
/* 4GB */ 8, 8, 4,
/* 8GB */ 11, 11, 5,
/*
* For volumes 16GB and larger, we want to make sure that a full OS
* install won't require fragmentation of the Catalog or Attributes
* B-trees. We do this by making the clump sizes sufficiently large,
* and by leaving a gap after the B-trees for them to grow into.
*
* For SnowLeopard 10A298, a FullNetInstall with all packages selected
* results in:
* Catalog B-tree Header
* nodeSize: 8192
* totalNodes: 31616
* freeNodes: 1978
* (used = 231.55 MB)
* Attributes B-tree Header
* nodeSize: 8192
* totalNodes: 63232
* freeNodes: 958
* (used = 486.52 MB)
*
* We also want Time Machine backup volumes to have a sufficiently
* large clump size to reduce fragmentation.
*
* The series of numbers for Catalog and Attribute form a geometric
* series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
* the previous term. For Attributes (16GB to 512GB), each term is
* 4**(1/5) times the previous term. For 1TB to 16TB, each term is
* 2**(1/5) times the previous term.
*/
/* 16GB */ 64, 32, 5,
/* 32GB */ 84, 49, 6,
/* 64GB */ 111, 74, 7,
/* 128GB */ 147, 111, 8,
/* 256GB */ 194, 169, 9,
/* 512GB */ 256, 256, 11,
/* 1TB */ 294, 294, 14,
/* 2TB */ 338, 338, 16,
/* 4TB */ 388, 388, 20,
/* 8TB */ 446, 446, 25,
/* 16TB */ 512, 512, 32
};
u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
u64 sectors, int file_id)
{
u32 mod = max(node_size, block_size);
u32 clump_size;
int column;
int i;
/* Figure out which column of the above table to use for this file. */
switch (file_id) {
case HFSPLUS_ATTR_CNID:
column = 0;
break;
case HFSPLUS_CAT_CNID:
column = 1;
break;
default:
column = 2;
break;
}
/*
* The default clump size is 0.8% of the volume size. And
* it must also be a multiple of the node and block size.
*/
if (sectors < 0x200000) {
clump_size = sectors << 2; /* 0.8 % */
if (clump_size < (8 * node_size))
clump_size = 8 * node_size;
} else {
/* turn exponent into table index... */
for (i = 0, sectors = sectors >> 22;
sectors && (i < CLUMP_ENTRIES - 1);
++i, sectors = sectors >> 1) {
/* empty body */
}
clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
}
/*
* Round the clump size to a multiple of node and block size.
* NOTE: This rounds down.
*/
clump_size /= mod;
clump_size *= mod;
/*
* Rounding down could have rounded down to 0 if the block size was
* greater than the clump size. If so, just use one block or node.
*/
if (clump_size == 0)
clump_size = mod;
return clump_size;
}
/* Get a reference to a B*Tree and do some initial checks */
struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
{
struct hfs_btree *tree;
struct hfs_btree_header_rec *head;
struct address_space *mapping;
struct inode *inode;
struct page *page;
unsigned int size;
tree = kzalloc(sizeof(*tree), GFP_KERNEL);
if (!tree)
return NULL;
mutex_init(&tree->tree_lock);
spin_lock_init(&tree->hash_lock);
tree->sb = sb;
tree->cnid = id;
inode = hfsplus_iget(sb, id);
if (IS_ERR(inode))
goto free_tree;
tree->inode = inode;
if (!HFSPLUS_I(tree->inode)->first_blocks) {
pr_err("invalid btree extent records (0 size)\n");
goto free_inode;
}
mapping = tree->inode->i_mapping;
page = read_mapping_page(mapping, 0, NULL);
if (IS_ERR(page))
goto free_inode;
/* Load the header */
head = (struct hfs_btree_header_rec *)(kmap(page) +
sizeof(struct hfs_bnode_desc));
tree->root = be32_to_cpu(head->root);
tree->leaf_count = be32_to_cpu(head->leaf_count);
tree->leaf_head = be32_to_cpu(head->leaf_head);
tree->leaf_tail = be32_to_cpu(head->leaf_tail);
tree->node_count = be32_to_cpu(head->node_count);
tree->free_nodes = be32_to_cpu(head->free_nodes);
tree->attributes = be32_to_cpu(head->attributes);
tree->node_size = be16_to_cpu(head->node_size);
tree->max_key_len = be16_to_cpu(head->max_key_len);
tree->depth = be16_to_cpu(head->depth);
/* Verify the tree and set the correct compare function */
switch (id) {
case HFSPLUS_EXT_CNID:
if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
pr_err("invalid extent max_key_len %d\n",
tree->max_key_len);
goto fail_page;
}
if (tree->attributes & HFS_TREE_VARIDXKEYS) {
pr_err("invalid extent btree flag\n");
goto fail_page;
}
tree->keycmp = hfsplus_ext_cmp_key;
break;
case HFSPLUS_CAT_CNID:
if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
pr_err("invalid catalog max_key_len %d\n",
tree->max_key_len);
goto fail_page;
}
if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
pr_err("invalid catalog btree flag\n");
goto fail_page;
}
if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
(head->key_type == HFSPLUS_KEY_BINARY))
tree->keycmp = hfsplus_cat_bin_cmp_key;
else {
tree->keycmp = hfsplus_cat_case_cmp_key;
set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
}
break;
case HFSPLUS_ATTR_CNID:
if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
pr_err("invalid attributes max_key_len %d\n",
tree->max_key_len);
goto fail_page;
}
tree->keycmp = hfsplus_attr_bin_cmp_key;
break;
default:
pr_err("unknown B*Tree requested\n");
goto fail_page;
}
if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
pr_err("invalid btree flag\n");
goto fail_page;
}
size = tree->node_size;
if (!is_power_of_2(size))
goto fail_page;
if (!tree->node_count)
goto fail_page;
tree->node_size_shift = ffs(size) - 1;
tree->pages_per_bnode =
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
(tree->node_size + PAGE_SIZE - 1) >>
PAGE_SHIFT;
kunmap(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
put_page(page);
return tree;
fail_page:
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
put_page(page);
free_inode:
tree->inode->i_mapping->a_ops = &hfsplus_aops;
iput(tree->inode);
free_tree:
kfree(tree);
return NULL;
}
/* Release resources used by a btree */
void hfs_btree_close(struct hfs_btree *tree)
{
struct hfs_bnode *node;
int i;
if (!tree)
return;
for (i = 0; i < NODE_HASH_SIZE; i++) {
while ((node = tree->node_hash[i])) {
tree->node_hash[i] = node->next_hash;
if (atomic_read(&node->refcnt))
pr_crit("node %d:%d "
"still has %d user(s)!\n",
node->tree->cnid, node->this,
atomic_read(&node->refcnt));
hfs_bnode_free(node);
tree->node_hash_cnt--;
}
}
iput(tree->inode);
kfree(tree);
}
int hfs_btree_write(struct hfs_btree *tree)
{
struct hfs_btree_header_rec *head;
struct hfs_bnode *node;
struct page *page;
node = hfs_bnode_find(tree, 0);
if (IS_ERR(node))
/* panic? */
return -EIO;
/* Load the header */
page = node->page[0];
head = (struct hfs_btree_header_rec *)(kmap(page) +
sizeof(struct hfs_bnode_desc));
head->root = cpu_to_be32(tree->root);
head->leaf_count = cpu_to_be32(tree->leaf_count);
head->leaf_head = cpu_to_be32(tree->leaf_head);
head->leaf_tail = cpu_to_be32(tree->leaf_tail);
head->node_count = cpu_to_be32(tree->node_count);
head->free_nodes = cpu_to_be32(tree->free_nodes);
head->attributes = cpu_to_be32(tree->attributes);
head->depth = cpu_to_be16(tree->depth);
kunmap(page);
set_page_dirty(page);
hfs_bnode_put(node);
return 0;
}
static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
{
struct hfs_btree *tree = prev->tree;
struct hfs_bnode *node;
struct hfs_bnode_desc desc;
__be32 cnid;
node = hfs_bnode_create(tree, idx);
if (IS_ERR(node))
return node;
tree->free_nodes--;
prev->next = idx;
cnid = cpu_to_be32(idx);
hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
node->type = HFS_NODE_MAP;
node->num_recs = 1;
hfs_bnode_clear(node, 0, tree->node_size);
desc.next = 0;
desc.prev = 0;
desc.type = HFS_NODE_MAP;
desc.height = 0;
desc.num_recs = cpu_to_be16(1);
desc.reserved = 0;
hfs_bnode_write(node, &desc, 0, sizeof(desc));
hfs_bnode_write_u16(node, 14, 0x8000);
hfs_bnode_write_u16(node, tree->node_size - 2, 14);
hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
return node;
}
/* Make sure @tree has enough space for the @rsvd_nodes */
int hfs_bmap_reserve(struct hfs_btree *tree, int rsvd_nodes)
{
struct inode *inode = tree->inode;
struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
u32 count;
int res;
if (rsvd_nodes <= 0)
return 0;
while (tree->free_nodes < rsvd_nodes) {
res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree));
if (res)
return res;
hip->phys_size = inode->i_size =
(loff_t)hip->alloc_blocks <<
HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
hip->fs_blocks =
hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
inode_set_bytes(inode, inode->i_size);
count = inode->i_size >> tree->node_size_shift;
tree->free_nodes += count - tree->node_count;
tree->node_count = count;
}
return 0;
}
struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
{
struct hfs_bnode *node, *next_node;
struct page **pagep;
u32 nidx, idx;
unsigned off;
u16 off16;
u16 len;
u8 *data, byte, m;
int i, res;
res = hfs_bmap_reserve(tree, 1);
if (res)
return ERR_PTR(res);
nidx = 0;
node = hfs_bnode_find(tree, nidx);
if (IS_ERR(node))
return node;
len = hfs_brec_lenoff(node, 2, &off16);
off = off16;
off += node->page_offset;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
pagep = node->page + (off >> PAGE_SHIFT);
data = kmap(*pagep);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
off &= ~PAGE_MASK;
idx = 0;
for (;;) {
while (len) {
byte = data[off];
if (byte != 0xff) {
for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
if (!(byte & m)) {
idx += i;
data[off] |= m;
set_page_dirty(*pagep);
kunmap(*pagep);
tree->free_nodes--;
mark_inode_dirty(tree->inode);
hfs_bnode_put(node);
return hfs_bnode_create(tree,
idx);
}
}
}
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
if (++off >= PAGE_SIZE) {
kunmap(*pagep);
data = kmap(*++pagep);
off = 0;
}
idx += 8;
len--;
}
kunmap(*pagep);
nidx = node->next;
if (!nidx) {
hfs_dbg(BNODE_MOD, "create new bmap node\n");
next_node = hfs_bmap_new_bmap(node, idx);
} else
next_node = hfs_bnode_find(tree, nidx);
hfs_bnode_put(node);
if (IS_ERR(next_node))
return next_node;
node = next_node;
len = hfs_brec_lenoff(node, 0, &off16);
off = off16;
off += node->page_offset;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
pagep = node->page + (off >> PAGE_SHIFT);
data = kmap(*pagep);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
off &= ~PAGE_MASK;
}
}
void hfs_bmap_free(struct hfs_bnode *node)
{
struct hfs_btree *tree;
struct page *page;
u16 off, len;
u32 nidx;
u8 *data, byte, m;
hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
BUG_ON(!node->this);
tree = node->tree;
nidx = node->this;
node = hfs_bnode_find(tree, 0);
if (IS_ERR(node))
return;
len = hfs_brec_lenoff(node, 2, &off);
while (nidx >= len * 8) {
u32 i;
nidx -= len * 8;
i = node->next;
if (!i) {
/* panic */;
pr_crit("unable to free bnode %u. "
"bmap not found!\n",
node->this);
hfs_bnode_put(node);
return;
}
hfs_bnode_put(node);
node = hfs_bnode_find(tree, i);
if (IS_ERR(node))
return;
if (node->type != HFS_NODE_MAP) {
/* panic */;
pr_crit("invalid bmap found! "
"(%u,%d)\n",
node->this, node->type);
hfs_bnode_put(node);
return;
}
len = hfs_brec_lenoff(node, 0, &off);
}
off += node->page_offset + nidx / 8;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
page = node->page[off >> PAGE_SHIFT];
data = kmap(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
off &= ~PAGE_MASK;
m = 1 << (~nidx & 7);
byte = data[off];
if (!(byte & m)) {
pr_crit("trying to free free bnode "
"%u(%d)\n",
node->this, node->type);
kunmap(page);
hfs_bnode_put(node);
return;
}
data[off] = byte & ~m;
set_page_dirty(page);
kunmap(page);
hfs_bnode_put(node);
tree->free_nodes++;
mark_inode_dirty(tree->inode);
}