WSL2-Linux-Kernel/kernel/Makefile

163 строки
5.2 KiB
Makefile
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the linux kernel.
#
obj-y = fork.o exec_domain.o panic.o \
cpu.o exit.o softirq.o resource.o \
all arch: remove system call sys_sysctl Since commit 61a47c1ad3a4dc ("sysctl: Remove the sysctl system call"), sys_sysctl is actually unavailable: any input can only return an error. We have been warning about people using the sysctl system call for years and believe there are no more users. Even if there are users of this interface if they have not complained or fixed their code by now they probably are not going to, so there is no point in warning them any longer. So completely remove sys_sysctl on all architectures. [nixiaoming@huawei.com: s390: fix build error for sys_call_table_emu] Link: http://lkml.kernel.org/r/20200618141426.16884-1-nixiaoming@huawei.com Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Will Deacon <will@kernel.org> [arm/arm64] Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bin Meng <bin.meng@windriver.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: chenzefeng <chenzefeng2@huawei.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christian Brauner <christian@brauner.io> Cc: Chris Zankel <chris@zankel.net> Cc: David Howells <dhowells@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Diego Elio Pettenò <flameeyes@flameeyes.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kars de Jong <jongk@linux-m68k.org> Cc: Kees Cook <keescook@chromium.org> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miklos Szeredi <mszeredi@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Nick Piggin <npiggin@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Olof Johansson <olof@lixom.net> Cc: Paul Burton <paulburton@kernel.org> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Sargun Dhillon <sargun@sargun.me> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Sven Schnelle <svens@stackframe.org> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zhou Yanjie <zhouyanjie@wanyeetech.com> Link: http://lkml.kernel.org/r/20200616030734.87257-1-nixiaoming@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-15 03:31:07 +03:00
sysctl.o capability.o ptrace.o user.o \
signal.o sys.o umh.o workqueue.o pid.o task_work.o \
extable.o params.o \
kthread.o sys_ni.o nsproxy.o \
notifier.o ksysfs.o cred.o reboot.o \
async.o range.o smpboot.o ucount.o regset.o
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 02:16:41 +03:00
bpf: Add kernel module with user mode driver that populates bpffs. Add kernel module with user mode driver that populates bpffs with BPF iterators. $ mount bpffs /my/bpffs/ -t bpf $ ls -la /my/bpffs/ total 4 drwxrwxrwt 2 root root 0 Jul 2 00:27 . drwxr-xr-x 19 root root 4096 Jul 2 00:09 .. -rw------- 1 root root 0 Jul 2 00:27 maps.debug -rw------- 1 root root 0 Jul 2 00:27 progs.debug The user mode driver will load BPF Type Formats, create BPF maps, populate BPF maps, load two BPF programs, attach them to BPF iterators, and finally send two bpf_link IDs back to the kernel. The kernel will pin two bpf_links into newly mounted bpffs instance under names "progs.debug" and "maps.debug". These two files become human readable. $ cat /my/bpffs/progs.debug id name attached 11 dump_bpf_map bpf_iter_bpf_map 12 dump_bpf_prog bpf_iter_bpf_prog 27 test_pkt_access 32 test_main test_pkt_access test_pkt_access 33 test_subprog1 test_pkt_access_subprog1 test_pkt_access 34 test_subprog2 test_pkt_access_subprog2 test_pkt_access 35 test_subprog3 test_pkt_access_subprog3 test_pkt_access 36 new_get_skb_len get_skb_len test_pkt_access 37 new_get_skb_ifindex get_skb_ifindex test_pkt_access 38 new_get_constant get_constant test_pkt_access The BPF program dump_bpf_prog() in iterators.bpf.c is printing this data about all BPF programs currently loaded in the system. This information is unstable and will change from kernel to kernel as ".debug" suffix conveys. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200819042759.51280-4-alexei.starovoitov@gmail.com
2020-08-19 07:27:58 +03:00
obj-$(CONFIG_USERMODE_DRIVER) += usermode_driver.o
obj-$(CONFIG_MODULES) += kmod.o
kernel: conditionally support non-root users, groups and capabilities There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 02:16:41 +03:00
obj-$(CONFIG_MULTIUSER) += groups.o
ifdef CONFIG_FUNCTION_TRACER
# Do not trace internal ftrace files
CFLAGS_REMOVE_irq_work.o = $(CC_FLAGS_FTRACE)
endif
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
# Prevents flicker of uninteresting __do_softirq()/__local_bh_disable_ip()
# in coverage traces.
KCOV_INSTRUMENT_softirq.o := n
# Avoid KCSAN instrumentation in softirq ("No shared variables, all the data
# are CPU local" => assume no data races), to reduce overhead in interrupts.
KCSAN_SANITIZE_softirq.o = n
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
# These are called from save_stack_trace() on slub debug path,
# and produce insane amounts of uninteresting coverage.
KCOV_INSTRUMENT_module.o := n
KCOV_INSTRUMENT_extable.o := n
KCOV_INSTRUMENT_stacktrace.o := n
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
# Don't self-instrument.
KCOV_INSTRUMENT_kcov.o := n
# If sanitizers detect any issues in kcov, it may lead to recursion
# via printk, etc.
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
KASAN_SANITIZE_kcov.o := n
KCSAN_SANITIZE_kcov.o := n
UBSAN_SANITIZE_kcov.o := n
CFLAGS_kcov.o := $(call cc-option, -fno-conserve-stack) -fno-stack-protector
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 21:28:26 +03:00
# Don't instrument error handlers
CFLAGS_REMOVE_cfi.o := $(CC_FLAGS_CFI)
obj-y += sched/
obj-y += locking/
obj-y += power/
obj-y += printk/
obj-y += irq/
obj-y += rcu/
obj-y += livepatch/
obj-y += dma/
obj-y += entry/
kcmp: Support selection of SYS_kcmp without CHECKPOINT_RESTORE Userspace has discovered the functionality offered by SYS_kcmp and has started to depend upon it. In particular, Mesa uses SYS_kcmp for os_same_file_description() in order to identify when two fd (e.g. device or dmabuf) point to the same struct file. Since they depend on it for core functionality, lift SYS_kcmp out of the non-default CONFIG_CHECKPOINT_RESTORE into the selectable syscall category. Rasmus Villemoes also pointed out that systemd uses SYS_kcmp to deduplicate the per-service file descriptor store. Note that some distributions such as Ubuntu are already enabling CHECKPOINT_RESTORE in their configs and so, by extension, SYS_kcmp. References: https://gitlab.freedesktop.org/drm/intel/-/issues/3046 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Will Drewry <wad@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: stable@vger.kernel.org Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> # DRM depends on kcmp Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> # systemd uses kcmp Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Thomas Zimmermann <tzimmermann@suse.de> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20210205220012.1983-1-chris@chris-wilson.co.uk
2021-02-06 01:00:12 +03:00
obj-$(CONFIG_KCMP) += kcmp.o
obj-$(CONFIG_FREEZER) += freezer.o
obj-$(CONFIG_PROFILING) += profile.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += time/
obj-$(CONFIG_FUTEX) += futex.o
obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
obj-$(CONFIG_SMP) += smp.o
ifneq ($(CONFIG_SMP),y)
obj-y += up.o
endif
obj-$(CONFIG_UID16) += uid16.o
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_MODULE_SIG) += module_signing.o
obj-$(CONFIG_MODULE_SIG_FORMAT) += module_signature.o
obj-$(CONFIG_KALLSYMS) += kallsyms.o
obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 01:56:18 +03:00
obj-$(CONFIG_CRASH_CORE) += crash_core.o
2015-09-10 01:38:55 +03:00
obj-$(CONFIG_KEXEC_CORE) += kexec_core.o
obj-$(CONFIG_KEXEC) += kexec.o
obj-$(CONFIG_KEXEC_FILE) += kexec_file.o
obj-$(CONFIG_KEXEC_ELF) += kexec_elf.o
obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o
obj-$(CONFIG_COMPAT) += compat.o
obj-$(CONFIG_CGROUPS) += cgroup/
obj-$(CONFIG_UTS_NS) += utsname.o
obj-$(CONFIG_USER_NS) += user_namespace.o
obj-$(CONFIG_PID_NS) += pid_namespace.o
obj-$(CONFIG_IKCONFIG) += configs.o
obj-$(CONFIG_IKHEADERS) += kheaders.o
obj-$(CONFIG_SMP) += stop_machine.o
obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
obj-$(CONFIG_AUDIT) += audit.o auditfilter.o
obj-$(CONFIG_AUDITSYSCALL) += auditsc.o audit_watch.o audit_fsnotify.o audit_tree.o
obj-$(CONFIG_GCOV_KERNEL) += gcov/
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 00:27:30 +03:00
obj-$(CONFIG_KCOV) += kcov.o
obj-$(CONFIG_KPROBES) += kprobes.o
obj-$(CONFIG_FAIL_FUNCTION) += fail_function.o
obj-$(CONFIG_KGDB) += debug/
obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 01:11:44 +04:00
obj-$(CONFIG_LOCKUP_DETECTOR) += watchdog.o
obj-$(CONFIG_HARDLOCKUP_DETECTOR_PERF) += watchdog_hld.o
obj-$(CONFIG_SECCOMP) += seccomp.o
obj-$(CONFIG_RELAY) += relay.o
obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 20:16:16 +04:00
obj-$(CONFIG_TRACEPOINTS) += tracepoint.o
obj-$(CONFIG_LATENCYTOP) += latencytop.o
obj-$(CONFIG_FUNCTION_TRACER) += trace/
ftrace: latency tracer infrastructure This patch adds the latency tracer infrastructure. This patch does not add anything that will select and turn it on, but will be used by later patches. If it were to be compiled, it would add the following files to the debugfs: The root tracing directory: /debugfs/tracing/ This patch also adds the following files: available_tracers list of available tracers. Currently no tracers are available. Looking into this file only shows "none" which is used to unregister all tracers. current_tracer The trace that is currently active. Empty on start up. To switch to a tracer simply echo one of the tracers that are listed in available_tracers: example: (used with later patches) echo function > /debugfs/tracing/current_tracer To disable the tracer: echo disable > /debugfs/tracing/current_tracer tracing_enabled echoing "1" into this file starts the ftrace function tracing (if sysctl kernel.ftrace_enabled=1) echoing "0" turns it off. latency_trace This file is readonly and holds the result of the trace. trace This file outputs a easier to read version of the trace. iter_ctrl Controls the way the output of traces look. So far there's two controls: echoing in "symonly" will only show the kallsyms variables without the addresses (if kallsyms was configured) echoing in "verbose" will change the output to show a lot more data, but not very easy to understand by humans. echoing in "nosymonly" turns off symonly. echoing in "noverbose" turns off verbose. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 23:20:42 +04:00
obj-$(CONFIG_TRACING) += trace/
obj-$(CONFIG_TRACE_CLOCK) += trace/
obj-$(CONFIG_RING_BUFFER) += trace/
obj-$(CONFIG_TRACEPOINTS) += trace/
obj-$(CONFIG_IRQ_WORK) += irq_work.o
obj-$(CONFIG_CPU_PM) += cpu_pm.o
obj-$(CONFIG_BPF) += bpf/
obj-$(CONFIG_KCSAN) += kcsan/
obj-$(CONFIG_SHADOW_CALL_STACK) += scs.o
obj-$(CONFIG_HAVE_STATIC_CALL) += static_call.o
obj-$(CONFIG_HAVE_STATIC_CALL_INLINE) += static_call_inline.o
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 21:28:26 +03:00
obj-$(CONFIG_CFI_CLANG) += cfi.o
obj-$(CONFIG_PERF_EVENTS) += events/
obj-$(CONFIG_USER_RETURN_NOTIFIER) += user-return-notifier.o
obj-$(CONFIG_PADATA) += padata.o
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
jump label: Reduce the cycle count by changing the link order In the course of testing jump labels for use with the CFS bandwidth controller, Paul Turner, discovered that using jump labels reduced the branch count and the instruction count, but did not reduce the cycle count or wall time. I noticed that having the jump_label.o included in the kernel but not used in any way still caused this increase in cycle count and wall time. Thus, I moved jump_label.o in the kernel/Makefile, thus changing the link order, and presumably moving it out of hot icache areas. This brought down the cycle count/time as expected. In addition to Paul's testing, I've tested the patch using a single 'static_branch()' in the getppid() path, and basically running tight loops of calls to getppid(). Here are my results for the branch disabled case: With jump labels turned on (CONFIG_JUMP_LABEL), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 3,969,510,217 instructions # 0.864 IPC ( +-0.000% ) 4,592,334,954 cycles ( +- 0.046% ) 751,634,470 branches ( +- 0.000% ) 1.722635797 seconds time elapsed ( +- 0.046% ) Jump labels turned off (CONFIG_JUMP_LABEL not set), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 4,009,611,846 instructions # 0.867 IPC ( +-0.000% ) 4,622,210,580 cycles ( +- 0.012% ) 771,662,904 branches ( +- 0.000% ) 1.734341454 seconds time elapsed ( +- 0.022% ) Signed-off-by: Jason Baron <jbaron@redhat.com> Cc: rth@redhat.com Cc: a.p.zijlstra@chello.nl Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20110805204040.GG2522@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Paul Turner <pjt@google.com>
2011-08-06 00:40:40 +04:00
obj-$(CONFIG_JUMP_LABEL) += jump_label.o
obj-$(CONFIG_CONTEXT_TRACKING) += context_tracking.o
obj-$(CONFIG_TORTURE_TEST) += torture.o
obj-$(CONFIG_HAS_IOMEM) += iomem.o
rseq: Introduce restartable sequences system call Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
2018-06-02 15:43:54 +03:00
obj-$(CONFIG_RSEQ) += rseq.o
pipe: Add general notification queue support Make it possible to have a general notification queue built on top of a standard pipe. Notifications are 'spliced' into the pipe and then read out. splice(), vmsplice() and sendfile() are forbidden on pipes used for notifications as post_one_notification() cannot take pipe->mutex. This means that notifications could be posted in between individual pipe buffers, making iov_iter_revert() difficult to effect. The way the notification queue is used is: (1) An application opens a pipe with a special flag and indicates the number of messages it wishes to be able to queue at once (this can only be set once): pipe2(fds, O_NOTIFICATION_PIPE); ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth); (2) The application then uses poll() and read() as normal to extract data from the pipe. read() will return multiple notifications if the buffer is big enough, but it will not split a notification across buffers - rather it will return a short read or EMSGSIZE. Notification messages include a length in the header so that the caller can split them up. Each message has a header that describes it: struct watch_notification { __u32 type:24; __u32 subtype:8; __u32 info; }; The type indicates the source (eg. mount tree changes, superblock events, keyring changes, block layer events) and the subtype indicates the event type (eg. mount, unmount; EIO, EDQUOT; link, unlink). The info field indicates a number of things, including the entry length, an ID assigned to a watchpoint contributing to this buffer and type-specific flags. Supplementary data, such as the key ID that generated an event, can be attached in additional slots. The maximum message size is 127 bytes. Messages may not be padded or aligned, so there is no guarantee, for example, that the notification type will be on a 4-byte bounary. Signed-off-by: David Howells <dhowells@redhat.com>
2020-01-14 20:07:11 +03:00
obj-$(CONFIG_WATCH_QUEUE) += watch_queue.o
obj-$(CONFIG_RESOURCE_KUNIT_TEST) += resource_kunit.o
obj-$(CONFIG_SYSCTL_KUNIT_TEST) += sysctl-test.o
CFLAGS_stackleak.o += $(DISABLE_STACKLEAK_PLUGIN)
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-08-17 01:16:58 +03:00
obj-$(CONFIG_GCC_PLUGIN_STACKLEAK) += stackleak.o
KASAN_SANITIZE_stackleak.o := n
KCSAN_SANITIZE_stackleak.o := n
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-08-17 01:16:58 +03:00
KCOV_INSTRUMENT_stackleak.o := n
obj-$(CONFIG_SCF_TORTURE_TEST) += scftorture.o
$(obj)/configs.o: $(obj)/config_data.gz
kbuild: update config_data.gz only when the content of .config is changed If the timestamp of the .config file is updated, config_data.gz is regenerated, then vmlinux is re-linked. This occurs even if the content of the .config has not changed at all. This issue was mitigated by commit 67424f61f813 ("kconfig: do not write .config if the content is the same"); Kconfig does not update the .config when it ends up with the identical configuration. The issue is remaining when the .config is created by *_defconfig with some config fragment(s) applied on top. This is typical for powerpc and mips, where several *_defconfig targets are constructed by using merge_config.sh. One workaround is to have the copy of the .config. The filechk rule updates the copy, kernel/config_data, by checking the content instead of the timestamp. With this commit, the second run with the same configuration avoids the needless rebuilds. $ make ARCH=mips defconfig all [ snip ] $ make ARCH=mips defconfig all *** Default configuration is based on target '32r2el_defconfig' Using ./arch/mips/configs/generic_defconfig as base Merging arch/mips/configs/generic/32r2.config Merging arch/mips/configs/generic/el.config Merging ./arch/mips/configs/generic/board-boston.config Merging ./arch/mips/configs/generic/board-ni169445.config Merging ./arch/mips/configs/generic/board-ocelot.config Merging ./arch/mips/configs/generic/board-ranchu.config Merging ./arch/mips/configs/generic/board-sead-3.config Merging ./arch/mips/configs/generic/board-xilfpga.config # # configuration written to .config # SYNC include/config/auto.conf CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh CHK include/generated/compile.h CHK include/generated/autoksyms.h Reported-by: Elliot Berman <eberman@codeaurora.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-04-25 09:24:07 +03:00
targets += config_data config_data.gz
$(obj)/config_data.gz: $(obj)/config_data FORCE
$(call if_changed,gzip)
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 22:04:29 +03:00
kbuild: update config_data.gz only when the content of .config is changed If the timestamp of the .config file is updated, config_data.gz is regenerated, then vmlinux is re-linked. This occurs even if the content of the .config has not changed at all. This issue was mitigated by commit 67424f61f813 ("kconfig: do not write .config if the content is the same"); Kconfig does not update the .config when it ends up with the identical configuration. The issue is remaining when the .config is created by *_defconfig with some config fragment(s) applied on top. This is typical for powerpc and mips, where several *_defconfig targets are constructed by using merge_config.sh. One workaround is to have the copy of the .config. The filechk rule updates the copy, kernel/config_data, by checking the content instead of the timestamp. With this commit, the second run with the same configuration avoids the needless rebuilds. $ make ARCH=mips defconfig all [ snip ] $ make ARCH=mips defconfig all *** Default configuration is based on target '32r2el_defconfig' Using ./arch/mips/configs/generic_defconfig as base Merging arch/mips/configs/generic/32r2.config Merging arch/mips/configs/generic/el.config Merging ./arch/mips/configs/generic/board-boston.config Merging ./arch/mips/configs/generic/board-ni169445.config Merging ./arch/mips/configs/generic/board-ocelot.config Merging ./arch/mips/configs/generic/board-ranchu.config Merging ./arch/mips/configs/generic/board-sead-3.config Merging ./arch/mips/configs/generic/board-xilfpga.config # # configuration written to .config # SYNC include/config/auto.conf CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh CHK include/generated/compile.h CHK include/generated/autoksyms.h Reported-by: Elliot Berman <eberman@codeaurora.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-04-25 09:24:07 +03:00
filechk_cat = cat $<
$(obj)/config_data: $(KCONFIG_CONFIG) FORCE
$(call filechk,cat)
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 22:04:29 +03:00
$(obj)/kheaders.o: $(obj)/kheaders_data.tar.xz
quiet_cmd_genikh = CHK $(obj)/kheaders_data.tar.xz
cmd_genikh = $(CONFIG_SHELL) $(srctree)/kernel/gen_kheaders.sh $@
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 22:04:29 +03:00
$(obj)/kheaders_data.tar.xz: FORCE
$(call cmd,genikh)
clean-files := kheaders_data.tar.xz kheaders.md5