WSL2-Linux-Kernel/fs/jffs2/fs.c

742 строки
19 KiB
C
Исходник Обычный вид История

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
* Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/fs.h>
#include <linux/fs_context.h>
#include <linux/list.h>
#include <linux/mtd/mtd.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/vfs.h>
#include <linux/crc32.h>
#include "nodelist.h"
static int jffs2_flash_setup(struct jffs2_sb_info *c);
int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
{
struct jffs2_full_dnode *old_metadata, *new_metadata;
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_raw_inode *ri;
union jffs2_device_node dev;
unsigned char *mdata = NULL;
int mdatalen = 0;
unsigned int ivalid;
uint32_t alloclen;
int ret;
int alloc_type = ALLOC_NORMAL;
jffs2_dbg(1, "%s(): ino #%lu\n", __func__, inode->i_ino);
/* Special cases - we don't want more than one data node
for these types on the medium at any time. So setattr
must read the original data associated with the node
(i.e. the device numbers or the target name) and write
it out again with the appropriate data attached */
if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
/* For these, we don't actually need to read the old node */
mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
mdata = (char *)&dev;
jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
__func__, mdatalen);
} else if (S_ISLNK(inode->i_mode)) {
mutex_lock(&f->sem);
mdatalen = f->metadata->size;
mdata = kmalloc(f->metadata->size, GFP_USER);
if (!mdata) {
mutex_unlock(&f->sem);
return -ENOMEM;
}
ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
if (ret) {
mutex_unlock(&f->sem);
kfree(mdata);
return ret;
}
mutex_unlock(&f->sem);
jffs2_dbg(1, "%s(): Writing %d bytes of symlink target\n",
__func__, mdatalen);
}
ri = jffs2_alloc_raw_inode();
if (!ri) {
if (S_ISLNK(inode->i_mode))
kfree(mdata);
return -ENOMEM;
}
ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &alloclen,
ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
jffs2_free_raw_inode(ri);
if (S_ISLNK(inode->i_mode))
kfree(mdata);
return ret;
}
mutex_lock(&f->sem);
ivalid = iattr->ia_valid;
ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
ri->ino = cpu_to_je32(inode->i_ino);
ri->version = cpu_to_je32(++f->highest_version);
ri->uid = cpu_to_je16((ivalid & ATTR_UID)?
from_kuid(&init_user_ns, iattr->ia_uid):i_uid_read(inode));
ri->gid = cpu_to_je16((ivalid & ATTR_GID)?
from_kgid(&init_user_ns, iattr->ia_gid):i_gid_read(inode));
if (ivalid & ATTR_MODE)
ri->mode = cpu_to_jemode(iattr->ia_mode);
else
ri->mode = cpu_to_jemode(inode->i_mode);
ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
ri->offset = cpu_to_je32(0);
ri->csize = ri->dsize = cpu_to_je32(mdatalen);
ri->compr = JFFS2_COMPR_NONE;
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
/* It's an extension. Make it a hole node */
ri->compr = JFFS2_COMPR_ZERO;
ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
ri->offset = cpu_to_je32(inode->i_size);
} else if (ivalid & ATTR_SIZE && !iattr->ia_size) {
/* For truncate-to-zero, treat it as deletion because
it'll always be obsoleting all previous nodes */
alloc_type = ALLOC_DELETION;
}
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
if (mdatalen)
ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
else
ri->data_crc = cpu_to_je32(0);
new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, alloc_type);
if (S_ISLNK(inode->i_mode))
kfree(mdata);
if (IS_ERR(new_metadata)) {
jffs2_complete_reservation(c);
jffs2_free_raw_inode(ri);
mutex_unlock(&f->sem);
return PTR_ERR(new_metadata);
}
/* It worked. Update the inode */
inode->i_atime = ITIME(je32_to_cpu(ri->atime));
inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
inode->i_mode = jemode_to_cpu(ri->mode);
i_uid_write(inode, je16_to_cpu(ri->uid));
i_gid_write(inode, je16_to_cpu(ri->gid));
old_metadata = f->metadata;
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
jffs2_add_full_dnode_to_inode(c, f, new_metadata);
inode->i_size = iattr->ia_size;
inode->i_blocks = (inode->i_size + 511) >> 9;
f->metadata = NULL;
} else {
f->metadata = new_metadata;
}
if (old_metadata) {
jffs2_mark_node_obsolete(c, old_metadata->raw);
jffs2_free_full_dnode(old_metadata);
}
jffs2_free_raw_inode(ri);
mutex_unlock(&f->sem);
jffs2_complete_reservation(c);
/* We have to do the truncate_setsize() without f->sem held, since
some pages may be locked and waiting for it in read_folio().
We are protected from a simultaneous write() extending i_size
back past iattr->ia_size, because do_truncate() holds the
generic inode semaphore. */
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size) {
truncate_setsize(inode, iattr->ia_size);
inode->i_blocks = (inode->i_size + 511) >> 9;
}
return 0;
}
int jffs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *iattr)
{
struct inode *inode = d_inode(dentry);
int rc;
rc = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
if (rc)
return rc;
rc = jffs2_do_setattr(inode, iattr);
if (!rc && (iattr->ia_valid & ATTR_MODE))
fs: pass dentry to set acl method The current way of setting and getting posix acls through the generic xattr interface is error prone and type unsafe. The vfs needs to interpret and fixup posix acls before storing or reporting it to userspace. Various hacks exist to make this work. The code is hard to understand and difficult to maintain in it's current form. Instead of making this work by hacking posix acls through xattr handlers we are building a dedicated posix acl api around the get and set inode operations. This removes a lot of hackiness and makes the codepaths easier to maintain. A lot of background can be found in [1]. Since some filesystem rely on the dentry being available to them when setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode operation. But since ->set_acl() is required in order to use the generic posix acl xattr handlers filesystems that do not implement this inode operation cannot use the handler and need to implement their own dedicated posix acl handlers. Update the ->set_acl() inode method to take a dentry argument. This allows all filesystems to rely on ->set_acl(). As far as I can tell all codepaths can be switched to rely on the dentry instead of just the inode. Note that the original motivation for passing the dentry separate from the inode instead of just the dentry in the xattr handlers was because of security modules that call security_d_instantiate(). This hook is called during d_instantiate_new(), d_add(), __d_instantiate_anon(), and d_splice_alias() to initialize the inode's security context and possibly to set security.* xattrs. Since this only affects security.* xattrs this is completely irrelevant for posix acls. Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1] Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-09-23 11:29:39 +03:00
rc = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
return rc;
}
int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(dentry->d_sb);
unsigned long avail;
buf->f_type = JFFS2_SUPER_MAGIC;
buf->f_bsize = 1 << PAGE_SHIFT;
buf->f_blocks = c->flash_size >> PAGE_SHIFT;
buf->f_files = 0;
buf->f_ffree = 0;
buf->f_namelen = JFFS2_MAX_NAME_LEN;
buf->f_fsid.val[0] = JFFS2_SUPER_MAGIC;
buf->f_fsid.val[1] = c->mtd->index;
spin_lock(&c->erase_completion_lock);
avail = c->dirty_size + c->free_size;
if (avail > c->sector_size * c->resv_blocks_write)
avail -= c->sector_size * c->resv_blocks_write;
else
avail = 0;
spin_unlock(&c->erase_completion_lock);
buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
return 0;
}
void jffs2_evict_inode (struct inode *inode)
{
/* We can forget about this inode for now - drop all
* the nodelists associated with it, etc.
*/
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
jffs2_dbg(1, "%s(): ino #%lu mode %o\n",
__func__, inode->i_ino, inode->i_mode);
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:49 +04:00
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
jffs2_do_clear_inode(c, f);
}
struct inode *jffs2_iget(struct super_block *sb, unsigned long ino)
{
struct jffs2_inode_info *f;
struct jffs2_sb_info *c;
struct jffs2_raw_inode latest_node;
union jffs2_device_node jdev;
struct inode *inode;
dev_t rdev = 0;
int ret;
jffs2_dbg(1, "%s(): ino == %lu\n", __func__, ino);
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
f = JFFS2_INODE_INFO(inode);
c = JFFS2_SB_INFO(inode->i_sb);
jffs2_init_inode_info(f);
mutex_lock(&f->sem);
ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
if (ret)
goto error;
inode->i_mode = jemode_to_cpu(latest_node.mode);
i_uid_write(inode, je16_to_cpu(latest_node.uid));
i_gid_write(inode, je16_to_cpu(latest_node.gid));
inode->i_size = je32_to_cpu(latest_node.isize);
inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
set_nlink(inode, f->inocache->pino_nlink);
inode->i_blocks = (inode->i_size + 511) >> 9;
switch (inode->i_mode & S_IFMT) {
case S_IFLNK:
inode->i_op = &jffs2_symlink_inode_operations;
inode->i_link = f->target;
break;
case S_IFDIR:
{
struct jffs2_full_dirent *fd;
set_nlink(inode, 2); /* parent and '.' */
for (fd=f->dents; fd; fd = fd->next) {
if (fd->type == DT_DIR && fd->ino)
inc_nlink(inode);
}
/* Root dir gets i_nlink 3 for some reason */
if (inode->i_ino == 1)
inc_nlink(inode);
inode->i_op = &jffs2_dir_inode_operations;
inode->i_fop = &jffs2_dir_operations;
break;
}
case S_IFREG:
inode->i_op = &jffs2_file_inode_operations;
inode->i_fop = &jffs2_file_operations;
inode->i_mapping->a_ops = &jffs2_file_address_operations;
inode->i_mapping->nrpages = 0;
break;
case S_IFBLK:
case S_IFCHR:
/* Read the device numbers from the media */
if (f->metadata->size != sizeof(jdev.old_id) &&
f->metadata->size != sizeof(jdev.new_id)) {
pr_notice("Device node has strange size %d\n",
f->metadata->size);
goto error_io;
}
jffs2_dbg(1, "Reading device numbers from flash\n");
ret = jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size);
if (ret < 0) {
/* Eep */
pr_notice("Read device numbers for inode %lu failed\n",
(unsigned long)inode->i_ino);
goto error;
}
if (f->metadata->size == sizeof(jdev.old_id))
rdev = old_decode_dev(je16_to_cpu(jdev.old_id));
else
rdev = new_decode_dev(je32_to_cpu(jdev.new_id));
fallthrough;
case S_IFSOCK:
case S_IFIFO:
inode->i_op = &jffs2_file_inode_operations;
init_special_inode(inode, inode->i_mode, rdev);
break;
default:
pr_warn("%s(): Bogus i_mode %o for ino %lu\n",
__func__, inode->i_mode, (unsigned long)inode->i_ino);
}
mutex_unlock(&f->sem);
jffs2_dbg(1, "jffs2_read_inode() returning\n");
unlock_new_inode(inode);
return inode;
error_io:
ret = -EIO;
error:
mutex_unlock(&f->sem);
iget_failed(inode);
return ERR_PTR(ret);
}
void jffs2_dirty_inode(struct inode *inode, int flags)
{
struct iattr iattr;
if (!(inode->i_state & I_DIRTY_DATASYNC)) {
jffs2_dbg(2, "%s(): not calling setattr() for ino #%lu\n",
__func__, inode->i_ino);
return;
}
jffs2_dbg(1, "%s(): calling setattr() for ino #%lu\n",
__func__, inode->i_ino);
iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
iattr.ia_mode = inode->i_mode;
iattr.ia_uid = inode->i_uid;
iattr.ia_gid = inode->i_gid;
iattr.ia_atime = inode->i_atime;
iattr.ia_mtime = inode->i_mtime;
iattr.ia_ctime = inode->i_ctime;
jffs2_do_setattr(inode, &iattr);
}
int jffs2_do_remount_fs(struct super_block *sb, struct fs_context *fc)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
if (c->flags & JFFS2_SB_FLAG_RO && !sb_rdonly(sb))
return -EROFS;
/* We stop if it was running, then restart if it needs to.
This also catches the case where it was stopped and this
is just a remount to restart it.
Flush the writebuffer, if neccecary, else we loose it */
if (!sb_rdonly(sb)) {
jffs2_stop_garbage_collect_thread(c);
mutex_lock(&c->alloc_sem);
jffs2_flush_wbuf_pad(c);
mutex_unlock(&c->alloc_sem);
}
if (!(fc->sb_flags & SB_RDONLY))
jffs2_start_garbage_collect_thread(c);
fc->sb_flags |= SB_NOATIME;
return 0;
}
/* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
fill in the raw_inode while you're at it. */
struct inode *jffs2_new_inode (struct inode *dir_i, umode_t mode, struct jffs2_raw_inode *ri)
{
struct inode *inode;
struct super_block *sb = dir_i->i_sb;
struct jffs2_sb_info *c;
struct jffs2_inode_info *f;
int ret;
jffs2_dbg(1, "%s(): dir_i %ld, mode 0x%x\n",
__func__, dir_i->i_ino, mode);
c = JFFS2_SB_INFO(sb);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
f = JFFS2_INODE_INFO(inode);
jffs2_init_inode_info(f);
mutex_lock(&f->sem);
memset(ri, 0, sizeof(*ri));
/* Set OS-specific defaults for new inodes */
ri->uid = cpu_to_je16(from_kuid(&init_user_ns, current_fsuid()));
if (dir_i->i_mode & S_ISGID) {
ri->gid = cpu_to_je16(i_gid_read(dir_i));
if (S_ISDIR(mode))
mode |= S_ISGID;
} else {
ri->gid = cpu_to_je16(from_kgid(&init_user_ns, current_fsgid()));
}
/* POSIX ACLs have to be processed now, at least partly.
The umask is only applied if there's no default ACL */
ret = jffs2_init_acl_pre(dir_i, inode, &mode);
if (ret) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
ret = jffs2_do_new_inode (c, f, mode, ri);
if (ret) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
set_nlink(inode, 1);
inode->i_ino = je32_to_cpu(ri->ino);
inode->i_mode = jemode_to_cpu(ri->mode);
i_gid_write(inode, je16_to_cpu(ri->gid));
i_uid_write(inode, je16_to_cpu(ri->uid));
inode->i_atime = inode->i_ctime = inode->i_mtime = current_time(inode);
ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
inode->i_blocks = 0;
inode->i_size = 0;
if (insert_inode_locked(inode) < 0) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(-EINVAL);
}
return inode;
}
static int calculate_inocache_hashsize(uint32_t flash_size)
{
/*
* Pick a inocache hash size based on the size of the medium.
* Count how many megabytes we're dealing with, apply a hashsize twice
* that size, but rounding down to the usual big powers of 2. And keep
* to sensible bounds.
*/
int size_mb = flash_size / 1024 / 1024;
int hashsize = (size_mb * 2) & ~0x3f;
if (hashsize < INOCACHE_HASHSIZE_MIN)
return INOCACHE_HASHSIZE_MIN;
if (hashsize > INOCACHE_HASHSIZE_MAX)
return INOCACHE_HASHSIZE_MAX;
return hashsize;
}
int jffs2_do_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct jffs2_sb_info *c;
struct inode *root_i;
int ret;
size_t blocks;
c = JFFS2_SB_INFO(sb);
/* Do not support the MLC nand */
if (c->mtd->type == MTD_MLCNANDFLASH)
return -EINVAL;
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
if (c->mtd->type == MTD_NANDFLASH) {
errorf(fc, "Cannot operate on NAND flash unless jffs2 NAND support is compiled in");
return -EINVAL;
}
if (c->mtd->type == MTD_DATAFLASH) {
errorf(fc, "Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in");
return -EINVAL;
}
#endif
c->flash_size = c->mtd->size;
c->sector_size = c->mtd->erasesize;
blocks = c->flash_size / c->sector_size;
/*
* Size alignment check
*/
if ((c->sector_size * blocks) != c->flash_size) {
c->flash_size = c->sector_size * blocks;
infof(fc, "Flash size not aligned to erasesize, reducing to %dKiB",
c->flash_size / 1024);
}
if (c->flash_size < 5*c->sector_size) {
errorf(fc, "Too few erase blocks (%d)",
c->flash_size / c->sector_size);
return -EINVAL;
}
c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
/* NAND (or other bizarre) flash... do setup accordingly */
ret = jffs2_flash_setup(c);
if (ret)
return ret;
c->inocache_hashsize = calculate_inocache_hashsize(c->flash_size);
c->inocache_list = kcalloc(c->inocache_hashsize, sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
if (!c->inocache_list) {
ret = -ENOMEM;
goto out_wbuf;
}
jffs2_init_xattr_subsystem(c);
if ((ret = jffs2_do_mount_fs(c)))
goto out_inohash;
jffs2_dbg(1, "%s(): Getting root inode\n", __func__);
root_i = jffs2_iget(sb, 1);
if (IS_ERR(root_i)) {
jffs2_dbg(1, "get root inode failed\n");
ret = PTR_ERR(root_i);
goto out_root;
}
ret = -ENOMEM;
MTD merge for 3.4 Artem's cleanup of the MTD API continues apace. Fixes and improvements for ST FSMC and SuperH FLCTL NAND, amongst others. More work on DiskOnChip G3, new driver for DiskOnChip G4. Clean up debug/warning printks in JFFS2 to use pr_<level>. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iEYEABECAAYFAk92K6UACgkQdwG7hYl686NrMACfWQJRWasR78MWKfkT2vWZwTFJ X5AAoKiSYO2pfo5gWJGOAahNC1zUqMX0 =i3Vb -----END PGP SIGNATURE----- Merge tag 'for-linus-3.4' of git://git.infradead.org/mtd-2.6 Pull MTD changes from David Woodhouse: - Artem's cleanup of the MTD API continues apace. - Fixes and improvements for ST FSMC and SuperH FLCTL NAND, amongst others. - More work on DiskOnChip G3, new driver for DiskOnChip G4. - Clean up debug/warning printks in JFFS2 to use pr_<level>. Fix up various trivial conflicts, largely due to changes in calling conventions for things like dmaengine_prep_slave_sg() (new inline wrapper to hide new parameter, clashing with rewrite of previously last parameter that used to be an 'append' flag, and is now a bitmap of 'unsigned long flags'). (Also some header file fallout - like so many merges this merge window - and silly conflicts with sparse fixes) * tag 'for-linus-3.4' of git://git.infradead.org/mtd-2.6: (120 commits) mtd: docg3 add protection against concurrency mtd: docg3 refactor cascade floors structure mtd: docg3 increase write/erase timeout mtd: docg3 fix inbound calculations mtd: nand: gpmi: fix function annotations mtd: phram: fix section mismatch for phram_setup mtd: unify initialization of erase_info->fail_addr mtd: support ONFI multi lun NAND mtd: sm_ftl: fix typo in major number. mtd: add device-tree support to spear_smi mtd: spear_smi: Remove default partition information from driver mtd: Add device-tree support to fsmc_nand mtd: fix section mismatch for doc_probe_device mtd: nand/fsmc: Remove sparse warnings and errors mtd: nand/fsmc: Add DMA support mtd: nand/fsmc: Access the NAND device word by word whenever possible mtd: nand/fsmc: Use dev_err to report error scenario mtd: nand/fsmc: Use devm routines mtd: nand/fsmc: Modify fsmc driver to accept nand timing parameters via platform mtd: fsmc_nand: add pm callbacks to support hibernation ...
2012-03-31 04:31:56 +04:00
jffs2_dbg(1, "%s(): d_make_root()\n", __func__);
sb->s_root = d_make_root(root_i);
if (!sb->s_root)
goto out_root;
sb->s_maxbytes = 0xFFFFFFFF;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = JFFS2_SUPER_MAGIC;
sb->s_time_min = 0;
sb->s_time_max = U32_MAX;
if (!sb_rdonly(sb))
jffs2_start_garbage_collect_thread(c);
return 0;
out_root:
jffs2_free_ino_caches(c);
jffs2_free_raw_node_refs(c);
kvfree(c->blocks);
jffs2_clear_xattr_subsystem(c);
jffs2: fix memory leak in jffs2_do_fill_super If jffs2_iget() or d_make_root() in jffs2_do_fill_super() returns an error, we can observe the following kmemleak report: -------------------------------------------- unreferenced object 0xffff888105a65340 (size 64): comm "mount", pid 710, jiffies 4302851558 (age 58.239s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff859c45e5>] kmem_cache_alloc_trace+0x475/0x8a0 [<ffffffff86160146>] jffs2_sum_init+0x96/0x1a0 [<ffffffff86140e25>] jffs2_do_mount_fs+0x745/0x2120 [<ffffffff86149fec>] jffs2_do_fill_super+0x35c/0x810 [<ffffffff8614aae9>] jffs2_fill_super+0x2b9/0x3b0 [...] unreferenced object 0xffff8881bd7f0000 (size 65536): comm "mount", pid 710, jiffies 4302851558 (age 58.239s) hex dump (first 32 bytes): bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ................ bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ................ backtrace: [<ffffffff858579ba>] kmalloc_order+0xda/0x110 [<ffffffff85857a11>] kmalloc_order_trace+0x21/0x130 [<ffffffff859c2ed1>] __kmalloc+0x711/0x8a0 [<ffffffff86160189>] jffs2_sum_init+0xd9/0x1a0 [<ffffffff86140e25>] jffs2_do_mount_fs+0x745/0x2120 [<ffffffff86149fec>] jffs2_do_fill_super+0x35c/0x810 [<ffffffff8614aae9>] jffs2_fill_super+0x2b9/0x3b0 [...] -------------------------------------------- This is because the resources allocated in jffs2_sum_init() are not released. Call jffs2_sum_exit() to release these resources to solve the problem. Fixes: e631ddba5887 ("[JFFS2] Add erase block summary support (mount time improvement)") Signed-off-by: Baokun Li <libaokun1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2022-04-12 12:38:16 +03:00
jffs2_sum_exit(c);
jffs2: fix use-after-free in jffs2_clear_xattr_subsystem When we mount a jffs2 image, assume that the first few blocks of the image are normal and contain at least one xattr-related inode, but the next block is abnormal. As a result, an error is returned in jffs2_scan_eraseblock(). jffs2_clear_xattr_subsystem() is then called in jffs2_build_filesystem() and then again in jffs2_do_fill_super(). Finally we can observe the following report: ================================================================== BUG: KASAN: use-after-free in jffs2_clear_xattr_subsystem+0x95/0x6ac Read of size 8 at addr ffff8881243384e0 by task mount/719 Call Trace: dump_stack+0x115/0x16b jffs2_clear_xattr_subsystem+0x95/0x6ac jffs2_do_fill_super+0x84f/0xc30 jffs2_fill_super+0x2ea/0x4c0 mtd_get_sb+0x254/0x400 mtd_get_sb_by_nr+0x4f/0xd0 get_tree_mtd+0x498/0x840 jffs2_get_tree+0x25/0x30 vfs_get_tree+0x8d/0x2e0 path_mount+0x50f/0x1e50 do_mount+0x107/0x130 __se_sys_mount+0x1c5/0x2f0 __x64_sys_mount+0xc7/0x160 do_syscall_64+0x45/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Allocated by task 719: kasan_save_stack+0x23/0x60 __kasan_kmalloc.constprop.0+0x10b/0x120 kasan_slab_alloc+0x12/0x20 kmem_cache_alloc+0x1c0/0x870 jffs2_alloc_xattr_ref+0x2f/0xa0 jffs2_scan_medium.cold+0x3713/0x4794 jffs2_do_mount_fs.cold+0xa7/0x2253 jffs2_do_fill_super+0x383/0xc30 jffs2_fill_super+0x2ea/0x4c0 [...] Freed by task 719: kmem_cache_free+0xcc/0x7b0 jffs2_free_xattr_ref+0x78/0x98 jffs2_clear_xattr_subsystem+0xa1/0x6ac jffs2_do_mount_fs.cold+0x5e6/0x2253 jffs2_do_fill_super+0x383/0xc30 jffs2_fill_super+0x2ea/0x4c0 [...] The buggy address belongs to the object at ffff8881243384b8 which belongs to the cache jffs2_xattr_ref of size 48 The buggy address is located 40 bytes inside of 48-byte region [ffff8881243384b8, ffff8881243384e8) [...] ================================================================== The triggering of the BUG is shown in the following stack: ----------------------------------------------------------- jffs2_fill_super jffs2_do_fill_super jffs2_do_mount_fs jffs2_build_filesystem jffs2_scan_medium jffs2_scan_eraseblock <--- ERROR jffs2_clear_xattr_subsystem <--- free jffs2_clear_xattr_subsystem <--- free again ----------------------------------------------------------- An error is returned in jffs2_do_mount_fs(). If the error is returned by jffs2_sum_init(), the jffs2_clear_xattr_subsystem() does not need to be executed. If the error is returned by jffs2_build_filesystem(), the jffs2_clear_xattr_subsystem() also does not need to be executed again. So move jffs2_clear_xattr_subsystem() from 'out_inohash' to 'out_root' to fix this UAF problem. Fixes: aa98d7cf59b5 ("[JFFS2][XATTR] XATTR support on JFFS2 (version. 5)") Cc: stable@vger.kernel.org Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Baokun Li <libaokun1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2021-12-28 15:54:30 +03:00
out_inohash:
kfree(c->inocache_list);
out_wbuf:
jffs2_flash_cleanup(c);
return ret;
}
void jffs2_gc_release_inode(struct jffs2_sb_info *c,
struct jffs2_inode_info *f)
{
iput(OFNI_EDONI_2SFFJ(f));
}
struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
int inum, int unlinked)
{
struct inode *inode;
struct jffs2_inode_cache *ic;
if (unlinked) {
/* The inode has zero nlink but its nodes weren't yet marked
obsolete. This has to be because we're still waiting for
the final (close() and) iput() to happen.
There's a possibility that the final iput() could have
happened while we were contemplating. In order to ensure
that we don't cause a new read_inode() (which would fail)
for the inode in question, we use ilookup() in this case
instead of iget().
The nlink can't _become_ zero at this point because we're
holding the alloc_sem, and jffs2_do_unlink() would also
need that while decrementing nlink on any inode.
*/
inode = ilookup(OFNI_BS_2SFFJ(c), inum);
if (!inode) {
jffs2_dbg(1, "ilookup() failed for ino #%u; inode is probably deleted.\n",
inum);
spin_lock(&c->inocache_lock);
ic = jffs2_get_ino_cache(c, inum);
if (!ic) {
jffs2_dbg(1, "Inode cache for ino #%u is gone\n",
inum);
spin_unlock(&c->inocache_lock);
return NULL;
}
if (ic->state != INO_STATE_CHECKEDABSENT) {
/* Wait for progress. Don't just loop */
jffs2_dbg(1, "Waiting for ino #%u in state %d\n",
ic->ino, ic->state);
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
} else {
spin_unlock(&c->inocache_lock);
}
return NULL;
}
} else {
/* Inode has links to it still; they're not going away because
jffs2_do_unlink() would need the alloc_sem and we have it.
Just iget() it, and if read_inode() is necessary that's OK.
*/
inode = jffs2_iget(OFNI_BS_2SFFJ(c), inum);
if (IS_ERR(inode))
return ERR_CAST(inode);
}
if (is_bad_inode(inode)) {
pr_notice("Eep. read_inode() failed for ino #%u. unlinked %d\n",
inum, unlinked);
/* NB. This will happen again. We need to do something appropriate here. */
iput(inode);
return ERR_PTR(-EIO);
}
return JFFS2_INODE_INFO(inode);
}
static int jffs2_flash_setup(struct jffs2_sb_info *c) {
int ret = 0;
if (jffs2_cleanmarker_oob(c)) {
/* NAND flash... do setup accordingly */
ret = jffs2_nand_flash_setup(c);
if (ret)
return ret;
}
/* and Dataflash */
if (jffs2_dataflash(c)) {
ret = jffs2_dataflash_setup(c);
if (ret)
return ret;
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
ret = jffs2_nor_wbuf_flash_setup(c);
if (ret)
return ret;
}
/* and an UBI volume */
if (jffs2_ubivol(c)) {
ret = jffs2_ubivol_setup(c);
if (ret)
return ret;
}
return ret;
}
void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
if (jffs2_cleanmarker_oob(c)) {
jffs2_nand_flash_cleanup(c);
}
/* and DataFlash */
if (jffs2_dataflash(c)) {
jffs2_dataflash_cleanup(c);
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
jffs2_nor_wbuf_flash_cleanup(c);
}
/* and an UBI volume */
if (jffs2_ubivol(c)) {
jffs2_ubivol_cleanup(c);
}
}