433 строки
10 KiB
C
433 строки
10 KiB
C
|
/*
|
||
|
* AMD Cryptographic Coprocessor (CCP) crypto API support
|
||
|
*
|
||
|
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||
|
*
|
||
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/ccp.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <crypto/internal/hash.h>
|
||
|
|
||
|
#include "ccp-crypto.h"
|
||
|
|
||
|
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_VERSION("1.0.0");
|
||
|
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
|
||
|
|
||
|
|
||
|
/* List heads for the supported algorithms */
|
||
|
static LIST_HEAD(hash_algs);
|
||
|
static LIST_HEAD(cipher_algs);
|
||
|
|
||
|
/* For any tfm, requests for that tfm on the same CPU must be returned
|
||
|
* in the order received. With multiple queues available, the CCP can
|
||
|
* process more than one cmd at a time. Therefore we must maintain
|
||
|
* a cmd list to insure the proper ordering of requests on a given tfm/cpu
|
||
|
* combination.
|
||
|
*/
|
||
|
struct ccp_crypto_cpu_queue {
|
||
|
struct list_head cmds;
|
||
|
struct list_head *backlog;
|
||
|
unsigned int cmd_count;
|
||
|
};
|
||
|
#define CCP_CRYPTO_MAX_QLEN 50
|
||
|
|
||
|
struct ccp_crypto_percpu_queue {
|
||
|
struct ccp_crypto_cpu_queue __percpu *cpu_queue;
|
||
|
};
|
||
|
static struct ccp_crypto_percpu_queue req_queue;
|
||
|
|
||
|
struct ccp_crypto_cmd {
|
||
|
struct list_head entry;
|
||
|
|
||
|
struct ccp_cmd *cmd;
|
||
|
|
||
|
/* Save the crypto_tfm and crypto_async_request addresses
|
||
|
* separately to avoid any reference to a possibly invalid
|
||
|
* crypto_async_request structure after invoking the request
|
||
|
* callback
|
||
|
*/
|
||
|
struct crypto_async_request *req;
|
||
|
struct crypto_tfm *tfm;
|
||
|
|
||
|
/* Used for held command processing to determine state */
|
||
|
int ret;
|
||
|
|
||
|
int cpu;
|
||
|
};
|
||
|
|
||
|
struct ccp_crypto_cpu {
|
||
|
struct work_struct work;
|
||
|
struct completion completion;
|
||
|
struct ccp_crypto_cmd *crypto_cmd;
|
||
|
int err;
|
||
|
};
|
||
|
|
||
|
|
||
|
static inline bool ccp_crypto_success(int err)
|
||
|
{
|
||
|
if (err && (err != -EINPROGRESS) && (err != -EBUSY))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ccp_crypto_cmd_complete must be called while running on the appropriate
|
||
|
* cpu and the caller must have done a get_cpu to disable preemption
|
||
|
*/
|
||
|
static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
|
||
|
struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
|
||
|
{
|
||
|
struct ccp_crypto_cpu_queue *cpu_queue;
|
||
|
struct ccp_crypto_cmd *held = NULL, *tmp;
|
||
|
|
||
|
*backlog = NULL;
|
||
|
|
||
|
cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
|
||
|
|
||
|
/* Held cmds will be after the current cmd in the queue so start
|
||
|
* searching for a cmd with a matching tfm for submission.
|
||
|
*/
|
||
|
tmp = crypto_cmd;
|
||
|
list_for_each_entry_continue(tmp, &cpu_queue->cmds, entry) {
|
||
|
if (crypto_cmd->tfm != tmp->tfm)
|
||
|
continue;
|
||
|
held = tmp;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Process the backlog:
|
||
|
* Because cmds can be executed from any point in the cmd list
|
||
|
* special precautions have to be taken when handling the backlog.
|
||
|
*/
|
||
|
if (cpu_queue->backlog != &cpu_queue->cmds) {
|
||
|
/* Skip over this cmd if it is the next backlog cmd */
|
||
|
if (cpu_queue->backlog == &crypto_cmd->entry)
|
||
|
cpu_queue->backlog = crypto_cmd->entry.next;
|
||
|
|
||
|
*backlog = container_of(cpu_queue->backlog,
|
||
|
struct ccp_crypto_cmd, entry);
|
||
|
cpu_queue->backlog = cpu_queue->backlog->next;
|
||
|
|
||
|
/* Skip over this cmd if it is now the next backlog cmd */
|
||
|
if (cpu_queue->backlog == &crypto_cmd->entry)
|
||
|
cpu_queue->backlog = crypto_cmd->entry.next;
|
||
|
}
|
||
|
|
||
|
/* Remove the cmd entry from the list of cmds */
|
||
|
cpu_queue->cmd_count--;
|
||
|
list_del(&crypto_cmd->entry);
|
||
|
|
||
|
return held;
|
||
|
}
|
||
|
|
||
|
static void ccp_crypto_complete_on_cpu(struct work_struct *work)
|
||
|
{
|
||
|
struct ccp_crypto_cpu *cpu_work =
|
||
|
container_of(work, struct ccp_crypto_cpu, work);
|
||
|
struct ccp_crypto_cmd *crypto_cmd = cpu_work->crypto_cmd;
|
||
|
struct ccp_crypto_cmd *held, *next, *backlog;
|
||
|
struct crypto_async_request *req = crypto_cmd->req;
|
||
|
struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
|
||
|
int cpu, ret;
|
||
|
|
||
|
cpu = get_cpu();
|
||
|
|
||
|
if (cpu_work->err == -EINPROGRESS) {
|
||
|
/* Only propogate the -EINPROGRESS if necessary */
|
||
|
if (crypto_cmd->ret == -EBUSY) {
|
||
|
crypto_cmd->ret = -EINPROGRESS;
|
||
|
req->complete(req, -EINPROGRESS);
|
||
|
}
|
||
|
|
||
|
goto e_cpu;
|
||
|
}
|
||
|
|
||
|
/* Operation has completed - update the queue before invoking
|
||
|
* the completion callbacks and retrieve the next cmd (cmd with
|
||
|
* a matching tfm) that can be submitted to the CCP.
|
||
|
*/
|
||
|
held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
|
||
|
if (backlog) {
|
||
|
backlog->ret = -EINPROGRESS;
|
||
|
backlog->req->complete(backlog->req, -EINPROGRESS);
|
||
|
}
|
||
|
|
||
|
/* Transition the state from -EBUSY to -EINPROGRESS first */
|
||
|
if (crypto_cmd->ret == -EBUSY)
|
||
|
req->complete(req, -EINPROGRESS);
|
||
|
|
||
|
/* Completion callbacks */
|
||
|
ret = cpu_work->err;
|
||
|
if (ctx->complete)
|
||
|
ret = ctx->complete(req, ret);
|
||
|
req->complete(req, ret);
|
||
|
|
||
|
/* Submit the next cmd */
|
||
|
while (held) {
|
||
|
ret = ccp_enqueue_cmd(held->cmd);
|
||
|
if (ccp_crypto_success(ret))
|
||
|
break;
|
||
|
|
||
|
/* Error occurred, report it and get the next entry */
|
||
|
held->req->complete(held->req, ret);
|
||
|
|
||
|
next = ccp_crypto_cmd_complete(held, &backlog);
|
||
|
if (backlog) {
|
||
|
backlog->ret = -EINPROGRESS;
|
||
|
backlog->req->complete(backlog->req, -EINPROGRESS);
|
||
|
}
|
||
|
|
||
|
kfree(held);
|
||
|
held = next;
|
||
|
}
|
||
|
|
||
|
kfree(crypto_cmd);
|
||
|
|
||
|
e_cpu:
|
||
|
put_cpu();
|
||
|
|
||
|
complete(&cpu_work->completion);
|
||
|
}
|
||
|
|
||
|
static void ccp_crypto_complete(void *data, int err)
|
||
|
{
|
||
|
struct ccp_crypto_cmd *crypto_cmd = data;
|
||
|
struct ccp_crypto_cpu cpu_work;
|
||
|
|
||
|
INIT_WORK(&cpu_work.work, ccp_crypto_complete_on_cpu);
|
||
|
init_completion(&cpu_work.completion);
|
||
|
cpu_work.crypto_cmd = crypto_cmd;
|
||
|
cpu_work.err = err;
|
||
|
|
||
|
schedule_work_on(crypto_cmd->cpu, &cpu_work.work);
|
||
|
|
||
|
/* Keep the completion call synchronous */
|
||
|
wait_for_completion(&cpu_work.completion);
|
||
|
}
|
||
|
|
||
|
static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
|
||
|
{
|
||
|
struct ccp_crypto_cpu_queue *cpu_queue;
|
||
|
struct ccp_crypto_cmd *active = NULL, *tmp;
|
||
|
int cpu, ret;
|
||
|
|
||
|
cpu = get_cpu();
|
||
|
crypto_cmd->cpu = cpu;
|
||
|
|
||
|
cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
|
||
|
|
||
|
/* Check if the cmd can/should be queued */
|
||
|
if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
|
||
|
ret = -EBUSY;
|
||
|
if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
|
||
|
goto e_cpu;
|
||
|
}
|
||
|
|
||
|
/* Look for an entry with the same tfm. If there is a cmd
|
||
|
* with the same tfm in the list for this cpu then the current
|
||
|
* cmd cannot be submitted to the CCP yet.
|
||
|
*/
|
||
|
list_for_each_entry(tmp, &cpu_queue->cmds, entry) {
|
||
|
if (crypto_cmd->tfm != tmp->tfm)
|
||
|
continue;
|
||
|
active = tmp;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ret = -EINPROGRESS;
|
||
|
if (!active) {
|
||
|
ret = ccp_enqueue_cmd(crypto_cmd->cmd);
|
||
|
if (!ccp_crypto_success(ret))
|
||
|
goto e_cpu;
|
||
|
}
|
||
|
|
||
|
if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
|
||
|
ret = -EBUSY;
|
||
|
if (cpu_queue->backlog == &cpu_queue->cmds)
|
||
|
cpu_queue->backlog = &crypto_cmd->entry;
|
||
|
}
|
||
|
crypto_cmd->ret = ret;
|
||
|
|
||
|
cpu_queue->cmd_count++;
|
||
|
list_add_tail(&crypto_cmd->entry, &cpu_queue->cmds);
|
||
|
|
||
|
e_cpu:
|
||
|
put_cpu();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ccp_crypto_enqueue_request - queue an crypto async request for processing
|
||
|
* by the CCP
|
||
|
*
|
||
|
* @req: crypto_async_request struct to be processed
|
||
|
* @cmd: ccp_cmd struct to be sent to the CCP
|
||
|
*/
|
||
|
int ccp_crypto_enqueue_request(struct crypto_async_request *req,
|
||
|
struct ccp_cmd *cmd)
|
||
|
{
|
||
|
struct ccp_crypto_cmd *crypto_cmd;
|
||
|
gfp_t gfp;
|
||
|
int ret;
|
||
|
|
||
|
gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
|
||
|
|
||
|
crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
|
||
|
if (!crypto_cmd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* The tfm pointer must be saved and not referenced from the
|
||
|
* crypto_async_request (req) pointer because it is used after
|
||
|
* completion callback for the request and the req pointer
|
||
|
* might not be valid anymore.
|
||
|
*/
|
||
|
crypto_cmd->cmd = cmd;
|
||
|
crypto_cmd->req = req;
|
||
|
crypto_cmd->tfm = req->tfm;
|
||
|
|
||
|
cmd->callback = ccp_crypto_complete;
|
||
|
cmd->data = crypto_cmd;
|
||
|
|
||
|
if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
|
||
|
cmd->flags |= CCP_CMD_MAY_BACKLOG;
|
||
|
else
|
||
|
cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
|
||
|
|
||
|
ret = ccp_crypto_enqueue_cmd(crypto_cmd);
|
||
|
if (!ccp_crypto_success(ret))
|
||
|
kfree(crypto_cmd);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
|
||
|
struct scatterlist *sg_add)
|
||
|
{
|
||
|
struct scatterlist *sg, *sg_last = NULL;
|
||
|
|
||
|
for (sg = table->sgl; sg; sg = sg_next(sg))
|
||
|
if (!sg_page(sg))
|
||
|
break;
|
||
|
BUG_ON(!sg);
|
||
|
|
||
|
for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
|
||
|
sg_set_page(sg, sg_page(sg_add), sg_add->length,
|
||
|
sg_add->offset);
|
||
|
sg_last = sg;
|
||
|
}
|
||
|
BUG_ON(sg_add);
|
||
|
|
||
|
return sg_last;
|
||
|
}
|
||
|
|
||
|
static int ccp_register_algs(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = ccp_register_aes_algs(&cipher_algs);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = ccp_register_aes_cmac_algs(&hash_algs);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = ccp_register_aes_xts_algs(&cipher_algs);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = ccp_register_sha_algs(&hash_algs);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void ccp_unregister_algs(void)
|
||
|
{
|
||
|
struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
|
||
|
struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
|
||
|
|
||
|
list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
|
||
|
crypto_unregister_ahash(&ahash_alg->alg);
|
||
|
list_del(&ahash_alg->entry);
|
||
|
kfree(ahash_alg);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
|
||
|
crypto_unregister_alg(&ablk_alg->alg);
|
||
|
list_del(&ablk_alg->entry);
|
||
|
kfree(ablk_alg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ccp_init_queues(void)
|
||
|
{
|
||
|
struct ccp_crypto_cpu_queue *cpu_queue;
|
||
|
int cpu;
|
||
|
|
||
|
req_queue.cpu_queue = alloc_percpu(struct ccp_crypto_cpu_queue);
|
||
|
if (!req_queue.cpu_queue)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
|
||
|
INIT_LIST_HEAD(&cpu_queue->cmds);
|
||
|
cpu_queue->backlog = &cpu_queue->cmds;
|
||
|
cpu_queue->cmd_count = 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void ccp_fini_queue(void)
|
||
|
{
|
||
|
struct ccp_crypto_cpu_queue *cpu_queue;
|
||
|
int cpu;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
|
||
|
BUG_ON(!list_empty(&cpu_queue->cmds));
|
||
|
}
|
||
|
free_percpu(req_queue.cpu_queue);
|
||
|
}
|
||
|
|
||
|
static int ccp_crypto_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = ccp_init_queues();
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = ccp_register_algs();
|
||
|
if (ret) {
|
||
|
ccp_unregister_algs();
|
||
|
ccp_fini_queue();
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void ccp_crypto_exit(void)
|
||
|
{
|
||
|
ccp_unregister_algs();
|
||
|
ccp_fini_queue();
|
||
|
}
|
||
|
|
||
|
module_init(ccp_crypto_init);
|
||
|
module_exit(ccp_crypto_exit);
|