WSL2-Linux-Kernel/fs/btrfs/block-group.c

1794 строки
50 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0
#include "ctree.h"
#include "block-group.h"
#include "space-info.h"
#include "disk-io.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "ref-verify.h"
#include "sysfs.h"
#include "tree-log.h"
void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
{
atomic_inc(&cache->count);
}
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
{
if (atomic_dec_and_test(&cache->count)) {
WARN_ON(cache->pinned > 0);
WARN_ON(cache->reserved > 0);
/*
* If not empty, someone is still holding mutex of
* full_stripe_lock, which can only be released by caller.
* And it will definitely cause use-after-free when caller
* tries to release full stripe lock.
*
* No better way to resolve, but only to warn.
*/
WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
kfree(cache->free_space_ctl);
kfree(cache);
}
}
/*
* This adds the block group to the fs_info rb tree for the block group cache
*/
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
struct btrfs_block_group_cache *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct btrfs_block_group_cache *cache;
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct btrfs_block_group_cache,
cache_node);
if (block_group->key.objectid < cache->key.objectid) {
p = &(*p)->rb_left;
} else if (block_group->key.objectid > cache->key.objectid) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
if (info->first_logical_byte > block_group->key.objectid)
info->first_logical_byte = block_group->key.objectid;
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct btrfs_block_group_cache *block_group_cache_tree_search(
struct btrfs_fs_info *info, u64 bytenr, int contains)
{
struct btrfs_block_group_cache *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
end = cache->key.objectid + cache->key.offset - 1;
start = cache->key.objectid;
if (bytenr < start) {
if (!contains && (!ret || start < ret->key.objectid))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret) {
btrfs_get_block_group(ret);
if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
info->first_logical_byte = ret->key.objectid;
}
spin_unlock(&info->block_group_cache_lock);
return ret;
}
/*
* Return the block group that starts at or after bytenr
*/
struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
struct btrfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 0);
}
/*
* Return the block group that contains the given bytenr
*/
struct btrfs_block_group_cache *btrfs_lookup_block_group(
struct btrfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 1);
}
struct btrfs_block_group_cache *btrfs_next_block_group(
struct btrfs_block_group_cache *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct rb_node *node;
spin_lock(&fs_info->block_group_cache_lock);
/* If our block group was removed, we need a full search. */
if (RB_EMPTY_NODE(&cache->cache_node)) {
const u64 next_bytenr = cache->key.objectid + cache->key.offset;
spin_unlock(&fs_info->block_group_cache_lock);
btrfs_put_block_group(cache);
cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
}
node = rb_next(&cache->cache_node);
btrfs_put_block_group(cache);
if (node) {
cache = rb_entry(node, struct btrfs_block_group_cache,
cache_node);
btrfs_get_block_group(cache);
} else
cache = NULL;
spin_unlock(&fs_info->block_group_cache_lock);
return cache;
}
bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group_cache *bg;
bool ret = true;
bg = btrfs_lookup_block_group(fs_info, bytenr);
if (!bg)
return false;
spin_lock(&bg->lock);
if (bg->ro)
ret = false;
else
atomic_inc(&bg->nocow_writers);
spin_unlock(&bg->lock);
/* No put on block group, done by btrfs_dec_nocow_writers */
if (!ret)
btrfs_put_block_group(bg);
return ret;
}
void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group_cache *bg;
bg = btrfs_lookup_block_group(fs_info, bytenr);
ASSERT(bg);
if (atomic_dec_and_test(&bg->nocow_writers))
wake_up_var(&bg->nocow_writers);
/*
* Once for our lookup and once for the lookup done by a previous call
* to btrfs_inc_nocow_writers()
*/
btrfs_put_block_group(bg);
btrfs_put_block_group(bg);
}
void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
{
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
}
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
const u64 start)
{
struct btrfs_block_group_cache *bg;
bg = btrfs_lookup_block_group(fs_info, start);
ASSERT(bg);
if (atomic_dec_and_test(&bg->reservations))
wake_up_var(&bg->reservations);
btrfs_put_block_group(bg);
}
void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
{
struct btrfs_space_info *space_info = bg->space_info;
ASSERT(bg->ro);
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
return;
/*
* Our block group is read only but before we set it to read only,
* some task might have had allocated an extent from it already, but it
* has not yet created a respective ordered extent (and added it to a
* root's list of ordered extents).
* Therefore wait for any task currently allocating extents, since the
* block group's reservations counter is incremented while a read lock
* on the groups' semaphore is held and decremented after releasing
* the read access on that semaphore and creating the ordered extent.
*/
down_write(&space_info->groups_sem);
up_write(&space_info->groups_sem);
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
}
struct btrfs_caching_control *btrfs_get_caching_control(
struct btrfs_block_group_cache *cache)
{
struct btrfs_caching_control *ctl;
spin_lock(&cache->lock);
if (!cache->caching_ctl) {
spin_unlock(&cache->lock);
return NULL;
}
ctl = cache->caching_ctl;
refcount_inc(&ctl->count);
spin_unlock(&cache->lock);
return ctl;
}
void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
{
if (refcount_dec_and_test(&ctl->count))
kfree(ctl);
}
/*
* When we wait for progress in the block group caching, its because our
* allocation attempt failed at least once. So, we must sleep and let some
* progress happen before we try again.
*
* This function will sleep at least once waiting for new free space to show
* up, and then it will check the block group free space numbers for our min
* num_bytes. Another option is to have it go ahead and look in the rbtree for
* a free extent of a given size, but this is a good start.
*
* Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
* any of the information in this block group.
*/
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
u64 num_bytes)
{
struct btrfs_caching_control *caching_ctl;
caching_ctl = btrfs_get_caching_control(cache);
if (!caching_ctl)
return;
wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
(cache->free_space_ctl->free_space >= num_bytes));
btrfs_put_caching_control(caching_ctl);
}
int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
{
struct btrfs_caching_control *caching_ctl;
int ret = 0;
caching_ctl = btrfs_get_caching_control(cache);
if (!caching_ctl)
return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
if (cache->cached == BTRFS_CACHE_ERROR)
ret = -EIO;
btrfs_put_caching_control(caching_ctl);
return ret;
}
#ifdef CONFIG_BTRFS_DEBUG
void btrfs_fragment_free_space(struct btrfs_block_group_cache *block_group)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
u64 start = block_group->key.objectid;
u64 len = block_group->key.offset;
u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
fs_info->nodesize : fs_info->sectorsize;
u64 step = chunk << 1;
while (len > chunk) {
btrfs_remove_free_space(block_group, start, chunk);
start += step;
if (len < step)
len = 0;
else
len -= step;
}
}
#endif
/*
* This is only called by btrfs_cache_block_group, since we could have freed
* extents we need to check the pinned_extents for any extents that can't be
* used yet since their free space will be released as soon as the transaction
* commits.
*/
u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
u64 start, u64 end)
{
struct btrfs_fs_info *info = block_group->fs_info;
u64 extent_start, extent_end, size, total_added = 0;
int ret;
while (start < end) {
ret = find_first_extent_bit(info->pinned_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY | EXTENT_UPTODATE,
NULL);
if (ret)
break;
if (extent_start <= start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start,
size);
BUG_ON(ret); /* -ENOMEM or logic error */
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start, size);
BUG_ON(ret); /* -ENOMEM or logic error */
}
return total_added;
}
static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
{
struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct btrfs_root *extent_root = fs_info->extent_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
u64 total_found = 0;
u64 last = 0;
u32 nritems;
int ret;
bool wakeup = true;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
#ifdef CONFIG_BTRFS_DEBUG
/*
* If we're fragmenting we don't want to make anybody think we can
* allocate from this block group until we've had a chance to fragment
* the free space.
*/
if (btrfs_should_fragment_free_space(block_group))
wakeup = false;
#endif
/*
* We don't want to deadlock with somebody trying to allocate a new
* extent for the extent root while also trying to search the extent
* root to add free space. So we skip locking and search the commit
* root, since its read-only
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = READA_FORWARD;
key.objectid = last;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
next:
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (btrfs_fs_closing(fs_info) > 1) {
last = (u64)-1;
break;
}
if (path->slots[0] < nritems) {
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
} else {
ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
if (ret)
break;
if (need_resched() ||
rwsem_is_contended(&fs_info->commit_root_sem)) {
if (wakeup)
caching_ctl->progress = last;
btrfs_release_path(path);
up_read(&fs_info->commit_root_sem);
mutex_unlock(&caching_ctl->mutex);
cond_resched();
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
goto next;
}
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret)
break;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
continue;
}
if (key.objectid < last) {
key.objectid = last;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
if (wakeup)
caching_ctl->progress = last;
btrfs_release_path(path);
goto next;
}
if (key.objectid < block_group->key.objectid) {
path->slots[0]++;
continue;
}
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
total_found += add_new_free_space(block_group, last,
key.objectid);
if (key.type == BTRFS_METADATA_ITEM_KEY)
last = key.objectid +
fs_info->nodesize;
else
last = key.objectid + key.offset;
if (total_found > CACHING_CTL_WAKE_UP) {
total_found = 0;
if (wakeup)
wake_up(&caching_ctl->wait);
}
}
path->slots[0]++;
}
ret = 0;
total_found += add_new_free_space(block_group, last,
block_group->key.objectid +
block_group->key.offset);
caching_ctl->progress = (u64)-1;
out:
btrfs_free_path(path);
return ret;
}
static noinline void caching_thread(struct btrfs_work *work)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_fs_info *fs_info;
struct btrfs_caching_control *caching_ctl;
int ret;
caching_ctl = container_of(work, struct btrfs_caching_control, work);
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
ret = load_free_space_tree(caching_ctl);
else
ret = load_extent_tree_free(caching_ctl);
spin_lock(&block_group->lock);
block_group->caching_ctl = NULL;
block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
spin_unlock(&block_group->lock);
#ifdef CONFIG_BTRFS_DEBUG
if (btrfs_should_fragment_free_space(block_group)) {
u64 bytes_used;
spin_lock(&block_group->space_info->lock);
spin_lock(&block_group->lock);
bytes_used = block_group->key.offset -
btrfs_block_group_used(&block_group->item);
block_group->space_info->bytes_used += bytes_used >> 1;
spin_unlock(&block_group->lock);
spin_unlock(&block_group->space_info->lock);
btrfs_fragment_free_space(block_group);
}
#endif
caching_ctl->progress = (u64)-1;
up_read(&fs_info->commit_root_sem);
btrfs_free_excluded_extents(block_group);
mutex_unlock(&caching_ctl->mutex);
wake_up(&caching_ctl->wait);
btrfs_put_caching_control(caching_ctl);
btrfs_put_block_group(block_group);
}
int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
int load_cache_only)
{
DEFINE_WAIT(wait);
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_caching_control *caching_ctl;
int ret = 0;
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
if (!caching_ctl)
return -ENOMEM;
INIT_LIST_HEAD(&caching_ctl->list);
mutex_init(&caching_ctl->mutex);
init_waitqueue_head(&caching_ctl->wait);
caching_ctl->block_group = cache;
caching_ctl->progress = cache->key.objectid;
refcount_set(&caching_ctl->count, 1);
btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
caching_thread, NULL, NULL);
spin_lock(&cache->lock);
/*
* This should be a rare occasion, but this could happen I think in the
* case where one thread starts to load the space cache info, and then
* some other thread starts a transaction commit which tries to do an
* allocation while the other thread is still loading the space cache
* info. The previous loop should have kept us from choosing this block
* group, but if we've moved to the state where we will wait on caching
* block groups we need to first check if we're doing a fast load here,
* so we can wait for it to finish, otherwise we could end up allocating
* from a block group who's cache gets evicted for one reason or
* another.
*/
while (cache->cached == BTRFS_CACHE_FAST) {
struct btrfs_caching_control *ctl;
ctl = cache->caching_ctl;
refcount_inc(&ctl->count);
prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock(&cache->lock);
schedule();
finish_wait(&ctl->wait, &wait);
btrfs_put_caching_control(ctl);
spin_lock(&cache->lock);
}
if (cache->cached != BTRFS_CACHE_NO) {
spin_unlock(&cache->lock);
kfree(caching_ctl);
return 0;
}
WARN_ON(cache->caching_ctl);
cache->caching_ctl = caching_ctl;
cache->cached = BTRFS_CACHE_FAST;
spin_unlock(&cache->lock);
if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
mutex_lock(&caching_ctl->mutex);
ret = load_free_space_cache(cache);
spin_lock(&cache->lock);
if (ret == 1) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_FINISHED;
cache->last_byte_to_unpin = (u64)-1;
caching_ctl->progress = (u64)-1;
} else {
if (load_cache_only) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_NO;
} else {
cache->cached = BTRFS_CACHE_STARTED;
cache->has_caching_ctl = 1;
}
}
spin_unlock(&cache->lock);
#ifdef CONFIG_BTRFS_DEBUG
if (ret == 1 &&
btrfs_should_fragment_free_space(cache)) {
u64 bytes_used;
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
bytes_used = cache->key.offset -
btrfs_block_group_used(&cache->item);
cache->space_info->bytes_used += bytes_used >> 1;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
btrfs_fragment_free_space(cache);
}
#endif
mutex_unlock(&caching_ctl->mutex);
wake_up(&caching_ctl->wait);
if (ret == 1) {
btrfs_put_caching_control(caching_ctl);
btrfs_free_excluded_extents(cache);
return 0;
}
} else {
/*
* We're either using the free space tree or no caching at all.
* Set cached to the appropriate value and wakeup any waiters.
*/
spin_lock(&cache->lock);
if (load_cache_only) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_NO;
} else {
cache->cached = BTRFS_CACHE_STARTED;
cache->has_caching_ctl = 1;
}
spin_unlock(&cache->lock);
wake_up(&caching_ctl->wait);
}
if (load_cache_only) {
btrfs_put_caching_control(caching_ctl);
return 0;
}
down_write(&fs_info->commit_root_sem);
refcount_inc(&caching_ctl->count);
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
up_write(&fs_info->commit_root_sem);
btrfs_get_block_group(cache);
btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
return ret;
}
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits &= ~extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
/*
* Clear incompat bits for the following feature(s):
*
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
* in the whole filesystem
*/
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
struct list_head *head = &fs_info->space_info;
struct btrfs_space_info *sinfo;
list_for_each_entry_rcu(sinfo, head, list) {
bool found = false;
down_read(&sinfo->groups_sem);
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
found = true;
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
found = true;
up_read(&sinfo->groups_sem);
if (found)
return;
}
btrfs_clear_fs_incompat(fs_info, RAID56);
}
}
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
u64 group_start, struct extent_map *em)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_path *path;
struct btrfs_block_group_cache *block_group;
struct btrfs_free_cluster *cluster;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_key key;
struct inode *inode;
struct kobject *kobj = NULL;
int ret;
int index;
int factor;
struct btrfs_caching_control *caching_ctl = NULL;
bool remove_em;
bool remove_rsv = false;
block_group = btrfs_lookup_block_group(fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
trace_btrfs_remove_block_group(block_group);
/*
* Free the reserved super bytes from this block group before
* remove it.
*/
btrfs_free_excluded_extents(block_group);
btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
block_group->key.offset);
memcpy(&key, &block_group->key, sizeof(key));
index = btrfs_bg_flags_to_raid_index(block_group->flags);
factor = btrfs_bg_type_to_factor(block_group->flags);
/* make sure this block group isn't part of an allocation cluster */
cluster = &fs_info->data_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
/*
* make sure this block group isn't part of a metadata
* allocation cluster
*/
cluster = &fs_info->meta_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
/*
* get the inode first so any iput calls done for the io_list
* aren't the final iput (no unlinks allowed now)
*/
inode = lookup_free_space_inode(block_group, path);
mutex_lock(&trans->transaction->cache_write_mutex);
/*
* Make sure our free space cache IO is done before removing the
* free space inode
*/
spin_lock(&trans->transaction->dirty_bgs_lock);
if (!list_empty(&block_group->io_list)) {
list_del_init(&block_group->io_list);
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
spin_unlock(&trans->transaction->dirty_bgs_lock);
btrfs_wait_cache_io(trans, block_group, path);
btrfs_put_block_group(block_group);
spin_lock(&trans->transaction->dirty_bgs_lock);
}
if (!list_empty(&block_group->dirty_list)) {
list_del_init(&block_group->dirty_list);
remove_rsv = true;
btrfs_put_block_group(block_group);
}
spin_unlock(&trans->transaction->dirty_bgs_lock);
mutex_unlock(&trans->transaction->cache_write_mutex);
if (!IS_ERR(inode)) {
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
if (ret) {
btrfs_add_delayed_iput(inode);
goto out;
}
clear_nlink(inode);
/* One for the block groups ref */
spin_lock(&block_group->lock);
if (block_group->iref) {
block_group->iref = 0;
block_group->inode = NULL;
spin_unlock(&block_group->lock);
iput(inode);
} else {
spin_unlock(&block_group->lock);
}
/* One for our lookup ref */
btrfs_add_delayed_iput(inode);
}
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = block_group->key.objectid;
key.type = 0;
ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0)
btrfs_release_path(path);
if (ret == 0) {
ret = btrfs_del_item(trans, tree_root, path);
if (ret)
goto out;
btrfs_release_path(path);
}
spin_lock(&fs_info->block_group_cache_lock);
rb_erase(&block_group->cache_node,
&fs_info->block_group_cache_tree);
RB_CLEAR_NODE(&block_group->cache_node);
if (fs_info->first_logical_byte == block_group->key.objectid)
fs_info->first_logical_byte = (u64)-1;
spin_unlock(&fs_info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
/*
* we must use list_del_init so people can check to see if they
* are still on the list after taking the semaphore
*/
list_del_init(&block_group->list);
if (list_empty(&block_group->space_info->block_groups[index])) {
kobj = block_group->space_info->block_group_kobjs[index];
block_group->space_info->block_group_kobjs[index] = NULL;
clear_avail_alloc_bits(fs_info, block_group->flags);
}
up_write(&block_group->space_info->groups_sem);
clear_incompat_bg_bits(fs_info, block_group->flags);
if (kobj) {
kobject_del(kobj);
kobject_put(kobj);
}
if (block_group->has_caching_ctl)
caching_ctl = btrfs_get_caching_control(block_group);
if (block_group->cached == BTRFS_CACHE_STARTED)
btrfs_wait_block_group_cache_done(block_group);
if (block_group->has_caching_ctl) {
down_write(&fs_info->commit_root_sem);
if (!caching_ctl) {
struct btrfs_caching_control *ctl;
list_for_each_entry(ctl,
&fs_info->caching_block_groups, list)
if (ctl->block_group == block_group) {
caching_ctl = ctl;
refcount_inc(&caching_ctl->count);
break;
}
}
if (caching_ctl)
list_del_init(&caching_ctl->list);
up_write(&fs_info->commit_root_sem);
if (caching_ctl) {
/* Once for the caching bgs list and once for us. */
btrfs_put_caching_control(caching_ctl);
btrfs_put_caching_control(caching_ctl);
}
}
spin_lock(&trans->transaction->dirty_bgs_lock);
WARN_ON(!list_empty(&block_group->dirty_list));
WARN_ON(!list_empty(&block_group->io_list));
spin_unlock(&trans->transaction->dirty_bgs_lock);
btrfs_remove_free_space_cache(block_group);
spin_lock(&block_group->space_info->lock);
list_del_init(&block_group->ro_list);
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
WARN_ON(block_group->space_info->total_bytes
< block_group->key.offset);
WARN_ON(block_group->space_info->bytes_readonly
< block_group->key.offset);
WARN_ON(block_group->space_info->disk_total
< block_group->key.offset * factor);
}
block_group->space_info->total_bytes -= block_group->key.offset;
block_group->space_info->bytes_readonly -= block_group->key.offset;
block_group->space_info->disk_total -= block_group->key.offset * factor;
spin_unlock(&block_group->space_info->lock);
memcpy(&key, &block_group->key, sizeof(key));
mutex_lock(&fs_info->chunk_mutex);
spin_lock(&block_group->lock);
block_group->removed = 1;
/*
* At this point trimming can't start on this block group, because we
* removed the block group from the tree fs_info->block_group_cache_tree
* so no one can't find it anymore and even if someone already got this
* block group before we removed it from the rbtree, they have already
* incremented block_group->trimming - if they didn't, they won't find
* any free space entries because we already removed them all when we
* called btrfs_remove_free_space_cache().
*
* And we must not remove the extent map from the fs_info->mapping_tree
* to prevent the same logical address range and physical device space
* ranges from being reused for a new block group. This is because our
* fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
* completely transactionless, so while it is trimming a range the
* currently running transaction might finish and a new one start,
* allowing for new block groups to be created that can reuse the same
* physical device locations unless we take this special care.
*
* There may also be an implicit trim operation if the file system
* is mounted with -odiscard. The same protections must remain
* in place until the extents have been discarded completely when
* the transaction commit has completed.
*/
remove_em = (atomic_read(&block_group->trimming) == 0);
spin_unlock(&block_group->lock);
mutex_unlock(&fs_info->chunk_mutex);
ret = remove_block_group_free_space(trans, block_group);
if (ret)
goto out;
btrfs_put_block_group(block_group);
btrfs_put_block_group(block_group);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -EIO;
if (ret < 0)
goto out;
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
if (remove_em) {
struct extent_map_tree *em_tree;
em_tree = &fs_info->mapping_tree;
write_lock(&em_tree->lock);
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* once for the tree */
free_extent_map(em);
}
out:
if (remove_rsv)
btrfs_delayed_refs_rsv_release(fs_info, 1);
btrfs_free_path(path);
return ret;
}
struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
struct btrfs_fs_info *fs_info, const u64 chunk_offset)
{
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct map_lookup *map;
unsigned int num_items;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
read_unlock(&em_tree->lock);
ASSERT(em && em->start == chunk_offset);
/*
* We need to reserve 3 + N units from the metadata space info in order
* to remove a block group (done at btrfs_remove_chunk() and at
* btrfs_remove_block_group()), which are used for:
*
* 1 unit for adding the free space inode's orphan (located in the tree
* of tree roots).
* 1 unit for deleting the block group item (located in the extent
* tree).
* 1 unit for deleting the free space item (located in tree of tree
* roots).
* N units for deleting N device extent items corresponding to each
* stripe (located in the device tree).
*
* In order to remove a block group we also need to reserve units in the
* system space info in order to update the chunk tree (update one or
* more device items and remove one chunk item), but this is done at
* btrfs_remove_chunk() through a call to check_system_chunk().
*/
map = em->map_lookup;
num_items = 3 + map->num_stripes;
free_extent_map(em);
return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
num_items, 1);
}
/*
* Process the unused_bgs list and remove any that don't have any allocated
* space inside of them.
*/
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_space_info *space_info;
struct btrfs_trans_handle *trans;
int ret = 0;
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
return;
spin_lock(&fs_info->unused_bgs_lock);
while (!list_empty(&fs_info->unused_bgs)) {
u64 start, end;
int trimming;
block_group = list_first_entry(&fs_info->unused_bgs,
struct btrfs_block_group_cache,
bg_list);
list_del_init(&block_group->bg_list);
space_info = block_group->space_info;
if (ret || btrfs_mixed_space_info(space_info)) {
btrfs_put_block_group(block_group);
continue;
}
spin_unlock(&fs_info->unused_bgs_lock);
mutex_lock(&fs_info->delete_unused_bgs_mutex);
/* Don't want to race with allocators so take the groups_sem */
down_write(&space_info->groups_sem);
spin_lock(&block_group->lock);
if (block_group->reserved || block_group->pinned ||
btrfs_block_group_used(&block_group->item) ||
block_group->ro ||
list_is_singular(&block_group->list)) {
/*
* We want to bail if we made new allocations or have
* outstanding allocations in this block group. We do
* the ro check in case balance is currently acting on
* this block group.
*/
trace_btrfs_skip_unused_block_group(block_group);
spin_unlock(&block_group->lock);
up_write(&space_info->groups_sem);
goto next;
}
spin_unlock(&block_group->lock);
/* We don't want to force the issue, only flip if it's ok. */
ret = __btrfs_inc_block_group_ro(block_group, 0);
up_write(&space_info->groups_sem);
if (ret < 0) {
ret = 0;
goto next;
}
/*
* Want to do this before we do anything else so we can recover
* properly if we fail to join the transaction.
*/
trans = btrfs_start_trans_remove_block_group(fs_info,
block_group->key.objectid);
if (IS_ERR(trans)) {
btrfs_dec_block_group_ro(block_group);
ret = PTR_ERR(trans);
goto next;
}
/*
* We could have pending pinned extents for this block group,
* just delete them, we don't care about them anymore.
*/
start = block_group->key.objectid;
end = start + block_group->key.offset - 1;
/*
* Hold the unused_bg_unpin_mutex lock to avoid racing with
* btrfs_finish_extent_commit(). If we are at transaction N,
* another task might be running finish_extent_commit() for the
* previous transaction N - 1, and have seen a range belonging
* to the block group in freed_extents[] before we were able to
* clear the whole block group range from freed_extents[]. This
* means that task can lookup for the block group after we
* unpinned it from freed_extents[] and removed it, leading to
* a BUG_ON() at btrfs_unpin_extent_range().
*/
mutex_lock(&fs_info->unused_bg_unpin_mutex);
ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
EXTENT_DIRTY);
if (ret) {
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
btrfs_dec_block_group_ro(block_group);
goto end_trans;
}
ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
EXTENT_DIRTY);
if (ret) {
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
btrfs_dec_block_group_ro(block_group);
goto end_trans;
}
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
/* Reset pinned so btrfs_put_block_group doesn't complain */
spin_lock(&space_info->lock);
spin_lock(&block_group->lock);
btrfs_space_info_update_bytes_pinned(fs_info, space_info,
-block_group->pinned);
space_info->bytes_readonly += block_group->pinned;
percpu_counter_add_batch(&space_info->total_bytes_pinned,
-block_group->pinned,
BTRFS_TOTAL_BYTES_PINNED_BATCH);
block_group->pinned = 0;
spin_unlock(&block_group->lock);
spin_unlock(&space_info->lock);
/* DISCARD can flip during remount */
trimming = btrfs_test_opt(fs_info, DISCARD);
/* Implicit trim during transaction commit. */
if (trimming)
btrfs_get_block_group_trimming(block_group);
/*
* Btrfs_remove_chunk will abort the transaction if things go
* horribly wrong.
*/
ret = btrfs_remove_chunk(trans, block_group->key.objectid);
if (ret) {
if (trimming)
btrfs_put_block_group_trimming(block_group);
goto end_trans;
}
/*
* If we're not mounted with -odiscard, we can just forget
* about this block group. Otherwise we'll need to wait
* until transaction commit to do the actual discard.
*/
if (trimming) {
spin_lock(&fs_info->unused_bgs_lock);
/*
* A concurrent scrub might have added us to the list
* fs_info->unused_bgs, so use a list_move operation
* to add the block group to the deleted_bgs list.
*/
list_move(&block_group->bg_list,
&trans->transaction->deleted_bgs);
spin_unlock(&fs_info->unused_bgs_lock);
btrfs_get_block_group(block_group);
}
end_trans:
btrfs_end_transaction(trans);
next:
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
btrfs_put_block_group(block_group);
spin_lock(&fs_info->unused_bgs_lock);
}
spin_unlock(&fs_info->unused_bgs_lock);
}
void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
{
struct btrfs_fs_info *fs_info = bg->fs_info;
spin_lock(&fs_info->unused_bgs_lock);
if (list_empty(&bg->bg_list)) {
btrfs_get_block_group(bg);
trace_btrfs_add_unused_block_group(bg);
list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
}
spin_unlock(&fs_info->unused_bgs_lock);
}
static int find_first_block_group(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
struct btrfs_key *key)
{
struct btrfs_root *root = fs_info->extent_root;
int ret = 0;
struct btrfs_key found_key;
struct extent_buffer *leaf;
struct btrfs_block_group_item bg;
u64 flags;
int slot;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
goto out;
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid >= key->objectid &&
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
struct extent_map_tree *em_tree;
struct extent_map *em;
em_tree = &root->fs_info->mapping_tree;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, found_key.objectid,
found_key.offset);
read_unlock(&em_tree->lock);
if (!em) {
btrfs_err(fs_info,
"logical %llu len %llu found bg but no related chunk",
found_key.objectid, found_key.offset);
ret = -ENOENT;
} else if (em->start != found_key.objectid ||
em->len != found_key.offset) {
btrfs_err(fs_info,
"block group %llu len %llu mismatch with chunk %llu len %llu",
found_key.objectid, found_key.offset,
em->start, em->len);
ret = -EUCLEAN;
} else {
read_extent_buffer(leaf, &bg,
btrfs_item_ptr_offset(leaf, slot),
sizeof(bg));
flags = btrfs_block_group_flags(&bg) &
BTRFS_BLOCK_GROUP_TYPE_MASK;
if (flags != (em->map_lookup->type &
BTRFS_BLOCK_GROUP_TYPE_MASK)) {
btrfs_err(fs_info,
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
found_key.objectid,
found_key.offset, flags,
(BTRFS_BLOCK_GROUP_TYPE_MASK &
em->map_lookup->type));
ret = -EUCLEAN;
} else {
ret = 0;
}
}
free_extent_map(em);
goto out;
}
path->slots[0]++;
}
out:
return ret;
}
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits |= extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
u64 bytenr;
u64 *logical;
int stripe_len;
int i, nr, ret;
if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
cache->bytes_super += stripe_len;
ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid,
stripe_len);
if (ret)
return ret;
}
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(fs_info, cache->key.objectid,
bytenr, &logical, &nr, &stripe_len);
if (ret)
return ret;
while (nr--) {
u64 start, len;
if (logical[nr] > cache->key.objectid +
cache->key.offset)
continue;
if (logical[nr] + stripe_len <= cache->key.objectid)
continue;
start = logical[nr];
if (start < cache->key.objectid) {
start = cache->key.objectid;
len = (logical[nr] + stripe_len) - start;
} else {
len = min_t(u64, stripe_len,
cache->key.objectid +
cache->key.offset - start);
}
cache->bytes_super += len;
ret = btrfs_add_excluded_extent(fs_info, start, len);
if (ret) {
kfree(logical);
return ret;
}
}
kfree(logical);
}
return 0;
}
static void link_block_group(struct btrfs_block_group_cache *cache)
{
struct btrfs_space_info *space_info = cache->space_info;
int index = btrfs_bg_flags_to_raid_index(cache->flags);
bool first = false;
down_write(&space_info->groups_sem);
if (list_empty(&space_info->block_groups[index]))
first = true;
list_add_tail(&cache->list, &space_info->block_groups[index]);
up_write(&space_info->groups_sem);
if (first)
btrfs_sysfs_add_block_group_type(cache);
}
static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
struct btrfs_fs_info *fs_info, u64 start, u64 size)
{
struct btrfs_block_group_cache *cache;
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache)
return NULL;
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
GFP_NOFS);
if (!cache->free_space_ctl) {
kfree(cache);
return NULL;
}
cache->key.objectid = start;
cache->key.offset = size;
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
cache->fs_info = fs_info;
cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
set_free_space_tree_thresholds(cache);
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
init_rwsem(&cache->data_rwsem);
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
INIT_LIST_HEAD(&cache->bg_list);
INIT_LIST_HEAD(&cache->ro_list);
INIT_LIST_HEAD(&cache->dirty_list);
INIT_LIST_HEAD(&cache->io_list);
btrfs_init_free_space_ctl(cache);
atomic_set(&cache->trimming, 0);
mutex_init(&cache->free_space_lock);
btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
return cache;
}
/*
* Iterate all chunks and verify that each of them has the corresponding block
* group
*/
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
{
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct btrfs_block_group_cache *bg;
u64 start = 0;
int ret = 0;
while (1) {
read_lock(&map_tree->lock);
/*
* lookup_extent_mapping will return the first extent map
* intersecting the range, so setting @len to 1 is enough to
* get the first chunk.
*/
em = lookup_extent_mapping(map_tree, start, 1);
read_unlock(&map_tree->lock);
if (!em)
break;
bg = btrfs_lookup_block_group(fs_info, em->start);
if (!bg) {
btrfs_err(fs_info,
"chunk start=%llu len=%llu doesn't have corresponding block group",
em->start, em->len);
ret = -EUCLEAN;
free_extent_map(em);
break;
}
if (bg->key.objectid != em->start ||
bg->key.offset != em->len ||
(bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
(em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
btrfs_err(fs_info,
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
em->start, em->len,
em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
bg->key.objectid, bg->key.offset,
bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
ret = -EUCLEAN;
free_extent_map(em);
btrfs_put_block_group(bg);
break;
}
start = em->start + em->len;
free_extent_map(em);
btrfs_put_block_group(bg);
}
return ret;
}
int btrfs_read_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_path *path;
int ret;
struct btrfs_block_group_cache *cache;
struct btrfs_space_info *space_info;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int need_clear = 0;
u64 cache_gen;
u64 feature;
int mixed;
feature = btrfs_super_incompat_flags(info->super_copy);
mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
key.objectid = 0;
key.offset = 0;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_FORWARD;
cache_gen = btrfs_super_cache_generation(info->super_copy);
if (btrfs_test_opt(info, SPACE_CACHE) &&
btrfs_super_generation(info->super_copy) != cache_gen)
need_clear = 1;
if (btrfs_test_opt(info, CLEAR_CACHE))
need_clear = 1;
while (1) {
ret = find_first_block_group(info, path, &key);
if (ret > 0)
break;
if (ret != 0)
goto error;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
cache = btrfs_create_block_group_cache(info, found_key.objectid,
found_key.offset);
if (!cache) {
ret = -ENOMEM;
goto error;
}
if (need_clear) {
/*
* When we mount with old space cache, we need to
* set BTRFS_DC_CLEAR and set dirty flag.
*
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
* truncate the old free space cache inode and
* setup a new one.
* b) Setting 'dirty flag' makes sure that we flush
* the new space cache info onto disk.
*/
if (btrfs_test_opt(info, SPACE_CACHE))
cache->disk_cache_state = BTRFS_DC_CLEAR;
}
read_extent_buffer(leaf, &cache->item,
btrfs_item_ptr_offset(leaf, path->slots[0]),
sizeof(cache->item));
cache->flags = btrfs_block_group_flags(&cache->item);
if (!mixed &&
((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
(cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
btrfs_err(info,
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
cache->key.objectid);
ret = -EINVAL;
goto error;
}
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(path);
/*
* We need to exclude the super stripes now so that the space
* info has super bytes accounted for, otherwise we'll think
* we have more space than we actually do.
*/
ret = exclude_super_stripes(cache);
if (ret) {
/*
* We may have excluded something, so call this just in
* case.
*/
btrfs_free_excluded_extents(cache);
btrfs_put_block_group(cache);
goto error;
}
/*
* Check for two cases, either we are full, and therefore
* don't need to bother with the caching work since we won't
* find any space, or we are empty, and we can just add all
* the space in and be done with it. This saves us _a_lot_ of
* time, particularly in the full case.
*/
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
btrfs_free_excluded_extents(cache);
} else if (btrfs_block_group_used(&cache->item) == 0) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
add_new_free_space(cache, found_key.objectid,
found_key.objectid +
found_key.offset);
btrfs_free_excluded_extents(cache);
}
ret = btrfs_add_block_group_cache(info, cache);
if (ret) {
btrfs_remove_free_space_cache(cache);
btrfs_put_block_group(cache);
goto error;
}
trace_btrfs_add_block_group(info, cache, 0);
btrfs_update_space_info(info, cache->flags, found_key.offset,
btrfs_block_group_used(&cache->item),
cache->bytes_super, &space_info);
cache->space_info = space_info;
link_block_group(cache);
set_avail_alloc_bits(info, cache->flags);
if (btrfs_chunk_readonly(info, cache->key.objectid)) {
__btrfs_inc_block_group_ro(cache, 1);
} else if (btrfs_block_group_used(&cache->item) == 0) {
ASSERT(list_empty(&cache->bg_list));
btrfs_mark_bg_unused(cache);
}
}
list_for_each_entry_rcu(space_info, &info->space_info, list) {
if (!(btrfs_get_alloc_profile(info, space_info->flags) &
(BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID1_MASK |
BTRFS_BLOCK_GROUP_RAID56_MASK |
BTRFS_BLOCK_GROUP_DUP)))
continue;
/*
* Avoid allocating from un-mirrored block group if there are
* mirrored block groups.
*/
list_for_each_entry(cache,
&space_info->block_groups[BTRFS_RAID_RAID0],
list)
__btrfs_inc_block_group_ro(cache, 1);
list_for_each_entry(cache,
&space_info->block_groups[BTRFS_RAID_SINGLE],
list)
__btrfs_inc_block_group_ro(cache, 1);
}
btrfs_init_global_block_rsv(info);
ret = check_chunk_block_group_mappings(info);
error:
btrfs_free_path(path);
return ret;
}
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group_cache *block_group;
struct btrfs_root *extent_root = fs_info->extent_root;
struct btrfs_block_group_item item;
struct btrfs_key key;
int ret = 0;
if (!trans->can_flush_pending_bgs)
return;
while (!list_empty(&trans->new_bgs)) {
block_group = list_first_entry(&trans->new_bgs,
struct btrfs_block_group_cache,
bg_list);
if (ret)
goto next;
spin_lock(&block_group->lock);
memcpy(&item, &block_group->item, sizeof(item));
memcpy(&key, &block_group->key, sizeof(key));
spin_unlock(&block_group->lock);
ret = btrfs_insert_item(trans, extent_root, &key, &item,
sizeof(item));
if (ret)
btrfs_abort_transaction(trans, ret);
ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
if (ret)
btrfs_abort_transaction(trans, ret);
add_block_group_free_space(trans, block_group);
/* Already aborted the transaction if it failed. */
next:
btrfs_delayed_refs_rsv_release(fs_info, 1);
list_del_init(&block_group->bg_list);
}
btrfs_trans_release_chunk_metadata(trans);
}
int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
u64 type, u64 chunk_offset, u64 size)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group_cache *cache;
int ret;
btrfs_set_log_full_commit(trans);
cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
if (!cache)
return -ENOMEM;
btrfs_set_block_group_used(&cache->item, bytes_used);
btrfs_set_block_group_chunk_objectid(&cache->item,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_block_group_flags(&cache->item, type);
cache->flags = type;
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
cache->needs_free_space = 1;
ret = exclude_super_stripes(cache);
if (ret) {
/* We may have excluded something, so call this just in case */
btrfs_free_excluded_extents(cache);
btrfs_put_block_group(cache);
return ret;
}
add_new_free_space(cache, chunk_offset, chunk_offset + size);
btrfs_free_excluded_extents(cache);
#ifdef CONFIG_BTRFS_DEBUG
if (btrfs_should_fragment_free_space(cache)) {
u64 new_bytes_used = size - bytes_used;
bytes_used += new_bytes_used >> 1;
btrfs_fragment_free_space(cache);
}
#endif
/*
* Ensure the corresponding space_info object is created and
* assigned to our block group. We want our bg to be added to the rbtree
* with its ->space_info set.
*/
cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
ASSERT(cache->space_info);
ret = btrfs_add_block_group_cache(fs_info, cache);
if (ret) {
btrfs_remove_free_space_cache(cache);
btrfs_put_block_group(cache);
return ret;
}
/*
* Now that our block group has its ->space_info set and is inserted in
* the rbtree, update the space info's counters.
*/
trace_btrfs_add_block_group(fs_info, cache, 1);
btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
cache->bytes_super, &cache->space_info);
btrfs_update_global_block_rsv(fs_info);
link_block_group(cache);
list_add_tail(&cache->bg_list, &trans->new_bgs);
trans->delayed_ref_updates++;
btrfs_update_delayed_refs_rsv(trans);
set_avail_alloc_bits(fs_info, type);
return 0;
}