WSL2-Linux-Kernel/security/tomoyo/common.h

1335 строки
40 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/*
* security/tomoyo/common.h
*
* Header file for TOMOYO.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
*
* Copyright (C) 2005-2011 NTT DATA CORPORATION
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
*/
#ifndef _SECURITY_TOMOYO_COMMON_H
#define _SECURITY_TOMOYO_COMMON_H
#define pr_fmt(fmt) fmt
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/kmod.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/list.h>
#include <linux/cred.h>
#include <linux/poll.h>
#include <linux/binfmts.h>
#include <linux/highmem.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/un.h>
#include <linux/lsm_hooks.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/udp.h>
/********** Constants definitions. **********/
/*
* TOMOYO uses this hash only when appending a string into the string
* table. Frequency of appending strings is very low. So we don't need
* large (e.g. 64k) hash size. 256 will be sufficient.
*/
#define TOMOYO_HASH_BITS 8
#define TOMOYO_MAX_HASH (1u<<TOMOYO_HASH_BITS)
/*
* TOMOYO checks only SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, SOCK_SEQPACKET.
* Therefore, we don't need SOCK_MAX.
*/
#define TOMOYO_SOCK_MAX 6
#define TOMOYO_EXEC_TMPSIZE 4096
/* Garbage collector is trying to kfree() this element. */
#define TOMOYO_GC_IN_PROGRESS -1
/* Profile number is an integer between 0 and 255. */
#define TOMOYO_MAX_PROFILES 256
/* Group number is an integer between 0 and 255. */
#define TOMOYO_MAX_ACL_GROUPS 256
/* Index numbers for "struct tomoyo_condition". */
enum tomoyo_conditions_index {
TOMOYO_TASK_UID, /* current_uid() */
TOMOYO_TASK_EUID, /* current_euid() */
TOMOYO_TASK_SUID, /* current_suid() */
TOMOYO_TASK_FSUID, /* current_fsuid() */
TOMOYO_TASK_GID, /* current_gid() */
TOMOYO_TASK_EGID, /* current_egid() */
TOMOYO_TASK_SGID, /* current_sgid() */
TOMOYO_TASK_FSGID, /* current_fsgid() */
TOMOYO_TASK_PID, /* sys_getpid() */
TOMOYO_TASK_PPID, /* sys_getppid() */
TOMOYO_EXEC_ARGC, /* "struct linux_binprm *"->argc */
TOMOYO_EXEC_ENVC, /* "struct linux_binprm *"->envc */
TOMOYO_TYPE_IS_SOCKET, /* S_IFSOCK */
TOMOYO_TYPE_IS_SYMLINK, /* S_IFLNK */
TOMOYO_TYPE_IS_FILE, /* S_IFREG */
TOMOYO_TYPE_IS_BLOCK_DEV, /* S_IFBLK */
TOMOYO_TYPE_IS_DIRECTORY, /* S_IFDIR */
TOMOYO_TYPE_IS_CHAR_DEV, /* S_IFCHR */
TOMOYO_TYPE_IS_FIFO, /* S_IFIFO */
TOMOYO_MODE_SETUID, /* S_ISUID */
TOMOYO_MODE_SETGID, /* S_ISGID */
TOMOYO_MODE_STICKY, /* S_ISVTX */
TOMOYO_MODE_OWNER_READ, /* S_IRUSR */
TOMOYO_MODE_OWNER_WRITE, /* S_IWUSR */
TOMOYO_MODE_OWNER_EXECUTE, /* S_IXUSR */
TOMOYO_MODE_GROUP_READ, /* S_IRGRP */
TOMOYO_MODE_GROUP_WRITE, /* S_IWGRP */
TOMOYO_MODE_GROUP_EXECUTE, /* S_IXGRP */
TOMOYO_MODE_OTHERS_READ, /* S_IROTH */
TOMOYO_MODE_OTHERS_WRITE, /* S_IWOTH */
TOMOYO_MODE_OTHERS_EXECUTE, /* S_IXOTH */
TOMOYO_EXEC_REALPATH,
TOMOYO_SYMLINK_TARGET,
TOMOYO_PATH1_UID,
TOMOYO_PATH1_GID,
TOMOYO_PATH1_INO,
TOMOYO_PATH1_MAJOR,
TOMOYO_PATH1_MINOR,
TOMOYO_PATH1_PERM,
TOMOYO_PATH1_TYPE,
TOMOYO_PATH1_DEV_MAJOR,
TOMOYO_PATH1_DEV_MINOR,
TOMOYO_PATH2_UID,
TOMOYO_PATH2_GID,
TOMOYO_PATH2_INO,
TOMOYO_PATH2_MAJOR,
TOMOYO_PATH2_MINOR,
TOMOYO_PATH2_PERM,
TOMOYO_PATH2_TYPE,
TOMOYO_PATH2_DEV_MAJOR,
TOMOYO_PATH2_DEV_MINOR,
TOMOYO_PATH1_PARENT_UID,
TOMOYO_PATH1_PARENT_GID,
TOMOYO_PATH1_PARENT_INO,
TOMOYO_PATH1_PARENT_PERM,
TOMOYO_PATH2_PARENT_UID,
TOMOYO_PATH2_PARENT_GID,
TOMOYO_PATH2_PARENT_INO,
TOMOYO_PATH2_PARENT_PERM,
TOMOYO_MAX_CONDITION_KEYWORD,
TOMOYO_NUMBER_UNION,
TOMOYO_NAME_UNION,
TOMOYO_ARGV_ENTRY,
TOMOYO_ENVP_ENTRY,
};
/* Index numbers for stat(). */
enum tomoyo_path_stat_index {
/* Do not change this order. */
TOMOYO_PATH1,
TOMOYO_PATH1_PARENT,
TOMOYO_PATH2,
TOMOYO_PATH2_PARENT,
TOMOYO_MAX_PATH_STAT
};
/* Index numbers for operation mode. */
enum tomoyo_mode_index {
TOMOYO_CONFIG_DISABLED,
TOMOYO_CONFIG_LEARNING,
TOMOYO_CONFIG_PERMISSIVE,
TOMOYO_CONFIG_ENFORCING,
TOMOYO_CONFIG_MAX_MODE,
TOMOYO_CONFIG_WANT_REJECT_LOG = 64,
TOMOYO_CONFIG_WANT_GRANT_LOG = 128,
TOMOYO_CONFIG_USE_DEFAULT = 255,
};
/* Index numbers for entry type. */
enum tomoyo_policy_id {
TOMOYO_ID_GROUP,
TOMOYO_ID_ADDRESS_GROUP,
TOMOYO_ID_PATH_GROUP,
TOMOYO_ID_NUMBER_GROUP,
TOMOYO_ID_TRANSITION_CONTROL,
TOMOYO_ID_AGGREGATOR,
TOMOYO_ID_MANAGER,
TOMOYO_ID_CONDITION,
TOMOYO_ID_NAME,
TOMOYO_ID_ACL,
TOMOYO_ID_DOMAIN,
TOMOYO_MAX_POLICY
};
/* Index numbers for domain's attributes. */
enum tomoyo_domain_info_flags_index {
/* Quota warnning flag. */
TOMOYO_DIF_QUOTA_WARNED,
/*
* This domain was unable to create a new domain at
* tomoyo_find_next_domain() because the name of the domain to be
* created was too long or it could not allocate memory.
* More than one process continued execve() without domain transition.
*/
TOMOYO_DIF_TRANSITION_FAILED,
TOMOYO_MAX_DOMAIN_INFO_FLAGS
};
/* Index numbers for audit type. */
enum tomoyo_grant_log {
/* Follow profile's configuration. */
TOMOYO_GRANTLOG_AUTO,
/* Do not generate grant log. */
TOMOYO_GRANTLOG_NO,
/* Generate grant_log. */
TOMOYO_GRANTLOG_YES,
};
/* Index numbers for group entries. */
enum tomoyo_group_id {
TOMOYO_PATH_GROUP,
TOMOYO_NUMBER_GROUP,
TOMOYO_ADDRESS_GROUP,
TOMOYO_MAX_GROUP
};
/* Index numbers for type of numeric values. */
enum tomoyo_value_type {
TOMOYO_VALUE_TYPE_INVALID,
TOMOYO_VALUE_TYPE_DECIMAL,
TOMOYO_VALUE_TYPE_OCTAL,
TOMOYO_VALUE_TYPE_HEXADECIMAL,
};
/* Index numbers for domain transition control keywords. */
enum tomoyo_transition_type {
/* Do not change this order, */
TOMOYO_TRANSITION_CONTROL_NO_RESET,
TOMOYO_TRANSITION_CONTROL_RESET,
TOMOYO_TRANSITION_CONTROL_NO_INITIALIZE,
TOMOYO_TRANSITION_CONTROL_INITIALIZE,
TOMOYO_TRANSITION_CONTROL_NO_KEEP,
TOMOYO_TRANSITION_CONTROL_KEEP,
TOMOYO_MAX_TRANSITION_TYPE
};
/* Index numbers for Access Controls. */
enum tomoyo_acl_entry_type_index {
TOMOYO_TYPE_PATH_ACL,
TOMOYO_TYPE_PATH2_ACL,
TOMOYO_TYPE_PATH_NUMBER_ACL,
TOMOYO_TYPE_MKDEV_ACL,
TOMOYO_TYPE_MOUNT_ACL,
TOMOYO_TYPE_INET_ACL,
TOMOYO_TYPE_UNIX_ACL,
TOMOYO_TYPE_ENV_ACL,
TOMOYO_TYPE_MANUAL_TASK_ACL,
};
/* Index numbers for access controls with one pathname. */
enum tomoyo_path_acl_index {
TOMOYO_TYPE_EXECUTE,
TOMOYO_TYPE_READ,
TOMOYO_TYPE_WRITE,
TOMOYO_TYPE_APPEND,
TOMOYO_TYPE_UNLINK,
TOMOYO_TYPE_GETATTR,
TOMOYO_TYPE_RMDIR,
TOMOYO_TYPE_TRUNCATE,
TOMOYO_TYPE_SYMLINK,
TOMOYO_TYPE_CHROOT,
TOMOYO_TYPE_UMOUNT,
TOMOYO_MAX_PATH_OPERATION
};
/* Index numbers for /sys/kernel/security/tomoyo/stat interface. */
enum tomoyo_memory_stat_type {
TOMOYO_MEMORY_POLICY,
TOMOYO_MEMORY_AUDIT,
TOMOYO_MEMORY_QUERY,
TOMOYO_MAX_MEMORY_STAT
};
enum tomoyo_mkdev_acl_index {
TOMOYO_TYPE_MKBLOCK,
TOMOYO_TYPE_MKCHAR,
TOMOYO_MAX_MKDEV_OPERATION
};
/* Index numbers for socket operations. */
enum tomoyo_network_acl_index {
TOMOYO_NETWORK_BIND, /* bind() operation. */
TOMOYO_NETWORK_LISTEN, /* listen() operation. */
TOMOYO_NETWORK_CONNECT, /* connect() operation. */
TOMOYO_NETWORK_SEND, /* send() operation. */
TOMOYO_MAX_NETWORK_OPERATION
};
/* Index numbers for access controls with two pathnames. */
enum tomoyo_path2_acl_index {
TOMOYO_TYPE_LINK,
TOMOYO_TYPE_RENAME,
TOMOYO_TYPE_PIVOT_ROOT,
TOMOYO_MAX_PATH2_OPERATION
};
/* Index numbers for access controls with one pathname and one number. */
enum tomoyo_path_number_acl_index {
TOMOYO_TYPE_CREATE,
TOMOYO_TYPE_MKDIR,
TOMOYO_TYPE_MKFIFO,
TOMOYO_TYPE_MKSOCK,
TOMOYO_TYPE_IOCTL,
TOMOYO_TYPE_CHMOD,
TOMOYO_TYPE_CHOWN,
TOMOYO_TYPE_CHGRP,
TOMOYO_MAX_PATH_NUMBER_OPERATION
};
/* Index numbers for /sys/kernel/security/tomoyo/ interfaces. */
enum tomoyo_securityfs_interface_index {
TOMOYO_DOMAINPOLICY,
TOMOYO_EXCEPTIONPOLICY,
TOMOYO_PROCESS_STATUS,
TOMOYO_STAT,
TOMOYO_AUDIT,
TOMOYO_VERSION,
TOMOYO_PROFILE,
TOMOYO_QUERY,
TOMOYO_MANAGER
};
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/* Index numbers for special mount operations. */
enum tomoyo_special_mount {
TOMOYO_MOUNT_BIND, /* mount --bind /source /dest */
TOMOYO_MOUNT_MOVE, /* mount --move /old /new */
TOMOYO_MOUNT_REMOUNT, /* mount -o remount /dir */
TOMOYO_MOUNT_MAKE_UNBINDABLE, /* mount --make-unbindable /dir */
TOMOYO_MOUNT_MAKE_PRIVATE, /* mount --make-private /dir */
TOMOYO_MOUNT_MAKE_SLAVE, /* mount --make-slave /dir */
TOMOYO_MOUNT_MAKE_SHARED, /* mount --make-shared /dir */
TOMOYO_MAX_SPECIAL_MOUNT
};
/* Index numbers for functionality. */
enum tomoyo_mac_index {
TOMOYO_MAC_FILE_EXECUTE,
TOMOYO_MAC_FILE_OPEN,
TOMOYO_MAC_FILE_CREATE,
TOMOYO_MAC_FILE_UNLINK,
TOMOYO_MAC_FILE_GETATTR,
TOMOYO_MAC_FILE_MKDIR,
TOMOYO_MAC_FILE_RMDIR,
TOMOYO_MAC_FILE_MKFIFO,
TOMOYO_MAC_FILE_MKSOCK,
TOMOYO_MAC_FILE_TRUNCATE,
TOMOYO_MAC_FILE_SYMLINK,
TOMOYO_MAC_FILE_MKBLOCK,
TOMOYO_MAC_FILE_MKCHAR,
TOMOYO_MAC_FILE_LINK,
TOMOYO_MAC_FILE_RENAME,
TOMOYO_MAC_FILE_CHMOD,
TOMOYO_MAC_FILE_CHOWN,
TOMOYO_MAC_FILE_CHGRP,
TOMOYO_MAC_FILE_IOCTL,
TOMOYO_MAC_FILE_CHROOT,
TOMOYO_MAC_FILE_MOUNT,
TOMOYO_MAC_FILE_UMOUNT,
TOMOYO_MAC_FILE_PIVOT_ROOT,
TOMOYO_MAC_NETWORK_INET_STREAM_BIND,
TOMOYO_MAC_NETWORK_INET_STREAM_LISTEN,
TOMOYO_MAC_NETWORK_INET_STREAM_CONNECT,
TOMOYO_MAC_NETWORK_INET_DGRAM_BIND,
TOMOYO_MAC_NETWORK_INET_DGRAM_SEND,
TOMOYO_MAC_NETWORK_INET_RAW_BIND,
TOMOYO_MAC_NETWORK_INET_RAW_SEND,
TOMOYO_MAC_NETWORK_UNIX_STREAM_BIND,
TOMOYO_MAC_NETWORK_UNIX_STREAM_LISTEN,
TOMOYO_MAC_NETWORK_UNIX_STREAM_CONNECT,
TOMOYO_MAC_NETWORK_UNIX_DGRAM_BIND,
TOMOYO_MAC_NETWORK_UNIX_DGRAM_SEND,
TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_BIND,
TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_LISTEN,
TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_CONNECT,
TOMOYO_MAC_ENVIRON,
TOMOYO_MAX_MAC_INDEX
};
/* Index numbers for category of functionality. */
enum tomoyo_mac_category_index {
TOMOYO_MAC_CATEGORY_FILE,
TOMOYO_MAC_CATEGORY_NETWORK,
TOMOYO_MAC_CATEGORY_MISC,
TOMOYO_MAX_MAC_CATEGORY_INDEX
};
/*
* Retry this request. Returned by tomoyo_supervisor() if policy violation has
* occurred in enforcing mode and the userspace daemon decided to retry.
*
* We must choose a positive value in order to distinguish "granted" (which is
* 0) and "rejected" (which is a negative value) and "retry".
*/
#define TOMOYO_RETRY_REQUEST 1
/* Index numbers for /sys/kernel/security/tomoyo/stat interface. */
enum tomoyo_policy_stat_type {
/* Do not change this order. */
TOMOYO_STAT_POLICY_UPDATES,
TOMOYO_STAT_POLICY_LEARNING, /* == TOMOYO_CONFIG_LEARNING */
TOMOYO_STAT_POLICY_PERMISSIVE, /* == TOMOYO_CONFIG_PERMISSIVE */
TOMOYO_STAT_POLICY_ENFORCING, /* == TOMOYO_CONFIG_ENFORCING */
TOMOYO_MAX_POLICY_STAT
};
/* Index numbers for profile's PREFERENCE values. */
enum tomoyo_pref_index {
TOMOYO_PREF_MAX_AUDIT_LOG,
TOMOYO_PREF_MAX_LEARNING_ENTRY,
TOMOYO_MAX_PREF
};
/********** Structure definitions. **********/
/* Common header for holding ACL entries. */
struct tomoyo_acl_head {
struct list_head list;
s8 is_deleted; /* true or false or TOMOYO_GC_IN_PROGRESS */
} __packed;
/* Common header for shared entries. */
struct tomoyo_shared_acl_head {
struct list_head list;
atomic_t users;
} __packed;
struct tomoyo_policy_namespace;
/* Structure for request info. */
struct tomoyo_request_info {
/*
* For holding parameters specific to operations which deal files.
* NULL if not dealing files.
*/
struct tomoyo_obj_info *obj;
/*
* For holding parameters specific to execve() request.
* NULL if not dealing execve().
*/
struct tomoyo_execve *ee;
struct tomoyo_domain_info *domain;
/* For holding parameters. */
union {
struct {
const struct tomoyo_path_info *filename;
/* For using wildcards at tomoyo_find_next_domain(). */
const struct tomoyo_path_info *matched_path;
/* One of values in "enum tomoyo_path_acl_index". */
u8 operation;
} path;
struct {
const struct tomoyo_path_info *filename1;
const struct tomoyo_path_info *filename2;
/* One of values in "enum tomoyo_path2_acl_index". */
u8 operation;
} path2;
struct {
const struct tomoyo_path_info *filename;
unsigned int mode;
unsigned int major;
unsigned int minor;
/* One of values in "enum tomoyo_mkdev_acl_index". */
u8 operation;
} mkdev;
struct {
const struct tomoyo_path_info *filename;
unsigned long number;
/*
* One of values in
* "enum tomoyo_path_number_acl_index".
*/
u8 operation;
} path_number;
struct {
const struct tomoyo_path_info *name;
} environ;
struct {
const __be32 *address;
u16 port;
/* One of values smaller than TOMOYO_SOCK_MAX. */
u8 protocol;
/* One of values in "enum tomoyo_network_acl_index". */
u8 operation;
bool is_ipv6;
} inet_network;
struct {
const struct tomoyo_path_info *address;
/* One of values smaller than TOMOYO_SOCK_MAX. */
u8 protocol;
/* One of values in "enum tomoyo_network_acl_index". */
u8 operation;
} unix_network;
struct {
const struct tomoyo_path_info *type;
const struct tomoyo_path_info *dir;
const struct tomoyo_path_info *dev;
unsigned long flags;
int need_dev;
} mount;
struct {
const struct tomoyo_path_info *domainname;
} task;
} param;
struct tomoyo_acl_info *matched_acl;
u8 param_type;
bool granted;
u8 retry;
u8 profile;
u8 mode; /* One of tomoyo_mode_index . */
u8 type;
};
/* Structure for holding a token. */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
struct tomoyo_path_info {
const char *name;
u32 hash; /* = full_name_hash(name, strlen(name)) */
u16 const_len; /* = tomoyo_const_part_length(name) */
bool is_dir; /* = tomoyo_strendswith(name, "/") */
bool is_patterned; /* = tomoyo_path_contains_pattern(name) */
};
/* Structure for holding string data. */
struct tomoyo_name {
struct tomoyo_shared_acl_head head;
struct tomoyo_path_info entry;
};
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/* Structure for holding a word. */
struct tomoyo_name_union {
/* Either @filename or @group is NULL. */
const struct tomoyo_path_info *filename;
struct tomoyo_group *group;
};
/* Structure for holding a number. */
struct tomoyo_number_union {
unsigned long values[2];
struct tomoyo_group *group; /* Maybe NULL. */
/* One of values in "enum tomoyo_value_type". */
u8 value_type[2];
};
/* Structure for holding an IP address. */
struct tomoyo_ipaddr_union {
struct in6_addr ip[2]; /* Big endian. */
struct tomoyo_group *group; /* Pointer to address group. */
bool is_ipv6; /* Valid only if @group == NULL. */
};
/* Structure for "path_group"/"number_group"/"address_group" directive. */
struct tomoyo_group {
struct tomoyo_shared_acl_head head;
const struct tomoyo_path_info *group_name;
struct list_head member_list;
};
/* Structure for "path_group" directive. */
struct tomoyo_path_group {
struct tomoyo_acl_head head;
const struct tomoyo_path_info *member_name;
};
/* Structure for "number_group" directive. */
struct tomoyo_number_group {
struct tomoyo_acl_head head;
struct tomoyo_number_union number;
};
/* Structure for "address_group" directive. */
struct tomoyo_address_group {
struct tomoyo_acl_head head;
/* Structure for holding an IP address. */
struct tomoyo_ipaddr_union address;
};
/* Subset of "struct stat". Used by conditional ACL and audit logs. */
struct tomoyo_mini_stat {
kuid_t uid;
kgid_t gid;
ino_t ino;
umode_t mode;
dev_t dev;
dev_t rdev;
};
/* Structure for dumping argv[] and envp[] of "struct linux_binprm". */
struct tomoyo_page_dump {
struct page *page; /* Previously dumped page. */
char *data; /* Contents of "page". Size is PAGE_SIZE. */
};
/* Structure for attribute checks in addition to pathname checks. */
struct tomoyo_obj_info {
/*
* True if tomoyo_get_attributes() was already called, false otherwise.
*/
bool validate_done;
/* True if @stat[] is valid. */
bool stat_valid[TOMOYO_MAX_PATH_STAT];
/* First pathname. Initialized with { NULL, NULL } if no path. */
struct path path1;
/* Second pathname. Initialized with { NULL, NULL } if no path. */
struct path path2;
/*
* Information on @path1, @path1's parent directory, @path2, @path2's
* parent directory.
*/
struct tomoyo_mini_stat stat[TOMOYO_MAX_PATH_STAT];
/*
* Content of symbolic link to be created. NULL for operations other
* than symlink().
*/
struct tomoyo_path_info *symlink_target;
};
/* Structure for argv[]. */
struct tomoyo_argv {
unsigned long index;
const struct tomoyo_path_info *value;
bool is_not;
};
/* Structure for envp[]. */
struct tomoyo_envp {
const struct tomoyo_path_info *name;
const struct tomoyo_path_info *value;
bool is_not;
};
/* Structure for execve() operation. */
struct tomoyo_execve {
struct tomoyo_request_info r;
struct tomoyo_obj_info obj;
struct linux_binprm *bprm;
2011-09-16 17:54:25 +04:00
const struct tomoyo_path_info *transition;
/* For dumping argv[] and envp[]. */
struct tomoyo_page_dump dump;
/* For temporary use. */
char *tmp; /* Size is TOMOYO_EXEC_TMPSIZE bytes */
};
/* Structure for entries which follows "struct tomoyo_condition". */
struct tomoyo_condition_element {
/*
* Left hand operand. A "struct tomoyo_argv" for TOMOYO_ARGV_ENTRY, a
* "struct tomoyo_envp" for TOMOYO_ENVP_ENTRY is attached to the tail
* of the array of this struct.
*/
u8 left;
/*
* Right hand operand. A "struct tomoyo_number_union" for
* TOMOYO_NUMBER_UNION, a "struct tomoyo_name_union" for
* TOMOYO_NAME_UNION is attached to the tail of the array of this
* struct.
*/
u8 right;
/* Equation operator. True if equals or overlaps, false otherwise. */
bool equals;
};
/* Structure for optional arguments. */
struct tomoyo_condition {
struct tomoyo_shared_acl_head head;
u32 size; /* Memory size allocated for this entry. */
u16 condc; /* Number of conditions in this struct. */
u16 numbers_count; /* Number of "struct tomoyo_number_union values". */
u16 names_count; /* Number of "struct tomoyo_name_union names". */
u16 argc; /* Number of "struct tomoyo_argv". */
u16 envc; /* Number of "struct tomoyo_envp". */
u8 grant_log; /* One of values in "enum tomoyo_grant_log". */
2011-09-16 17:54:25 +04:00
const struct tomoyo_path_info *transit; /* Maybe NULL. */
/*
* struct tomoyo_condition_element condition[condc];
* struct tomoyo_number_union values[numbers_count];
* struct tomoyo_name_union names[names_count];
* struct tomoyo_argv argv[argc];
* struct tomoyo_envp envp[envc];
*/
};
/* Common header for individual entries. */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
struct tomoyo_acl_info {
struct list_head list;
struct tomoyo_condition *cond; /* Maybe NULL. */
s8 is_deleted; /* true or false or TOMOYO_GC_IN_PROGRESS */
u8 type; /* One of values in "enum tomoyo_acl_entry_type_index". */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
} __packed;
/* Structure for domain information. */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
struct tomoyo_domain_info {
struct list_head list;
struct list_head acl_info_list;
/* Name of this domain. Never NULL. */
const struct tomoyo_path_info *domainname;
/* Namespace for this domain. Never NULL. */
struct tomoyo_policy_namespace *ns;
/* Group numbers to use. */
unsigned long group[TOMOYO_MAX_ACL_GROUPS / BITS_PER_LONG];
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
u8 profile; /* Profile number to use. */
bool is_deleted; /* Delete flag. */
bool flags[TOMOYO_MAX_DOMAIN_INFO_FLAGS];
atomic_t users; /* Number of referring tasks. */
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
};
/*
* Structure for "task manual_domain_transition" directive.
*/
struct tomoyo_task_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_MANUAL_TASK_ACL */
/* Pointer to domainname. */
const struct tomoyo_path_info *domainname;
};
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/*
* Structure for "file execute", "file read", "file write", "file append",
* "file unlink", "file getattr", "file rmdir", "file truncate",
* "file symlink", "file chroot" and "file unmount" directive.
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
*/
struct tomoyo_path_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_PATH_ACL */
u16 perm; /* Bitmask of values in "enum tomoyo_path_acl_index". */
struct tomoyo_name_union name;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
};
/*
* Structure for "file create", "file mkdir", "file mkfifo", "file mksock",
* "file ioctl", "file chmod", "file chown" and "file chgrp" directive.
*/
struct tomoyo_path_number_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_PATH_NUMBER_ACL */
/* Bitmask of values in "enum tomoyo_path_number_acl_index". */
u8 perm;
struct tomoyo_name_union name;
struct tomoyo_number_union number;
};
/* Structure for "file mkblock" and "file mkchar" directive. */
struct tomoyo_mkdev_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_MKDEV_ACL */
u8 perm; /* Bitmask of values in "enum tomoyo_mkdev_acl_index". */
struct tomoyo_name_union name;
struct tomoyo_number_union mode;
struct tomoyo_number_union major;
struct tomoyo_number_union minor;
};
/*
* Structure for "file rename", "file link" and "file pivot_root" directive.
*/
struct tomoyo_path2_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_PATH2_ACL */
u8 perm; /* Bitmask of values in "enum tomoyo_path2_acl_index". */
struct tomoyo_name_union name1;
struct tomoyo_name_union name2;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
};
/* Structure for "file mount" directive. */
struct tomoyo_mount_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_MOUNT_ACL */
struct tomoyo_name_union dev_name;
struct tomoyo_name_union dir_name;
struct tomoyo_name_union fs_type;
struct tomoyo_number_union flags;
};
/* Structure for "misc env" directive in domain policy. */
struct tomoyo_env_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_ENV_ACL */
const struct tomoyo_path_info *env; /* environment variable */
};
/* Structure for "network inet" directive. */
struct tomoyo_inet_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_INET_ACL */
u8 protocol;
u8 perm; /* Bitmask of values in "enum tomoyo_network_acl_index" */
struct tomoyo_ipaddr_union address;
struct tomoyo_number_union port;
};
/* Structure for "network unix" directive. */
struct tomoyo_unix_acl {
struct tomoyo_acl_info head; /* type = TOMOYO_TYPE_UNIX_ACL */
u8 protocol;
u8 perm; /* Bitmask of values in "enum tomoyo_network_acl_index" */
struct tomoyo_name_union name;
};
/* Structure for holding a line from /sys/kernel/security/tomoyo/ interface. */
struct tomoyo_acl_param {
char *data;
struct list_head *list;
struct tomoyo_policy_namespace *ns;
bool is_delete;
};
#define TOMOYO_MAX_IO_READ_QUEUE 64
/*
* Structure for reading/writing policy via /sys/kernel/security/tomoyo
* interfaces.
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
struct tomoyo_io_buffer {
void (*read)(struct tomoyo_io_buffer *head);
int (*write)(struct tomoyo_io_buffer *head);
__poll_t (*poll)(struct file *file, poll_table *wait);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/* Exclusive lock for this structure. */
struct mutex io_sem;
char __user *read_user_buf;
size_t read_user_buf_avail;
struct {
struct list_head *ns;
struct list_head *domain;
struct list_head *group;
struct list_head *acl;
size_t avail;
unsigned int step;
unsigned int query_index;
u16 index;
u16 cond_index;
u8 acl_group_index;
u8 cond_step;
u8 bit;
u8 w_pos;
bool eof;
bool print_this_domain_only;
bool print_transition_related_only;
bool print_cond_part;
const char *w[TOMOYO_MAX_IO_READ_QUEUE];
} r;
struct {
struct tomoyo_policy_namespace *ns;
/* The position currently writing to. */
struct tomoyo_domain_info *domain;
/* Bytes available for writing. */
size_t avail;
bool is_delete;
} w;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/* Buffer for reading. */
char *read_buf;
/* Size of read buffer. */
size_t readbuf_size;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/* Buffer for writing. */
char *write_buf;
/* Size of write buffer. */
size_t writebuf_size;
/* Type of this interface. */
enum tomoyo_securityfs_interface_index type;
/* Users counter protected by tomoyo_io_buffer_list_lock. */
u8 users;
/* List for telling GC not to kfree() elements. */
struct list_head list;
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
};
/*
* Structure for "initialize_domain"/"no_initialize_domain"/"keep_domain"/
* "no_keep_domain" keyword.
*/
struct tomoyo_transition_control {
struct tomoyo_acl_head head;
u8 type; /* One of values in "enum tomoyo_transition_type". */
/* True if the domainname is tomoyo_get_last_name(). */
bool is_last_name;
const struct tomoyo_path_info *domainname; /* Maybe NULL */
const struct tomoyo_path_info *program; /* Maybe NULL */
};
/* Structure for "aggregator" keyword. */
struct tomoyo_aggregator {
struct tomoyo_acl_head head;
const struct tomoyo_path_info *original_name;
const struct tomoyo_path_info *aggregated_name;
};
/* Structure for policy manager. */
struct tomoyo_manager {
struct tomoyo_acl_head head;
/* A path to program or a domainname. */
const struct tomoyo_path_info *manager;
};
struct tomoyo_preference {
unsigned int learning_max_entry;
bool enforcing_verbose;
bool learning_verbose;
bool permissive_verbose;
};
/* Structure for /sys/kernel/security/tomnoyo/profile interface. */
struct tomoyo_profile {
const struct tomoyo_path_info *comment;
struct tomoyo_preference *learning;
struct tomoyo_preference *permissive;
struct tomoyo_preference *enforcing;
struct tomoyo_preference preference;
u8 default_config;
u8 config[TOMOYO_MAX_MAC_INDEX + TOMOYO_MAX_MAC_CATEGORY_INDEX];
unsigned int pref[TOMOYO_MAX_PREF];
};
/* Structure for representing YYYY/MM/DD hh/mm/ss. */
struct tomoyo_time {
u16 year;
u8 month;
u8 day;
u8 hour;
u8 min;
u8 sec;
};
/* Structure for policy namespace. */
struct tomoyo_policy_namespace {
/* Profile table. Memory is allocated as needed. */
struct tomoyo_profile *profile_ptr[TOMOYO_MAX_PROFILES];
/* List of "struct tomoyo_group". */
struct list_head group_list[TOMOYO_MAX_GROUP];
/* List of policy. */
struct list_head policy_list[TOMOYO_MAX_POLICY];
/* The global ACL referred by "use_group" keyword. */
struct list_head acl_group[TOMOYO_MAX_ACL_GROUPS];
/* List for connecting to tomoyo_namespace_list list. */
struct list_head namespace_list;
/* Profile version. Currently only 20150505 is defined. */
unsigned int profile_version;
/* Name of this namespace (e.g. "<kernel>", "</usr/sbin/httpd>" ). */
const char *name;
};
/* Structure for "struct task_struct"->security. */
struct tomoyo_task {
struct tomoyo_domain_info *domain_info;
struct tomoyo_domain_info *old_domain_info;
};
/********** Function prototypes. **********/
bool tomoyo_address_matches_group(const bool is_ipv6, const __be32 *address,
const struct tomoyo_group *group);
bool tomoyo_compare_number_union(const unsigned long value,
const struct tomoyo_number_union *ptr);
bool tomoyo_condition(struct tomoyo_request_info *r,
const struct tomoyo_condition *cond);
bool tomoyo_correct_domain(const unsigned char *domainname);
bool tomoyo_correct_path(const char *filename);
bool tomoyo_correct_word(const char *string);
bool tomoyo_domain_def(const unsigned char *buffer);
bool tomoyo_domain_quota_is_ok(struct tomoyo_request_info *r);
bool tomoyo_dump_page(struct linux_binprm *bprm, unsigned long pos,
struct tomoyo_page_dump *dump);
bool tomoyo_memory_ok(void *ptr);
bool tomoyo_number_matches_group(const unsigned long min,
const unsigned long max,
const struct tomoyo_group *group);
bool tomoyo_parse_ipaddr_union(struct tomoyo_acl_param *param,
struct tomoyo_ipaddr_union *ptr);
bool tomoyo_parse_name_union(struct tomoyo_acl_param *param,
struct tomoyo_name_union *ptr);
bool tomoyo_parse_number_union(struct tomoyo_acl_param *param,
struct tomoyo_number_union *ptr);
bool tomoyo_path_matches_pattern(const struct tomoyo_path_info *filename,
const struct tomoyo_path_info *pattern);
bool tomoyo_permstr(const char *string, const char *keyword);
bool tomoyo_str_starts(char **src, const char *find);
char *tomoyo_encode(const char *str);
char *tomoyo_encode2(const char *str, int str_len);
char *tomoyo_init_log(struct tomoyo_request_info *r, int len, const char *fmt,
va_list args);
char *tomoyo_read_token(struct tomoyo_acl_param *param);
char *tomoyo_realpath_from_path(const struct path *path);
char *tomoyo_realpath_nofollow(const char *pathname);
const char *tomoyo_get_exe(void);
const char *tomoyo_yesno(const unsigned int value);
const struct tomoyo_path_info *tomoyo_compare_name_union
(const struct tomoyo_path_info *name, const struct tomoyo_name_union *ptr);
const struct tomoyo_path_info *tomoyo_get_domainname
(struct tomoyo_acl_param *param);
const struct tomoyo_path_info *tomoyo_get_name(const char *name);
const struct tomoyo_path_info *tomoyo_path_matches_group
(const struct tomoyo_path_info *pathname, const struct tomoyo_group *group);
int tomoyo_check_open_permission(struct tomoyo_domain_info *domain,
const struct path *path, const int flag);
void tomoyo_close_control(struct tomoyo_io_buffer *head);
int tomoyo_env_perm(struct tomoyo_request_info *r, const char *env);
2011-09-16 17:54:25 +04:00
int tomoyo_execute_permission(struct tomoyo_request_info *r,
const struct tomoyo_path_info *filename);
int tomoyo_find_next_domain(struct linux_binprm *bprm);
int tomoyo_get_mode(const struct tomoyo_policy_namespace *ns, const u8 profile,
const u8 index);
int tomoyo_init_request_info(struct tomoyo_request_info *r,
struct tomoyo_domain_info *domain,
const u8 index);
int tomoyo_mkdev_perm(const u8 operation, const struct path *path,
const unsigned int mode, unsigned int dev);
int tomoyo_mount_permission(const char *dev_name, const struct path *path,
const char *type, unsigned long flags,
void *data_page);
int tomoyo_open_control(const u8 type, struct file *file);
int tomoyo_path2_perm(const u8 operation, const struct path *path1,
const struct path *path2);
int tomoyo_path_number_perm(const u8 operation, const struct path *path,
unsigned long number);
int tomoyo_path_perm(const u8 operation, const struct path *path,
const char *target);
__poll_t tomoyo_poll_control(struct file *file, poll_table *wait);
__poll_t tomoyo_poll_log(struct file *file, poll_table *wait);
int tomoyo_socket_bind_permission(struct socket *sock, struct sockaddr *addr,
int addr_len);
int tomoyo_socket_connect_permission(struct socket *sock,
struct sockaddr *addr, int addr_len);
int tomoyo_socket_listen_permission(struct socket *sock);
int tomoyo_socket_sendmsg_permission(struct socket *sock, struct msghdr *msg,
int size);
int tomoyo_supervisor(struct tomoyo_request_info *r, const char *fmt, ...)
__printf(2, 3);
int tomoyo_update_domain(struct tomoyo_acl_info *new_entry, const int size,
struct tomoyo_acl_param *param,
bool (*check_duplicate)
(const struct tomoyo_acl_info *,
const struct tomoyo_acl_info *),
bool (*merge_duplicate)
(struct tomoyo_acl_info *, struct tomoyo_acl_info *,
const bool));
int tomoyo_update_policy(struct tomoyo_acl_head *new_entry, const int size,
struct tomoyo_acl_param *param,
bool (*check_duplicate)
(const struct tomoyo_acl_head *,
const struct tomoyo_acl_head *));
int tomoyo_write_aggregator(struct tomoyo_acl_param *param);
int tomoyo_write_file(struct tomoyo_acl_param *param);
int tomoyo_write_group(struct tomoyo_acl_param *param, const u8 type);
int tomoyo_write_misc(struct tomoyo_acl_param *param);
int tomoyo_write_inet_network(struct tomoyo_acl_param *param);
int tomoyo_write_transition_control(struct tomoyo_acl_param *param,
const u8 type);
int tomoyo_write_unix_network(struct tomoyo_acl_param *param);
ssize_t tomoyo_read_control(struct tomoyo_io_buffer *head, char __user *buffer,
const int buffer_len);
ssize_t tomoyo_write_control(struct tomoyo_io_buffer *head,
const char __user *buffer, const int buffer_len);
struct tomoyo_condition *tomoyo_get_condition(struct tomoyo_acl_param *param);
struct tomoyo_domain_info *tomoyo_assign_domain(const char *domainname,
const bool transit);
struct tomoyo_domain_info *tomoyo_domain(void);
struct tomoyo_domain_info *tomoyo_find_domain(const char *domainname);
struct tomoyo_group *tomoyo_get_group(struct tomoyo_acl_param *param,
const u8 idx);
struct tomoyo_policy_namespace *tomoyo_assign_namespace
(const char *domainname);
struct tomoyo_profile *tomoyo_profile(const struct tomoyo_policy_namespace *ns,
const u8 profile);
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
unsigned int tomoyo_check_flags(const struct tomoyo_domain_info *domain,
const u8 index);
u8 tomoyo_parse_ulong(unsigned long *result, char **str);
void *tomoyo_commit_ok(void *data, const unsigned int size);
void __init tomoyo_load_builtin_policy(void);
void __init tomoyo_mm_init(void);
void tomoyo_check_acl(struct tomoyo_request_info *r,
bool (*check_entry)(struct tomoyo_request_info *,
const struct tomoyo_acl_info *));
void tomoyo_check_profile(void);
void tomoyo_convert_time(time64_t time, struct tomoyo_time *stamp);
void tomoyo_del_condition(struct list_head *element);
void tomoyo_fill_path_info(struct tomoyo_path_info *ptr);
void tomoyo_get_attributes(struct tomoyo_obj_info *obj);
void tomoyo_init_policy_namespace(struct tomoyo_policy_namespace *ns);
void tomoyo_load_policy(const char *filename);
void tomoyo_normalize_line(unsigned char *buffer);
void tomoyo_notify_gc(struct tomoyo_io_buffer *head, const bool is_register);
void tomoyo_print_ip(char *buf, const unsigned int size,
const struct tomoyo_ipaddr_union *ptr);
void tomoyo_print_ulong(char *buffer, const int buffer_len,
const unsigned long value, const u8 type);
void tomoyo_put_name_union(struct tomoyo_name_union *ptr);
void tomoyo_put_number_union(struct tomoyo_number_union *ptr);
void tomoyo_read_log(struct tomoyo_io_buffer *head);
void tomoyo_update_stat(const u8 index);
void tomoyo_warn_oom(const char *function);
void tomoyo_write_log(struct tomoyo_request_info *r, const char *fmt, ...)
__printf(2, 3);
void tomoyo_write_log2(struct tomoyo_request_info *r, int len, const char *fmt,
va_list args);
/********** External variable definitions. **********/
extern bool tomoyo_policy_loaded;
extern int tomoyo_enabled;
extern const char * const tomoyo_condition_keyword
[TOMOYO_MAX_CONDITION_KEYWORD];
extern const char * const tomoyo_dif[TOMOYO_MAX_DOMAIN_INFO_FLAGS];
extern const char * const tomoyo_mac_keywords[TOMOYO_MAX_MAC_INDEX
+ TOMOYO_MAX_MAC_CATEGORY_INDEX];
extern const char * const tomoyo_mode[TOMOYO_CONFIG_MAX_MODE];
extern const char * const tomoyo_path_keyword[TOMOYO_MAX_PATH_OPERATION];
extern const char * const tomoyo_proto_keyword[TOMOYO_SOCK_MAX];
extern const char * const tomoyo_socket_keyword[TOMOYO_MAX_NETWORK_OPERATION];
extern const u8 tomoyo_index2category[TOMOYO_MAX_MAC_INDEX];
extern const u8 tomoyo_pn2mac[TOMOYO_MAX_PATH_NUMBER_OPERATION];
extern const u8 tomoyo_pnnn2mac[TOMOYO_MAX_MKDEV_OPERATION];
extern const u8 tomoyo_pp2mac[TOMOYO_MAX_PATH2_OPERATION];
extern struct list_head tomoyo_condition_list;
extern struct list_head tomoyo_domain_list;
extern struct list_head tomoyo_name_list[TOMOYO_MAX_HASH];
extern struct list_head tomoyo_namespace_list;
extern struct mutex tomoyo_policy_lock;
extern struct srcu_struct tomoyo_ss;
extern struct tomoyo_domain_info tomoyo_kernel_domain;
extern struct tomoyo_policy_namespace tomoyo_kernel_namespace;
extern unsigned int tomoyo_memory_quota[TOMOYO_MAX_MEMORY_STAT];
extern unsigned int tomoyo_memory_used[TOMOYO_MAX_MEMORY_STAT];
extern struct lsm_blob_sizes tomoyo_blob_sizes;
/********** Inlined functions. **********/
/**
* tomoyo_read_lock - Take lock for protecting policy.
*
* Returns index number for tomoyo_read_unlock().
*/
static inline int tomoyo_read_lock(void)
{
return srcu_read_lock(&tomoyo_ss);
}
/**
* tomoyo_read_unlock - Release lock for protecting policy.
*
* @idx: Index number returned by tomoyo_read_lock().
*
* Returns nothing.
*/
static inline void tomoyo_read_unlock(int idx)
{
srcu_read_unlock(&tomoyo_ss, idx);
}
/**
* tomoyo_sys_getppid - Copy of getppid().
*
* Returns parent process's PID.
*
* Alpha does not have getppid() defined. To be able to build this module on
* Alpha, I have to copy getppid() from kernel/timer.c.
*/
static inline pid_t tomoyo_sys_getppid(void)
{
pid_t pid;
rcu_read_lock();
pid = task_tgid_vnr(rcu_dereference(current->real_parent));
rcu_read_unlock();
return pid;
}
/**
* tomoyo_sys_getpid - Copy of getpid().
*
* Returns current thread's PID.
*
* Alpha does not have getpid() defined. To be able to build this module on
* Alpha, I have to copy getpid() from kernel/timer.c.
*/
static inline pid_t tomoyo_sys_getpid(void)
{
return task_tgid_vnr(current);
}
/**
* tomoyo_pathcmp - strcmp() for "struct tomoyo_path_info" structure.
*
* @a: Pointer to "struct tomoyo_path_info".
* @b: Pointer to "struct tomoyo_path_info".
*
* Returns true if @a == @b, false otherwise.
*/
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
static inline bool tomoyo_pathcmp(const struct tomoyo_path_info *a,
const struct tomoyo_path_info *b)
{
return a->hash != b->hash || strcmp(a->name, b->name);
}
/**
* tomoyo_put_name - Drop reference on "struct tomoyo_name".
*
* @name: Pointer to "struct tomoyo_path_info". Maybe NULL.
*
* Returns nothing.
*/
static inline void tomoyo_put_name(const struct tomoyo_path_info *name)
{
if (name) {
struct tomoyo_name *ptr =
container_of(name, typeof(*ptr), entry);
atomic_dec(&ptr->head.users);
}
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/**
* tomoyo_put_condition - Drop reference on "struct tomoyo_condition".
*
* @cond: Pointer to "struct tomoyo_condition". Maybe NULL.
*
* Returns nothing.
*/
static inline void tomoyo_put_condition(struct tomoyo_condition *cond)
{
if (cond)
atomic_dec(&cond->head.users);
}
/**
* tomoyo_put_group - Drop reference on "struct tomoyo_group".
*
* @group: Pointer to "struct tomoyo_group". Maybe NULL.
*
* Returns nothing.
*/
static inline void tomoyo_put_group(struct tomoyo_group *group)
{
if (group)
atomic_dec(&group->head.users);
}
/**
* tomoyo_task - Get "struct tomoyo_task" for specified thread.
*
* @task - Pointer to "struct task_struct".
*
* Returns pointer to "struct tomoyo_task" for specified thread.
*/
static inline struct tomoyo_task *tomoyo_task(struct task_struct *task)
{
return task->security + tomoyo_blob_sizes.lbs_task;
}
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/**
* tomoyo_same_name_union - Check for duplicated "struct tomoyo_name_union" entry.
*
* @a: Pointer to "struct tomoyo_name_union".
* @b: Pointer to "struct tomoyo_name_union".
*
* Returns true if @a == @b, false otherwise.
*/
static inline bool tomoyo_same_name_union
(const struct tomoyo_name_union *a, const struct tomoyo_name_union *b)
{
return a->filename == b->filename && a->group == b->group;
}
/**
* tomoyo_same_number_union - Check for duplicated "struct tomoyo_number_union" entry.
*
* @a: Pointer to "struct tomoyo_number_union".
* @b: Pointer to "struct tomoyo_number_union".
*
* Returns true if @a == @b, false otherwise.
*/
static inline bool tomoyo_same_number_union
(const struct tomoyo_number_union *a, const struct tomoyo_number_union *b)
{
return a->values[0] == b->values[0] && a->values[1] == b->values[1] &&
a->group == b->group && a->value_type[0] == b->value_type[0] &&
a->value_type[1] == b->value_type[1];
}
/**
* tomoyo_same_ipaddr_union - Check for duplicated "struct tomoyo_ipaddr_union" entry.
*
* @a: Pointer to "struct tomoyo_ipaddr_union".
* @b: Pointer to "struct tomoyo_ipaddr_union".
*
* Returns true if @a == @b, false otherwise.
*/
static inline bool tomoyo_same_ipaddr_union
(const struct tomoyo_ipaddr_union *a, const struct tomoyo_ipaddr_union *b)
{
return !memcmp(a->ip, b->ip, sizeof(a->ip)) && a->group == b->group &&
a->is_ipv6 == b->is_ipv6;
}
/**
* tomoyo_current_namespace - Get "struct tomoyo_policy_namespace" for current thread.
*
* Returns pointer to "struct tomoyo_policy_namespace" for current thread.
*/
static inline struct tomoyo_policy_namespace *tomoyo_current_namespace(void)
{
return tomoyo_domain()->ns;
}
#if defined(CONFIG_SLOB)
/**
* tomoyo_round2 - Round up to power of 2 for calculating memory usage.
*
* @size: Size to be rounded up.
*
* Returns @size.
*
* Since SLOB does not round up, this function simply returns @size.
*/
static inline int tomoyo_round2(size_t size)
{
return size;
}
#else
/**
* tomoyo_round2 - Round up to power of 2 for calculating memory usage.
*
* @size: Size to be rounded up.
*
* Returns rounded size.
*
* Strictly speaking, SLAB may be able to allocate (e.g.) 96 bytes instead of
* (e.g.) 128 bytes.
*/
static inline int tomoyo_round2(size_t size)
{
#if PAGE_SIZE == 4096
size_t bsize = 32;
#else
size_t bsize = 64;
#endif
if (!size)
return 0;
while (size > bsize)
bsize <<= 1;
return bsize;
}
#endif
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
/**
* list_for_each_cookie - iterate over a list with cookie.
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_cookie(pos, head) \
if (!pos) \
pos = srcu_dereference((head)->next, &tomoyo_ss); \
for ( ; pos != (head); pos = srcu_dereference(pos->next, &tomoyo_ss))
Common functions for TOMOYO Linux. This file contains common functions (e.g. policy I/O, pattern matching). -------------------- About pattern matching -------------------- Since TOMOYO Linux is a name based access control, TOMOYO Linux seriously considers "safe" string representation. TOMOYO Linux's string manipulation functions make reviewers feel crazy, but there are reasons why TOMOYO Linux needs its own string manipulation functions. ----- Part 1 : preconditions ----- People definitely want to use wild card. To support pattern matching, we have to support wild card characters. In a typical Linux system, filenames are likely consists of only alphabets, numbers, and some characters (e.g. + - ~ . / ). But theoretically, the Linux kernel accepts all characters but NUL character (which is used as a terminator of a string). Some Linux systems can have filenames which contain * ? ** etc. Therefore, we have to somehow modify string so that we can distinguish wild card characters and normal characters. It might be possible for some application's configuration files to restrict acceptable characters. It is impossible for kernel to restrict acceptable characters. We can't accept approaches which will cause troubles for applications. ----- Part 2 : commonly used approaches ----- Text formatted strings separated by space character (0x20) and new line character (0x0A) is more preferable for users over array of NUL-terminated string. Thus, people use text formatted configuration files separated by space character and new line. We sometimes need to handle non-printable characters. Thus, people use \ character (0x5C) as escape character and represent non-printable characters using octal or hexadecimal format. At this point, we remind (at least) 3 approaches. (1) Shell glob style expression (2) POSIX regular expression (UNIX style regular expression) (3) Maverick wild card expression On the surface, (1) and (2) sound good choices. But they have a big pitfall. All meta-characters in (1) and (2) are legal characters for representing a pathname, and users easily write incorrect expression. What is worse, users unlikely notice incorrect expressions because characters used for regular pathnames unlikely contain meta-characters. This incorrect use of meta-characters in pathname representation reveals vulnerability (e.g. unexpected results) only when irregular pathname is specified. The authors of TOMOYO Linux think that approaches which adds some character for interpreting meta-characters as normal characters (i.e. (1) and (2)) are not suitable for security use. Therefore, the authors of TOMOYO Linux propose (3). ----- Part 3: consideration points ----- We need to solve encoding problem. A single character can be represented in several ways using encodings. For Japanese language, there are "ShiftJIS", "ISO-2022-JP", "EUC-JP", "UTF-8" and more. Some languages (e.g. Japanese language) supports multi-byte characters (where a single character is represented using several bytes). Some multi-byte characters may match the escape character. For Japanese language, some characters in "ShiftJIS" encoding match \ character, and bothering Web's CGI developers. It is important that the kernel string is not bothered by encoding problem. Linus said, "I really would expect that kernel strings don't have an encoding. They're just C strings: a NUL-terminated stream of bytes." http://lkml.org/lkml/2007/11/6/142 Yes. The kernel strings are just C strings. We are talking about how to store and carry "kernel strings" safely. If we store "kernel string" into policy file as-is, the "kernel string" will be interpreted differently depending on application's encoding settings. One application may interpret "kernel string" as "UTF-8", another application may interpret "kernel string" as "ShiftJIS". Therefore, we propose to represent strings using ASCII encoding. In this way, we are no longer bothered by encoding problems. We need to avoid information loss caused by display. It is difficult to input and display non-printable characters, but we have to be able to handle such characters because the kernel string is a C string. If we use only ASCII printable characters (from 0x21 to 0x7E) and space character (0x20) and new line character (0x0A), it is easy to input from keyboard and display on all terminals which is running Linux. Therefore, we propose to represent strings using only characters which value is one of "from 0x21 to 0x7E", "0x20", "0x0A". We need to consider ease of splitting strings from a line. If we use an approach which uses "\ " for representing a space character within a string, we have to count the string from the beginning to check whether this space character is accompanied with \ character or not. As a result, we cannot monotonically split a line using space character. If we use an approach which uses "\040" for representing a space character within a string, we can monotonically split a line using space character. If we use an approach which uses NUL character as a delimiter, we cannot use string manipulation functions for splitting strings from a line. Therefore, we propose that we represent space character as "\040". We need to avoid wrong designations (incorrect use of special characters). Not all users can understand and utilize POSIX's regular expressions correctly and perfectly. If a character acts as a wild card by default, the user will get unexpected result if that user didn't know the meaning of that character. Therefore, we propose that all characters but \ character act as a normal character and let the user add \ character to make a character act as a wild card. In this way, users needn't to know all wild card characters beforehand. They can learn when they encountered an unseen wild card character for their first time. ----- Part 4: supported wild card expressions ----- At this point, we have wild card expressions listed below. +-----------+--------------------------------------------------------------+ | Wild card | Meaning and example | +-----------+--------------------------------------------------------------+ | \* | More than or equals to 0 character other than '/'. | | | /var/log/samba/\* | +-----------+--------------------------------------------------------------+ | \@ | More than or equals to 0 character other than '/' or '.'. | | | /var/www/html/\@.html | +-----------+--------------------------------------------------------------+ | \? | 1 byte character other than '/'. | | | /tmp/mail.\?\?\?\?\?\? | +-----------+--------------------------------------------------------------+ | \$ | More than or equals to 1 decimal digit. | | | /proc/\$/cmdline | +-----------+--------------------------------------------------------------+ | \+ | 1 decimal digit. | | | /var/tmp/my_work.\+ | +-----------+--------------------------------------------------------------+ | \X | More than or equals to 1 hexadecimal digit. | | | /var/tmp/my-work.\X | +-----------+--------------------------------------------------------------+ | \x | 1 hexadecimal digit. | | | /tmp/my-work.\x | +-----------+--------------------------------------------------------------+ | \A | More than or equals to 1 alphabet character. | | | /var/log/my-work/\$-\A-\$.log | +-----------+--------------------------------------------------------------+ | \a | 1 alphabet character. | | | /home/users/\a/\*/public_html/\*.html | +-----------+--------------------------------------------------------------+ | \- | Pathname subtraction operator. | | | +---------------------+------------------------------------+ | | | | Example | Meaning | | | | +---------------------+------------------------------------+ | | | | /etc/\* | All files in /etc/ directory. | | | | +---------------------+------------------------------------+ | | | | /etc/\*\-\*shadow\* | /etc/\* other than /etc/\*shadow\* | | | | +---------------------+------------------------------------+ | | | | /\*\-proc\-sys/ | /\*/ other than /proc/ /sys/ | | | | +---------------------+------------------------------------+ | +-----------+--------------------------------------------------------------+ +----------------+---------------------------------------------------------+ | Representation | Meaning and example | +----------------+---------------------------------------------------------+ | \\ | backslash character itself. | +----------------+---------------------------------------------------------+ | \ooo | 1 byte character. | | | ooo is 001 <= ooo <= 040 || 177 <= ooo <= 377. | | | | | | \040 for space character. | | | \177 for del character. | | | | +----------------+---------------------------------------------------------+ ----- Part 5: Advantages ----- We can obtain extensibility. Since our proposed approach adds \ to a character to interpret as a wild card, we can introduce new wild card in future while maintaining backward compatibility. We can process monotonically. Since our proposed approach separates strings using a space character, we can split strings using existing string manipulation functions. We can reliably analyze access logs. It is guaranteed that a string doesn't contain space character (0x20) and new line character (0x0A). It is guaranteed that a string won't be converted by FTP and won't be damaged by a terminal's settings. It is guaranteed that a string won't be affected by encoding converters (except encodings which insert NUL character (e.g. UTF-16)). ----- Part 6: conclusion ----- TOMOYO Linux is using its own encoding with reasons described above. There is a disadvantage that we need to introduce a series of new string manipulation functions. But TOMOYO Linux's encoding is useful for all users (including audit and AppArmor) who want to perform pattern matching and safely exchange string information between the kernel and the userspace. -------------------- About policy interface -------------------- TOMOYO Linux creates the following files on securityfs (normally mounted on /sys/kernel/security) as interfaces between kernel and userspace. These files are for TOMOYO Linux management tools *only*, not for general programs. * profile * exception_policy * domain_policy * manager * meminfo * self_domain * version * .domain_status * .process_status ** /sys/kernel/security/tomoyo/profile ** This file is used to read or write profiles. "profile" means a running mode of process. A profile lists up functions and their modes in "$number-$variable=$value" format. The $number is profile number between 0 and 255. Each domain is assigned one profile. To assign profile to domains, use "ccs-setprofile" or "ccs-editpolicy" or "ccs-loadpolicy" commands. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/profile 0-COMMENT=-----Disabled Mode----- 0-MAC_FOR_FILE=disabled 0-MAX_ACCEPT_ENTRY=2048 0-TOMOYO_VERBOSE=disabled 1-COMMENT=-----Learning Mode----- 1-MAC_FOR_FILE=learning 1-MAX_ACCEPT_ENTRY=2048 1-TOMOYO_VERBOSE=disabled 2-COMMENT=-----Permissive Mode----- 2-MAC_FOR_FILE=permissive 2-MAX_ACCEPT_ENTRY=2048 2-TOMOYO_VERBOSE=enabled 3-COMMENT=-----Enforcing Mode----- 3-MAC_FOR_FILE=enforcing 3-MAX_ACCEPT_ENTRY=2048 3-TOMOYO_VERBOSE=enabled - MAC_FOR_FILE: Specifies access control level regarding file access requests. - MAX_ACCEPT_ENTRY: Limits the max number of ACL entries that are automatically appended during learning mode. Default is 2048. - TOMOYO_VERBOSE: Specifies whether to print domain policy violation messages or not. ** /sys/kernel/security/tomoyo/manager ** This file is used to read or append the list of programs or domains that can write to /sys/kernel/security/tomoyo interface. By default, only processes with both UID = 0 and EUID = 0 can modify policy via /sys/kernel/security/tomoyo interface. You can use keyword "manage_by_non_root" to allow policy modification by non root user. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/manager /usr/lib/ccs/loadpolicy /usr/lib/ccs/editpolicy /usr/lib/ccs/setlevel /usr/lib/ccs/setprofile /usr/lib/ccs/ld-watch /usr/lib/ccs/ccs-queryd ** /sys/kernel/security/tomoyo/exception_policy ** This file is used to read and write system global settings. Each line has a directive and operand pair. Directives are listed below. - initialize_domain: To initialize domain transition when specific program is executed, use initialize_domain directive. * initialize_domain "program" from "domain" * initialize_domain "program" from "the last program part of domain" * initialize_domain "program" If the part "from" and after is not given, the entry is applied to all domain. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to aggregate domain transitions for daemon program and program that are invoked by the kernel on demand, by transiting to different domain. - keep_domain To prevent domain transition when program is executed from specific domain, use keep_domain directive. * keep_domain "program" from "domain" * keep_domain "program" from "the last program part of domain" * keep_domain "domain" * keep_domain "the last program part of domain" If the part "from" and before is not given, this entry is applied to all program. If the "domain" doesn't start with "<kernel>", the entry is applied to all domain whose domainname ends with "the last program part of domain". This directive is intended to reduce total number of domains and memory usage by suppressing unneeded domain transitions. To declare domain keepers, use keep_domain directive followed by domain definition. Any process that belongs to any domain declared with this directive, the process stays at the same domain unless any program registered with initialize_domain directive is executed. In order to control domain transition in detail, you can use no_keep_domain/no_initialize_domain keywrods. - alias: To allow executing programs using the name of symbolic links, use alias keyword followed by dereferenced pathname and reference pathname. For example, /sbin/pidof is a symbolic link to /sbin/killall5 . In normal case, if /sbin/pidof is executed, the domain is defined as if /sbin/killall5 is executed. By specifying "alias /sbin/killall5 /sbin/pidof", you can run /sbin/pidof in the domain for /sbin/pidof . (Example) alias /sbin/killall5 /sbin/pidof - allow_read: To grant unconditionally readable permissions, use allow_read keyword followed by canonicalized file. This keyword is intended to reduce size of domain policy by granting read access to library files such as GLIBC and locale files. Exception is, if ignore_global_allow_read keyword is given to a domain, entries specified by this keyword are ignored. (Example) allow_read /lib/libc-2.5.so - file_pattern: To declare pathname pattern, use file_pattern keyword followed by pathname pattern. The pathname pattern must be a canonicalized Pathname. This keyword is not applicable to neither granting execute permissions nor domain definitions. For example, canonicalized pathname that contains a process ID (i.e. /proc/PID/ files) needs to be grouped in order to make access control work well. (Example) file_pattern /proc/\$/cmdline - path_group To declare pathname group, use path_group keyword followed by name of the group and pathname pattern. For example, if you want to group all files under home directory, you can define path_group HOME-DIR-FILE /home/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\* path_group HOME-DIR-FILE /home/\*/\*/\*/\* in the exception policy and use like allow_read @HOME-DIR-FILE to grant file access permission. - deny_rewrite: To deny overwriting already written contents of file (such as log files) by default, use deny_rewrite keyword followed by pathname pattern. Files whose pathname match the patterns are not permitted to open for writing without append mode or truncate unless the pathnames are explicitly granted using allow_rewrite keyword in domain policy. (Example) deny_rewrite /var/log/\* - aggregator To deal multiple programs as a single program, use aggregator keyword followed by name of original program and aggregated program. This keyword is intended to aggregate similar programs. For example, /usr/bin/tac and /bin/cat are similar. By specifying "aggregator /usr/bin/tac /bin/cat", you can run /usr/bin/tac in the domain for /bin/cat . For example, /usr/sbin/logrotate for Fedora Core 3 generates programs like /tmp/logrotate.\?\?\?\?\?\? and run them, but TOMOYO Linux doesn't allow using patterns for granting execute permission and defining domains. By specifying "aggregator /tmp/logrotate.\?\?\?\?\?\? /tmp/logrotate.tmp", you can run /tmp/logrotate.\?\?\?\?\?\? as if /tmp/logrotate.tmp is running. ** /sys/kernel/security/tomoyo/domain_policy ** This file contains definition of all domains and permissions that are granted to each domain. Lines from the next line to a domain definition ( any lines starting with "<kernel>") to the previous line to the next domain definitions are interpreted as access permissions for that domain. ** /sys/kernel/security/tomoyo/meminfo ** This file is to show the total RAM used to keep policy in the kernel by TOMOYO Linux in bytes. (Example) [root@tomoyo]# cat /sys/kernel/security/tomoyo/meminfo Shared: 61440 Private: 69632 Dynamic: 768 Total: 131840 You can set memory quota by writing to this file. (Example) [root@tomoyo]# echo Shared: 2097152 > /sys/kernel/security/tomoyo/meminfo [root@tomoyo]# echo Private: 2097152 > /sys/kernel/security/tomoyo/meminfo ** /sys/kernel/security/tomoyo/self_domain ** This file is to show the name of domain the caller process belongs to. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/self_domain <kernel> /usr/sbin/sshd /bin/zsh /bin/cat ** /sys/kernel/security/tomoyo/version ** This file is used for getting TOMOYO Linux's version. (Example) [root@etch]# cat /sys/kernel/security/tomoyo/version 2.2.0-pre ** /sys/kernel/security/tomoyo/.domain_status ** This is a view (of a DBMS) that contains only profile number and domainnames of domain so that "ccs-setprofile" command can do line-oriented processing easily. ** /sys/kernel/security/tomoyo/.process_status ** This file is used by "ccs-ccstree" command to show "list of processes currently running" and "domains which each process belongs to" and "profile number which the domain is currently assigned" like "pstree" command. This file is writable by programs that aren't registered as policy manager. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-05 11:18:13 +03:00
#endif /* !defined(_SECURITY_TOMOYO_COMMON_H) */