WSL2-Linux-Kernel/fs/afs/callback.c

189 строки
4.6 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
*
* This software may be freely redistributed under the terms of the
* GNU General Public License.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Authors: David Woodhouse <dwmw2@infradead.org>
* David Howells <dhowells@redhat.com>
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/circ_buf.h>
#include <linux/sched.h>
#include "internal.h"
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
/*
* Allow the fileserver to request callback state (re-)initialisation.
* Unfortunately, UUIDs are not guaranteed unique.
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
*/
void afs_init_callback_state(struct afs_server *server)
{
rcu_read_lock();
do {
server->cb_s_break++;
server = rcu_dereference(server->uuid_next);
} while (0);
rcu_read_unlock();
}
/*
* actually break a callback
*/
void __afs_break_callback(struct afs_vnode *vnode, enum afs_cb_break_reason reason)
{
_enter("");
clear_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
if (test_and_clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags)) {
vnode->cb_break++;
afs_clear_permits(vnode);
if (vnode->lock_state == AFS_VNODE_LOCK_WAITING_FOR_CB)
afs_lock_may_be_available(vnode);
trace_afs_cb_break(&vnode->fid, vnode->cb_break, reason, true);
} else {
trace_afs_cb_break(&vnode->fid, vnode->cb_break, reason, false);
}
}
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
void afs_break_callback(struct afs_vnode *vnode, enum afs_cb_break_reason reason)
{
write_seqlock(&vnode->cb_lock);
__afs_break_callback(vnode, reason);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
write_sequnlock(&vnode->cb_lock);
}
/*
* Look up a volume by volume ID under RCU conditions.
*/
static struct afs_volume *afs_lookup_volume_rcu(struct afs_cell *cell,
afs_volid_t vid)
{
struct afs_volume *volume = NULL;
struct rb_node *p;
int seq = 0;
do {
/* Unfortunately, rbtree walking doesn't give reliable results
* under just the RCU read lock, so we have to check for
* changes.
*/
read_seqbegin_or_lock(&cell->volume_lock, &seq);
p = rcu_dereference_raw(cell->volumes.rb_node);
while (p) {
volume = rb_entry(p, struct afs_volume, cell_node);
if (volume->vid < vid)
p = rcu_dereference_raw(p->rb_left);
else if (volume->vid > vid)
p = rcu_dereference_raw(p->rb_right);
else
break;
volume = NULL;
}
} while (need_seqretry(&cell->volume_lock, seq));
done_seqretry(&cell->volume_lock, seq);
return volume;
}
/*
* allow the fileserver to explicitly break one callback
* - happens when
* - the backing file is changed
* - a lock is released
*/
static void afs_break_one_callback(struct afs_volume *volume,
struct afs_fid *fid)
{
struct super_block *sb;
struct afs_vnode *vnode;
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
struct inode *inode;
if (fid->vnode == 0 && fid->unique == 0) {
/* The callback break applies to an entire volume. */
write_lock(&volume->cb_v_break_lock);
volume->cb_v_break++;
trace_afs_cb_break(fid, volume->cb_v_break,
afs_cb_break_for_volume_callback, false);
write_unlock(&volume->cb_v_break_lock);
return;
}
/* See if we can find a matching inode - even an I_NEW inode needs to
* be marked as it can have its callback broken before we finish
* setting up the local inode.
*/
sb = rcu_dereference(volume->sb);
if (!sb)
return;
inode = find_inode_rcu(sb, fid->vnode, afs_ilookup5_test_by_fid, fid);
if (inode) {
vnode = AFS_FS_I(inode);
afs_break_callback(vnode, afs_cb_break_for_callback);
} else {
trace_afs_cb_miss(fid, afs_cb_break_for_callback);
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
}
}
static void afs_break_some_callbacks(struct afs_server *server,
struct afs_callback_break *cbb,
size_t *_count)
{
struct afs_callback_break *residue = cbb;
struct afs_volume *volume;
afs_volid_t vid = cbb->fid.vid;
size_t i;
volume = afs_lookup_volume_rcu(server->cell, vid);
/* TODO: Find all matching volumes if we couldn't match the server and
* break them anyway.
*/
for (i = *_count; i > 0; cbb++, i--) {
if (cbb->fid.vid == vid) {
_debug("- Fid { vl=%08llx n=%llu u=%u }",
cbb->fid.vid,
cbb->fid.vnode,
cbb->fid.unique);
--*_count;
if (volume)
afs_break_one_callback(volume, &cbb->fid);
} else {
*residue++ = *cbb;
}
}
}
/*
* allow the fileserver to break callback promises
*/
void afs_break_callbacks(struct afs_server *server, size_t count,
struct afs_callback_break *callbacks)
{
_enter("%p,%zu,", server, count);
ASSERT(server != NULL);
rcu_read_lock();
while (count > 0)
afs_break_some_callbacks(server, callbacks, &count);
rcu_read_unlock();
return;
}