WSL2-Linux-Kernel/drivers/block/nvme-core.c

2970 строки
73 KiB
C
Исходник Обычный вид История

/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/nvme.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
#include <linux/blk-mq.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <scsi/sg.h>
asm-generic: architecture independent readq/writeq for 32bit environment This provides unified readq()/writeq() helper functions for 32-bit drivers. For some cases, readq/writeq without atomicity is harmful, and order of io access has to be specified explicitly. So in this patch, new two header files which contain non-atomic readq/writeq are added. - <asm-generic/io-64-nonatomic-lo-hi.h> provides non-atomic readq/ writeq with the order of lower address -> higher address - <asm-generic/io-64-nonatomic-hi-lo.h> provides non-atomic readq/ writeq with reversed order This allows us to remove some readq()s that were added drivers when the default non-atomic ones were removed in commit dbee8a0affd5 ("x86: remove 32-bit versions of readq()/writeq()") The drivers which need readq/writeq but can do with the non-atomic ones must add the line: #include <asm-generic/io-64-nonatomic-lo-hi.h> /* or hi-lo.h */ But this will be nop in 64-bit environments, and no other #ifdefs are required. So I believe that this patch can solve the problem of 1. driver-specific readq/writeq 2. atomicity and order of io access This patch is tested with building allyesconfig and allmodconfig as ARCH=x86 and ARCH=i386 on top of tip/master. Cc: Kashyap Desai <Kashyap.Desai@lsi.com> Cc: Len Brown <lenb@kernel.org> Cc: Ravi Anand <ravi.anand@qlogic.com> Cc: Vikas Chaudhary <vikas.chaudhary@qlogic.com> Cc: Matthew Garrett <mjg@redhat.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: James Bottomley <James.Bottomley@parallels.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Roland Dreier <roland@purestorage.com> Cc: James Bottomley <jbottomley@parallels.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Hitoshi Mitake <h.mitake@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-07 06:45:33 +04:00
#include <asm-generic/io-64-nonatomic-lo-hi.h>
#define NVME_Q_DEPTH 1024
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
#define NVME_AQ_DEPTH 64
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT (admin_timeout * HZ)
#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
#define IOD_TIMEOUT (retry_time * HZ)
static unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
static unsigned char retry_time = 30;
module_param(retry_time, byte, 0644);
MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
static unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static int nvme_major;
module_param(nvme_major, int, 0);
static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);
static DEFINE_SPINLOCK(dev_list_lock);
static LIST_HEAD(dev_list);
static struct task_struct *nvme_thread;
static struct workqueue_struct *nvme_workq;
static wait_queue_head_t nvme_kthread_wait;
static struct notifier_block nvme_nb;
static void nvme_reset_failed_dev(struct work_struct *ws);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_process_cq(struct nvme_queue *nvmeq);
struct async_cmd_info {
struct kthread_work work;
struct kthread_worker *worker;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *req;
u32 result;
int status;
void *ctx;
};
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct llist_node node;
struct device *q_dmadev;
struct nvme_dev *dev;
char irqname[24]; /* nvme4294967295-65535\0 */
spinlock_t q_lock;
struct nvme_command *sq_cmds;
volatile struct nvme_completion *cqes;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
u32 __iomem *q_db;
u16 q_depth;
u16 cq_vector;
u16 sq_head;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
struct async_cmd_info cmdinfo;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct blk_mq_hw_ctx *hctx;
};
/*
* Check we didin't inadvertently grow the command struct
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
}
typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
struct nvme_completion *);
struct nvme_cmd_info {
nvme_completion_fn fn;
void *ctx;
int aborted;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq;
};
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[0];
WARN_ON(nvmeq->hctx);
nvmeq->hctx = hctx;
hctx->driver_data = nvmeq;
return 0;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_admin_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[0];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
return 0;
}
static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct nvme_queue *nvmeq = hctx->driver_data;
nvmeq->hctx = NULL;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[
(hctx_idx % dev->queue_count) + 1];
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (!nvmeq->hctx)
nvmeq->hctx = hctx;
/* nvmeq queues are shared between namespaces. We assume here that
* blk-mq map the tags so they match up with the nvme queue tags. */
WARN_ON(nvmeq->hctx->tags != hctx->tags);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
hctx->driver_data = nvmeq;
return 0;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
return 0;
}
static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
nvme_completion_fn handler)
{
cmd->fn = handler;
cmd->ctx = ctx;
cmd->aborted = 0;
blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
}
/* Special values must be less than 0x1000 */
#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
static void special_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
if (ctx == CMD_CTX_CANCELLED)
return;
if (ctx == CMD_CTX_COMPLETED) {
dev_warn(nvmeq->q_dmadev,
"completed id %d twice on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
if (ctx == CMD_CTX_INVALID) {
dev_warn(nvmeq->q_dmadev,
"invalid id %d completed on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
{
void *ctx;
if (fn)
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_CANCELLED;
return ctx;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *req = ctx;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
u32 result = le32_to_cpup(&cqe->result);
u16 status = le16_to_cpup(&cqe->status) >> 1;
if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
++nvmeq->dev->event_limit;
if (status == NVME_SC_SUCCESS)
dev_warn(nvmeq->q_dmadev,
"async event result %08x\n", result);
blk_mq_free_hctx_request(nvmeq->hctx, req);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *req = ctx;
u16 status = le16_to_cpup(&cqe->status) >> 1;
u32 result = le32_to_cpup(&cqe->result);
blk_mq_free_hctx_request(nvmeq->hctx, req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
++nvmeq->dev->abort_limit;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void async_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct async_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
unsigned int tag)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return blk_mq_rq_to_pdu(req);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
/*
* Called with local interrupts disabled and the q_lock held. May not sleep.
*/
static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
nvme_completion_fn *fn)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
void *ctx;
if (tag >= nvmeq->q_depth) {
*fn = special_completion;
return CMD_CTX_INVALID;
}
if (fn)
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_COMPLETED;
return ctx;
}
/**
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
* Safe to use from interrupt context
*/
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
u16 tail = nvmeq->sq_tail;
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
return 0;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nvmeq->q_lock, flags);
ret = __nvme_submit_cmd(nvmeq, cmd);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
return ret;
}
static __le64 **iod_list(struct nvme_iod *iod)
{
return ((void *)iod) + iod->offset;
}
/*
* Will slightly overestimate the number of pages needed. This is OK
* as it only leads to a small amount of wasted memory for the lifetime of
* the I/O.
*/
static int nvme_npages(unsigned size, struct nvme_dev *dev)
{
unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
return DIV_ROUND_UP(8 * nprps, dev->page_size - 8);
}
static struct nvme_iod *
nvme_alloc_iod(unsigned nseg, unsigned nbytes, struct nvme_dev *dev, gfp_t gfp)
{
struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
sizeof(__le64 *) * nvme_npages(nbytes, dev) +
sizeof(struct scatterlist) * nseg, gfp);
if (iod) {
iod->offset = offsetof(struct nvme_iod, sg[nseg]);
iod->npages = -1;
iod->length = nbytes;
iod->nents = 0;
iod->first_dma = 0ULL;
}
return iod;
}
void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
{
const int last_prp = dev->page_size / 8 - 1;
int i;
__le64 **list = iod_list(iod);
dma_addr_t prp_dma = iod->first_dma;
if (iod->npages == 0)
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
for (i = 0; i < iod->npages; i++) {
__le64 *prp_list = list[i];
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
prp_dma = next_prp_dma;
}
kfree(iod);
}
static int nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return 0;
case NVME_SC_CAP_EXCEEDED:
return -ENOSPC;
default:
return -EIO;
}
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void req_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct nvme_iod *iod = ctx;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *req = iod->private;
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
u16 status = le16_to_cpup(&cqe->status) >> 1;
if (unlikely(status)) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (!(status & NVME_SC_DNR || blk_noretry_request(req))
&& (jiffies - req->start_time) < req->timeout) {
unsigned long flags;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
blk_mq_requeue_request(req);
spin_lock_irqsave(req->q->queue_lock, flags);
if (!blk_queue_stopped(req->q))
blk_mq_kick_requeue_list(req->q);
spin_unlock_irqrestore(req->q->queue_lock, flags);
return;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
req->errors = nvme_error_status(status);
} else
req->errors = 0;
if (cmd_rq->aborted)
dev_warn(&nvmeq->dev->pci_dev->dev,
"completing aborted command with status:%04x\n",
status);
if (iod->nents)
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
nvme_free_iod(nvmeq->dev, iod);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
blk_mq_complete_request(req);
}
/* length is in bytes. gfp flags indicates whether we may sleep. */
int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
gfp_t gfp)
{
struct dma_pool *pool;
int length = total_len;
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
int offset = offset_in_page(dma_addr);
__le64 *prp_list;
__le64 **list = iod_list(iod);
dma_addr_t prp_dma;
int nprps, i;
u32 page_size = dev->page_size;
length -= (page_size - offset);
if (length <= 0)
return total_len;
dma_len -= (page_size - offset);
if (dma_len) {
dma_addr += (page_size - offset);
} else {
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
if (length <= page_size) {
iod->first_dma = dma_addr;
return total_len;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps <= (256 / 8)) {
pool = dev->prp_small_pool;
iod->npages = 0;
} else {
pool = dev->prp_page_pool;
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return (total_len - length) + page_size;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
i = 0;
for (;;) {
if (i == page_size >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
if (!prp_list)
return total_len - length;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
i = 1;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= page_size;
dma_addr += page_size;
length -= page_size;
if (length <= 0)
break;
if (dma_len > 0)
continue;
BUG_ON(dma_len < 0);
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
return total_len;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
/*
* We reuse the small pool to allocate the 16-byte range here as it is not
* worth having a special pool for these or additional cases to handle freeing
* the iod.
*/
static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
struct request *req, struct nvme_iod *iod)
{
struct nvme_dsm_range *range =
(struct nvme_dsm_range *)iod_list(iod)[0];
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
range->cattr = cpu_to_le32(0);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
memset(cmnd, 0, sizeof(*cmnd));
cmnd->dsm.opcode = nvme_cmd_dsm;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmnd->dsm.command_id = req->tag;
cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
cmnd->dsm.nr = 0;
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
int cmdid)
{
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
memset(cmnd, 0, sizeof(*cmnd));
cmnd->common.opcode = nvme_cmd_flush;
cmnd->common.command_id = cmdid;
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
struct nvme_ns *ns)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *req = iod->private;
struct nvme_command *cmnd;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
u16 control = 0;
u32 dsmgmt = 0;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
memset(cmnd, 0, sizeof(*cmnd));
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
cmnd->rw.command_id = req->tag;
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
cmnd->rw.control = cpu_to_le16(control);
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
return 0;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_queue *nvmeq = hctx->driver_data;
struct request *req = bd->rq;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int psegs = req->nr_phys_segments;
enum dma_data_direction dma_dir;
unsigned size = !(req->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(req) :
sizeof(struct nvme_dsm_range);
iod = nvme_alloc_iod(psegs, size, ns->dev, GFP_ATOMIC);
if (!iod)
return BLK_MQ_RQ_QUEUE_BUSY;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
iod->private = req;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (req->cmd_flags & REQ_DISCARD) {
void *range;
/*
* We reuse the small pool to allocate the 16-byte range here
* as it is not worth having a special pool for these or
* additional cases to handle freeing the iod.
*/
range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
GFP_ATOMIC,
&iod->first_dma);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (!range)
goto retry_cmd;
iod_list(iod)[0] = (__le64 *)range;
iod->npages = 0;
} else if (psegs) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
sg_init_table(iod->sg, psegs);
iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
if (!iod->nents)
goto error_cmd;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
goto retry_cmd;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (blk_rq_bytes(req) !=
nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
iod->nents, dma_dir);
goto retry_cmd;
}
}
nvme_set_info(cmd, iod, req_completion);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
spin_lock_irq(&nvmeq->q_lock);
if (req->cmd_flags & REQ_DISCARD)
nvme_submit_discard(nvmeq, ns, req, iod);
else if (req->cmd_flags & REQ_FLUSH)
nvme_submit_flush(nvmeq, ns, req->tag);
else
nvme_submit_iod(nvmeq, iod, ns);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
return BLK_MQ_RQ_QUEUE_OK;
error_cmd:
nvme_free_iod(nvmeq->dev, iod);
return BLK_MQ_RQ_QUEUE_ERROR;
retry_cmd:
nvme_free_iod(nvmeq->dev, iod);
return BLK_MQ_RQ_QUEUE_BUSY;
}
static int nvme_process_cq(struct nvme_queue *nvmeq)
{
u16 head, phase;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
for (;;) {
void *ctx;
nvme_completion_fn fn;
struct nvme_completion cqe = nvmeq->cqes[head];
if ((le16_to_cpu(cqe.status) & 1) != phase)
break;
nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
fn(nvmeq, ctx, &cqe);
}
/* If the controller ignores the cq head doorbell and continuously
* writes to the queue, it is theoretically possible to wrap around
* the queue twice and mistakenly return IRQ_NONE. Linux only
* requires that 0.1% of your interrupts are handled, so this isn't
* a big problem.
*/
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
return 0;
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
nvmeq->cqe_seen = 1;
return 1;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
/* Admin queue isn't initialized as a request queue. If at some point this
* happens anyway, make sure to notify the user */
static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
WARN_ON_ONCE(1);
return BLK_MQ_RQ_QUEUE_ERROR;
}
static irqreturn_t nvme_irq(int irq, void *data)
{
irqreturn_t result;
struct nvme_queue *nvmeq = data;
spin_lock(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
nvmeq->cqe_seen = 0;
spin_unlock(&nvmeq->q_lock);
return result;
}
static irqreturn_t nvme_irq_check(int irq, void *data)
{
struct nvme_queue *nvmeq = data;
struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
cmd_info)
{
spin_lock_irq(&nvmeq->q_lock);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cancel_cmd_info(cmd_info, NULL);
spin_unlock_irq(&nvmeq->q_lock);
}
struct sync_cmd_info {
struct task_struct *task;
u32 result;
int status;
};
static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct sync_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
wake_up_process(cmdinfo->task);
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int ret;
struct sync_cmd_info cmdinfo;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
cmdinfo.task = current;
cmdinfo.status = -EINTR;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd->common.command_id = req->tag;
nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
set_current_state(TASK_KILLABLE);
ret = nvme_submit_cmd(nvmeq, cmd);
if (ret) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_finish_cmd(nvmeq, req->tag, NULL);
set_current_state(TASK_RUNNING);
}
ret = schedule_timeout(timeout);
/*
* Ensure that sync_completion has either run, or that it will
* never run.
*/
nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
/*
* We never got the completion
*/
if (cmdinfo.status == -EINTR)
return -EINTR;
if (result)
*result = cmdinfo.result;
return cmdinfo.status;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_submit_async_admin_req(struct nvme_dev *dev)
{
struct nvme_queue *nvmeq = dev->queues[0];
struct nvme_command c;
struct nvme_cmd_info *cmd_info;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
if (IS_ERR(req))
return PTR_ERR(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
req->cmd_flags |= REQ_NO_TIMEOUT;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd_info = blk_mq_rq_to_pdu(req);
nvme_set_info(cmd_info, req, async_req_completion);
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_async_event;
c.common.command_id = req->tag;
return __nvme_submit_cmd(nvmeq, &c);
}
static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
struct nvme_command *cmd,
struct async_cmd_info *cmdinfo, unsigned timeout)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[0];
struct request *req;
struct nvme_cmd_info *cmd_rq;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
req->timeout = timeout;
cmd_rq = blk_mq_rq_to_pdu(req);
cmdinfo->req = req;
nvme_set_info(cmd_rq, cmdinfo, async_completion);
cmdinfo->status = -EINTR;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd->common.command_id = req->tag;
return nvme_submit_cmd(nvmeq, cmd);
}
static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
u32 *result, unsigned timeout)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int res;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
res = nvme_submit_sync_cmd(req, cmd, result, timeout);
blk_mq_free_request(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return res;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_command *cmd, u32 *result)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int res;
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
false);
if (IS_ERR(req))
return PTR_ERR(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
blk_mq_free_request(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return res;
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
dma_addr_t dma_addr)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.prp1 = cpu_to_le64(dma_addr);
c.identify.cns = cpu_to_le32(cns);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return nvme_submit_admin_cmd(dev, &c, result);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return nvme_submit_admin_cmd(dev, &c, result);
}
/**
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
* nvme_abort_req - Attempt aborting a request
*
* Schedule controller reset if the command was already aborted once before and
* still hasn't been returned to the driver, or if this is the admin queue.
*/
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_abort_req(struct request *req)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
struct nvme_dev *dev = nvmeq->dev;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct request *abort_req;
struct nvme_cmd_info *abort_cmd;
struct nvme_command cmd;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (!nvmeq->qid || cmd_rq->aborted) {
unsigned long flags;
spin_lock_irqsave(&dev_list_lock, flags);
if (work_busy(&dev->reset_work))
goto out;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
"I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
out:
spin_unlock_irqrestore(&dev_list_lock, flags);
return;
}
if (!dev->abort_limit)
return;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
false);
if (IS_ERR(abort_req))
return;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
abort_cmd = blk_mq_rq_to_pdu(abort_req);
nvme_set_info(abort_cmd, abort_req, abort_completion);
memset(&cmd, 0, sizeof(cmd));
cmd.abort.opcode = nvme_admin_abort_cmd;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd.abort.cid = req->tag;
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd.abort.command_id = abort_req->tag;
--dev->abort_limit;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd_rq->aborted = 1;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
nvmeq->qid);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
dev_warn(nvmeq->q_dmadev,
"Could not abort I/O %d QID %d",
req->tag, nvmeq->qid);
blk_mq_free_request(abort_req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
}
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
struct request *req, void *data, bool reserved)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = data;
void *ctx;
nvme_completion_fn fn;
struct nvme_cmd_info *cmd;
struct nvme_completion cqe;
if (!blk_mq_request_started(req))
return;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
cmd = blk_mq_rq_to_pdu(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (cmd->ctx == CMD_CTX_CANCELLED)
return;
if (blk_queue_dying(req->q))
cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
else
cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
req->tag, nvmeq->qid);
ctx = cancel_cmd_info(cmd, &fn);
fn(nvmeq, ctx, &cqe);
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd->nvmeq;
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
int ret = BLK_EH_RESET_TIMER;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
nvmeq->qid);
spin_lock_irq(&nvmeq->q_lock);
if (!nvmeq->dev->initialized) {
/*
* Force cancelled command frees the request, which requires we
* return BLK_EH_NOT_HANDLED.
*/
nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
ret = BLK_EH_NOT_HANDLED;
} else
nvme_abort_req(req);
spin_unlock_irq(&nvmeq->q_lock);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return ret;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
LLIST_HEAD(q_list);
struct nvme_queue *nvmeq, *next;
struct llist_node *entry;
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[i];
llist_add(&nvmeq->node, &q_list);
dev->queue_count--;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev->queues[i] = NULL;
}
synchronize_rcu();
entry = llist_del_all(&q_list);
llist_for_each_entry_safe(nvmeq, next, entry, node)
nvme_free_queue(nvmeq);
}
/**
* nvme_suspend_queue - put queue into suspended state
* @nvmeq - queue to suspend
*/
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
{
int vector;
spin_lock_irq(&nvmeq->q_lock);
if (nvmeq->cq_vector == -1) {
spin_unlock_irq(&nvmeq->q_lock);
return 1;
}
vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
nvmeq->dev->online_queues--;
nvmeq->cq_vector = -1;
spin_unlock_irq(&nvmeq->q_lock);
irq_set_affinity_hint(vector, NULL);
free_irq(vector, nvmeq);
return 0;
}
static void nvme_clear_queue(struct nvme_queue *nvmeq)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (hctx && hctx->tags)
blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static void nvme_disable_queue(struct nvme_dev *dev, int qid)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[qid];
if (!nvmeq)
return;
if (nvme_suspend_queue(nvmeq))
return;
/* Don't tell the adapter to delete the admin queue.
* Don't tell a removed adapter to delete IO queues. */
if (qid && readl(&dev->bar->csts) != -1) {
adapter_delete_sq(dev, qid);
adapter_delete_cq(dev, qid);
}
if (!qid && dev->admin_q)
blk_mq_freeze_queue_start(dev->admin_q);
nvme_clear_queue(nvmeq);
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth)
{
struct device *dmadev = &dev->pci_dev->dev;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
goto free_cqdma;
nvmeq->q_dmadev = dmadev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->instance, qid);
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
dev->queue_count++;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev->queues[qid] = nvmeq;
return nvmeq;
free_cqdma:
dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
return NULL;
}
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
const char *name)
{
if (use_threaded_interrupts)
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
nvme_irq_check, nvme_irq, IRQF_SHARED,
name, nvmeq);
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
IRQF_SHARED, name, nvmeq);
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
spin_lock_irq(&nvmeq->q_lock);
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = adapter_alloc_cq(dev, qid, nvmeq);
if (result < 0)
return result;
result = adapter_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
adapter_delete_sq(dev, qid);
release_cq:
adapter_delete_cq(dev, qid);
return result;
}
static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
{
unsigned long timeout;
u32 bit = enabled ? NVME_CSTS_RDY : 0;
timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return 0;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config &= ~NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, false);
}
static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, true);
}
static int nvme_shutdown_ctrl(struct nvme_dev *dev)
{
unsigned long timeout;
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_SHN_NORMAL;
writel(dev->ctrl_config, &dev->bar->cc);
timeout = SHUTDOWN_TIMEOUT + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
NVME_CSTS_SHST_CMPLT) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return 0;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_admin_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_exit_hctx,
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
.init_request = nvme_admin_init_request,
.timeout = nvme_timeout,
};
static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.exit_hctx = nvme_exit_hctx,
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
.init_request = nvme_init_request,
.timeout = nvme_timeout,
};
static void nvme_dev_remove_admin(struct nvme_dev *dev)
{
if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
blk_cleanup_queue(dev->admin_q);
blk_mq_free_tag_set(&dev->admin_tagset);
}
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
{
if (!dev->admin_q) {
dev->admin_tagset.ops = &nvme_mq_admin_ops;
dev->admin_tagset.nr_hw_queues = 1;
dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->admin_tagset.cmd_size = sizeof(struct nvme_cmd_info);
dev->admin_tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
return -ENOMEM;
dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->admin_q)) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
blk_mq_free_tag_set(&dev->admin_tagset);
return -ENOMEM;
}
if (!blk_get_queue(dev->admin_q)) {
nvme_dev_remove_admin(dev);
return -ENODEV;
}
} else
blk_mq_unfreeze_queue(dev->admin_q);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return 0;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = readq(&dev->bar->cap);
struct nvme_queue *nvmeq;
unsigned page_shift = PAGE_SHIFT;
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
if (page_shift < dev_page_min) {
dev_err(&dev->pci_dev->dev,
"Minimum device page size (%u) too large for "
"host (%u)\n", 1 << dev_page_min,
1 << page_shift);
return -ENODEV;
}
if (page_shift > dev_page_max) {
dev_info(&dev->pci_dev->dev,
"Device maximum page size (%u) smaller than "
"host (%u); enabling work-around\n",
1 << dev_page_max, 1 << page_shift);
page_shift = dev_page_max;
}
result = nvme_disable_ctrl(dev, cap);
if (result < 0)
return result;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvmeq = dev->queues[0];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
dev->page_size = 1 << page_shift;
dev->ctrl_config = NVME_CC_CSS_NVM;
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
writel(aqa, &dev->bar->aqa);
writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
result = nvme_enable_ctrl(dev, cap);
if (result)
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
goto free_nvmeq;
nvmeq->cq_vector = 0;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result)
goto free_nvmeq;
return result;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
unsigned long addr, unsigned length)
{
int i, err, count, nents, offset;
struct scatterlist *sg;
struct page **pages;
struct nvme_iod *iod;
if (addr & 3)
return ERR_PTR(-EINVAL);
if (!length || length > INT_MAX - PAGE_SIZE)
return ERR_PTR(-EINVAL);
offset = offset_in_page(addr);
count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
err = get_user_pages_fast(addr, count, 1, pages);
if (err < count) {
count = err;
err = -EFAULT;
goto put_pages;
}
err = -ENOMEM;
iod = nvme_alloc_iod(count, length, dev, GFP_KERNEL);
if (!iod)
goto put_pages;
sg = iod->sg;
sg_init_table(sg, count);
for (i = 0; i < count; i++) {
sg_set_page(&sg[i], pages[i],
min_t(unsigned, length, PAGE_SIZE - offset),
offset);
length -= (PAGE_SIZE - offset);
offset = 0;
}
sg_mark_end(&sg[i - 1]);
iod->nents = count;
nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!nents)
goto free_iod;
kfree(pages);
return iod;
free_iod:
kfree(iod);
put_pages:
for (i = 0; i < count; i++)
put_page(pages[i]);
kfree(pages);
return ERR_PTR(err);
}
void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
struct nvme_iod *iod)
{
int i;
dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
for (i = 0; i < iod->nents; i++)
put_page(sg_page(&iod->sg[i]));
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_dev *dev = ns->dev;
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
int status, i;
struct nvme_iod *iod, *meta_iod = NULL;
dma_addr_t meta_dma_addr;
void *meta, *uninitialized_var(meta_mem);
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
if (meta_len && ((io.metadata & 3) || !io.metadata))
return -EINVAL;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
break;
default:
return -EINVAL;
}
if (IS_ERR(iod))
return PTR_ERR(iod);
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
if (meta_len) {
meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
meta_len);
if (IS_ERR(meta_iod)) {
status = PTR_ERR(meta_iod);
meta_iod = NULL;
goto unmap;
}
meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
&meta_dma_addr, GFP_KERNEL);
if (!meta_mem) {
status = -ENOMEM;
goto unmap;
}
if (io.opcode & 1) {
int meta_offset = 0;
for (i = 0; i < meta_iod->nents; i++) {
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
meta_iod->sg[i].offset;
memcpy(meta_mem + meta_offset, meta,
meta_iod->sg[i].length);
kunmap_atomic(meta);
meta_offset += meta_iod->sg[i].length;
}
}
c.rw.metadata = cpu_to_le64(meta_dma_addr);
}
length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.rw.prp2 = cpu_to_le64(iod->first_dma);
if (length != (io.nblocks + 1) << ns->lba_shift)
status = -ENOMEM;
else
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
status = nvme_submit_io_cmd(dev, ns, &c, NULL);
if (meta_len) {
if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
int meta_offset = 0;
for (i = 0; i < meta_iod->nents; i++) {
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
meta_iod->sg[i].offset;
memcpy(meta, meta_mem + meta_offset,
meta_iod->sg[i].length);
kunmap_atomic(meta);
meta_offset += meta_iod->sg[i].length;
}
}
dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
meta_dma_addr);
}
unmap:
nvme_unmap_user_pages(dev, io.opcode & 1, iod);
nvme_free_iod(dev, iod);
if (meta_iod) {
nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
nvme_free_iod(dev, meta_iod);
}
return status;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
int status, length;
struct nvme_iod *uninitialized_var(iod);
unsigned timeout;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
length = cmd.data_len;
if (cmd.data_len) {
iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
length);
if (IS_ERR(iod))
return PTR_ERR(iod);
length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.common.prp2 = cpu_to_le64(iod->first_dma);
}
timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
ADMIN_TIMEOUT;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (length != cmd.data_len)
status = -ENOMEM;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
else if (ns) {
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE,
(GFP_KERNEL|__GFP_WAIT), false);
if (IS_ERR(req))
status = PTR_ERR(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
else {
status = nvme_submit_sync_cmd(req, &c, &cmd.result,
timeout);
blk_mq_free_request(req);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
}
} else
status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
if (cmd.data_len) {
nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
nvme_free_iod(dev, iod);
}
if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
sizeof(cmd.result)))
status = -EFAULT;
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
int ret = 0;
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = bdev->bd_disk->private_data;
if (!ns)
ret = -ENXIO;
else if (!kref_get_unless_zero(&ns->dev->kref))
ret = -ENXIO;
spin_unlock(&dev_list_lock);
return ret;
}
static void nvme_free_dev(struct kref *kref);
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
kref_put(&dev->kref, nvme_free_dev);
}
static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bd->bd_disk) >> 11;
return 0;
}
static int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id;
dma_addr_t dma_addr;
int lbaf;
id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
GFP_KERNEL);
if (!id) {
dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
__func__);
return 0;
}
if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
goto free;
lbaf = id->flbas & 0xf;
ns->lba_shift = id->lbaf[lbaf].ds;
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
free:
dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
return 0;
}
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
};
static int nvme_kthread(void *data)
{
struct nvme_dev *dev, *next;
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&dev_list_lock);
list_for_each_entry_safe(dev, next, &dev_list, node) {
int i;
if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
dev->initialized) {
if (work_busy(&dev->reset_work))
continue;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
"Failed status: %x, reset controller\n",
readl(&dev->bar->csts));
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
continue;
}
for (i = 0; i < dev->queue_count; i++) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[i];
if (!nvmeq)
continue;
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
while ((i == 0) && (dev->event_limit > 0)) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (nvme_submit_async_admin_req(dev))
break;
dev->event_limit--;
}
spin_unlock_irq(&nvmeq->q_lock);
}
}
spin_unlock(&dev_list_lock);
schedule_timeout(round_jiffies_relative(HZ));
}
return 0;
}
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
ns->queue->limits.max_discard_sectors = 0xffffffff;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
{
struct nvme_ns *ns;
struct gendisk *disk;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int node = dev_to_node(&dev->pci_dev->dev);
int lbaf;
if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
return NULL;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
return NULL;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
ns->queue = blk_mq_init_queue(&dev->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
ns->dev = dev;
ns->queue->queuedata = ns;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
disk = alloc_disk_node(0, node);
if (!disk)
goto out_free_queue;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
ns->ns_id = nsid;
ns->disk = disk;
lbaf = id->flbas & 0xf;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
if (dev->max_hw_sectors)
blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (dev->stripe_size)
blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
if (dev->vwc & NVME_CTRL_VWC_PRESENT)
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
disk->major = nvme_major;
disk->first_minor = 0;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->driverfs_dev = &dev->pci_dev->dev;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (dev->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
return ns;
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
return NULL;
}
static void nvme_create_io_queues(struct nvme_dev *dev)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
unsigned i;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
for (i = dev->queue_count; i <= dev->max_qid; i++)
if (!nvme_alloc_queue(dev, i, dev->q_depth))
break;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
if (nvme_create_queue(dev->queues[i], i))
break;
}
static int set_queue_count(struct nvme_dev *dev, int count)
{
int status;
u32 result;
u32 q_count = (count - 1) | ((count - 1) << 16);
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
&result);
if (status < 0)
return status;
if (status > 0) {
dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
status);
return 0;
}
return min(result & 0xffff, result >> 16) + 1;
}
static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
{
return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *adminq = dev->queues[0];
struct pci_dev *pdev = dev->pci_dev;
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_possible_cpus();
result = set_queue_count(dev, nr_io_queues);
if (result <= 0)
return result;
if (result < nr_io_queues)
nr_io_queues = result;
size = db_bar_size(dev, nr_io_queues);
if (size > 8192) {
iounmap(dev->bar);
do {
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
if (dev->bar)
break;
if (!--nr_io_queues)
return -ENOMEM;
size = db_bar_size(dev, nr_io_queues);
} while (1);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
adminq->q_db = dev->dbs;
}
/* Deregister the admin queue's interrupt */
free_irq(dev->entry[0].vector, adminq);
/*
* If we enable msix early due to not intx, disable it again before
* setting up the full range we need.
*/
if (!pdev->irq)
pci_disable_msix(pdev);
for (i = 0; i < nr_io_queues; i++)
dev->entry[i].entry = i;
vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
if (vecs < 0) {
vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
if (vecs < 0) {
vecs = 1;
} else {
for (i = 0; i < vecs; i++)
dev->entry[i].vector = i + pdev->irq;
}
}
/*
* Should investigate if there's a performance win from allocating
* more queues than interrupt vectors; it might allow the submission
* path to scale better, even if the receive path is limited by the
* number of interrupts.
*/
nr_io_queues = vecs;
dev->max_qid = nr_io_queues;
result = queue_request_irq(dev, adminq, adminq->irqname);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (result)
goto free_queues;
/* Free previously allocated queues that are no longer usable */
nvme_free_queues(dev, nr_io_queues + 1);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_create_io_queues(dev);
return 0;
free_queues:
nvme_free_queues(dev, 1);
return result;
}
/*
* Return: error value if an error occurred setting up the queues or calling
* Identify Device. 0 if these succeeded, even if adding some of the
* namespaces failed. At the moment, these failures are silent. TBD which
* failures should be reported.
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
struct pci_dev *pdev = dev->pci_dev;
int res;
unsigned nn, i;
struct nvme_ns *ns;
struct nvme_id_ctrl *ctrl;
struct nvme_id_ns *id_ns;
void *mem;
dma_addr_t dma_addr;
int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
if (!mem)
return -ENOMEM;
res = nvme_identify(dev, 0, 1, dma_addr);
if (res) {
dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
res = -EIO;
goto out;
}
ctrl = mem;
nn = le32_to_cpup(&ctrl->nn);
dev->oncs = le16_to_cpup(&ctrl->oncs);
dev->abort_limit = ctrl->acl + 1;
dev->vwc = ctrl->vwc;
dev->event_limit = min(ctrl->aerl + 1, 8);
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
if (ctrl->mdts)
dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
(pdev->device == 0x0953) && ctrl->vs[3]) {
unsigned int max_hw_sectors;
dev->stripe_size = 1 << (ctrl->vs[3] + shift);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
max_hw_sectors = dev->stripe_size >> (shift - 9);
if (dev->max_hw_sectors) {
dev->max_hw_sectors = min(max_hw_sectors,
dev->max_hw_sectors);
} else
dev->max_hw_sectors = max_hw_sectors;
}
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->tagset.queue_depth =
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
dev->tagset.cmd_size = sizeof(struct nvme_cmd_info);
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
dev->tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->tagset))
goto out;
id_ns = mem;
for (i = 1; i <= nn; i++) {
res = nvme_identify(dev, i, 0, dma_addr);
if (res)
continue;
if (id_ns->ncap == 0)
continue;
res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
dma_addr + 4096, NULL);
if (res)
memset(mem + 4096, 0, 4096);
ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
if (ns)
list_add_tail(&ns->list, &dev->namespaces);
}
list_for_each_entry(ns, &dev->namespaces, list)
add_disk(ns->disk);
res = 0;
out:
dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
return res;
}
static int nvme_dev_map(struct nvme_dev *dev)
{
u64 cap;
int bars, result = -ENOMEM;
struct pci_dev *pdev = dev->pci_dev;
if (pci_enable_device_mem(pdev))
return result;
dev->entry[0].vector = pdev->irq;
pci_set_master(pdev);
bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (!bars)
goto disable_pci;
if (pci_request_selected_regions(pdev, bars, "nvme"))
goto disable_pci;
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
goto disable;
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
if (!dev->bar)
goto disable;
if (readl(&dev->bar->csts) == -1) {
result = -ENODEV;
goto unmap;
}
/*
* Some devices don't advertse INTx interrupts, pre-enable a single
* MSIX vec for setup. We'll adjust this later.
*/
if (!pdev->irq) {
result = pci_enable_msix(pdev, dev->entry, 1);
if (result < 0)
goto unmap;
}
cap = readq(&dev->bar->cap);
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
return 0;
unmap:
iounmap(dev->bar);
dev->bar = NULL;
disable:
pci_release_regions(pdev);
disable_pci:
pci_disable_device(pdev);
return result;
}
static void nvme_dev_unmap(struct nvme_dev *dev)
{
if (dev->pci_dev->msi_enabled)
pci_disable_msi(dev->pci_dev);
else if (dev->pci_dev->msix_enabled)
pci_disable_msix(dev->pci_dev);
if (dev->bar) {
iounmap(dev->bar);
dev->bar = NULL;
pci_release_regions(dev->pci_dev);
}
if (pci_is_enabled(dev->pci_dev))
pci_disable_device(dev->pci_dev);
}
struct nvme_delq_ctx {
struct task_struct *waiter;
struct kthread_worker *worker;
atomic_t refcount;
};
static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
{
dq->waiter = current;
mb();
for (;;) {
set_current_state(TASK_KILLABLE);
if (!atomic_read(&dq->refcount))
break;
if (!schedule_timeout(ADMIN_TIMEOUT) ||
fatal_signal_pending(current)) {
/*
* Disable the controller first since we can't trust it
* at this point, but leave the admin queue enabled
* until all queue deletion requests are flushed.
* FIXME: This may take a while if there are more h/w
* queues than admin tags.
*/
set_current_state(TASK_RUNNING);
nvme_disable_ctrl(dev, readq(&dev->bar->cap));
nvme_clear_queue(dev->queues[0]);
flush_kthread_worker(dq->worker);
nvme_disable_queue(dev, 0);
return;
}
}
set_current_state(TASK_RUNNING);
}
static void nvme_put_dq(struct nvme_delq_ctx *dq)
{
atomic_dec(&dq->refcount);
if (dq->waiter)
wake_up_process(dq->waiter);
}
static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
{
atomic_inc(&dq->refcount);
return dq;
}
static void nvme_del_queue_end(struct nvme_queue *nvmeq)
{
struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
nvme_clear_queue(nvmeq);
nvme_put_dq(dq);
}
static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
kthread_work_func_t fn)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
init_kthread_work(&nvmeq->cmdinfo.work, fn);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
ADMIN_TIMEOUT);
}
static void nvme_del_cq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_cq(struct nvme_queue *nvmeq)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
nvme_del_cq_work_handler);
}
static void nvme_del_sq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
int status = nvmeq->cmdinfo.status;
if (!status)
status = nvme_delete_cq(nvmeq);
if (status)
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_sq(struct nvme_queue *nvmeq)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
nvme_del_sq_work_handler);
}
static void nvme_del_queue_start(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
if (nvme_delete_sq(nvmeq))
nvme_del_queue_end(nvmeq);
}
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
int i;
DEFINE_KTHREAD_WORKER_ONSTACK(worker);
struct nvme_delq_ctx dq;
struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
&worker, "nvme%d", dev->instance);
if (IS_ERR(kworker_task)) {
dev_err(&dev->pci_dev->dev,
"Failed to create queue del task\n");
for (i = dev->queue_count - 1; i > 0; i--)
nvme_disable_queue(dev, i);
return;
}
dq.waiter = NULL;
atomic_set(&dq.refcount, 0);
dq.worker = &worker;
for (i = dev->queue_count - 1; i > 0; i--) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[i];
if (nvme_suspend_queue(nvmeq))
continue;
nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
nvmeq->cmdinfo.worker = dq.worker;
init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
}
nvme_wait_dq(&dq, dev);
kthread_stop(kworker_task);
}
/*
* Remove the node from the device list and check
* for whether or not we need to stop the nvme_thread.
*/
static void nvme_dev_list_remove(struct nvme_dev *dev)
{
struct task_struct *tmp = NULL;
spin_lock(&dev_list_lock);
list_del_init(&dev->node);
if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
tmp = nvme_thread;
nvme_thread = NULL;
}
spin_unlock(&dev_list_lock);
if (tmp)
kthread_stop(tmp);
}
static void nvme_freeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
blk_mq_freeze_queue_start(ns->queue);
spin_lock(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
}
}
static void nvme_unfreeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
blk_mq_unfreeze_queue(ns->queue);
blk_mq_start_stopped_hw_queues(ns->queue, true);
blk_mq_kick_requeue_list(ns->queue);
}
}
static void nvme_dev_shutdown(struct nvme_dev *dev)
{
int i;
u32 csts = -1;
dev->initialized = 0;
nvme_dev_list_remove(dev);
if (dev->bar) {
nvme_freeze_queues(dev);
csts = readl(&dev->bar->csts);
}
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
for (i = dev->queue_count - 1; i >= 0; i--) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_queue *nvmeq = dev->queues[i];
nvme_suspend_queue(nvmeq);
nvme_clear_queue(nvmeq);
}
} else {
nvme_disable_io_queues(dev);
nvme_shutdown_ctrl(dev);
nvme_disable_queue(dev, 0);
}
nvme_dev_unmap(dev);
}
static void nvme_dev_remove(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
if (ns->disk->flags & GENHD_FL_UP)
del_gendisk(ns->disk);
if (!blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
}
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
{
struct device *dmadev = &dev->pci_dev->dev;
dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!dev->prp_page_pool)
return -ENOMEM;
/* Optimisation for I/Os between 4k and 128k */
dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
256, 256, 0);
if (!dev->prp_small_pool) {
dma_pool_destroy(dev->prp_page_pool);
return -ENOMEM;
}
return 0;
}
static void nvme_release_prp_pools(struct nvme_dev *dev)
{
dma_pool_destroy(dev->prp_page_pool);
dma_pool_destroy(dev->prp_small_pool);
}
static DEFINE_IDA(nvme_instance_ida);
static int nvme_set_instance(struct nvme_dev *dev)
{
int instance, error;
do {
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
return -ENODEV;
spin_lock(&dev_list_lock);
error = ida_get_new(&nvme_instance_ida, &instance);
spin_unlock(&dev_list_lock);
} while (error == -EAGAIN);
if (error)
return -ENODEV;
dev->instance = instance;
return 0;
}
static void nvme_release_instance(struct nvme_dev *dev)
{
spin_lock(&dev_list_lock);
ida_remove(&nvme_instance_ida, dev->instance);
spin_unlock(&dev_list_lock);
}
static void nvme_free_namespaces(struct nvme_dev *dev)
{
struct nvme_ns *ns, *next;
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
list_del(&ns->list);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
put_disk(ns->disk);
kfree(ns);
}
}
static void nvme_free_dev(struct kref *kref)
{
struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
pci_dev_put(dev->pci_dev);
nvme_free_namespaces(dev);
nvme_release_instance(dev);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
blk_mq_free_tag_set(&dev->tagset);
blk_put_queue(dev->admin_q);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
static int nvme_dev_open(struct inode *inode, struct file *f)
{
struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
miscdev);
kref_get(&dev->kref);
f->private_data = dev;
return 0;
}
static int nvme_dev_release(struct inode *inode, struct file *f)
{
struct nvme_dev *dev = f->private_data;
kref_put(&dev->kref, nvme_free_dev);
return 0;
}
static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
struct nvme_dev *dev = f->private_data;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
struct nvme_ns *ns;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
return nvme_user_cmd(dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
if (list_empty(&dev->namespaces))
return -ENOTTY;
ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
return nvme_user_cmd(dev, ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = nvme_dev_ioctl,
};
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
static void nvme_set_irq_hints(struct nvme_dev *dev)
{
struct nvme_queue *nvmeq;
int i;
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
if (!nvmeq->hctx)
continue;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
nvmeq->hctx->cpumask);
}
}
static int nvme_dev_start(struct nvme_dev *dev)
{
int result;
bool start_thread = false;
result = nvme_dev_map(dev);
if (result)
return result;
result = nvme_configure_admin_queue(dev);
if (result)
goto unmap;
spin_lock(&dev_list_lock);
if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
start_thread = true;
nvme_thread = NULL;
}
list_add(&dev->node, &dev_list);
spin_unlock(&dev_list_lock);
if (start_thread) {
nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
wake_up_all(&nvme_kthread_wait);
} else
wait_event_killable(nvme_kthread_wait, nvme_thread);
if (IS_ERR_OR_NULL(nvme_thread)) {
result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
goto disable;
}
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_init_queue(dev->queues[0], 0);
result = nvme_alloc_admin_tags(dev);
if (result)
goto disable;
result = nvme_setup_io_queues(dev);
if (result)
goto free_tags;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_set_irq_hints(dev);
return result;
free_tags:
nvme_dev_remove_admin(dev);
disable:
nvme_disable_queue(dev, 0);
nvme_dev_list_remove(dev);
unmap:
nvme_dev_unmap(dev);
return result;
}
static int nvme_remove_dead_ctrl(void *arg)
{
struct nvme_dev *dev = (struct nvme_dev *)arg;
struct pci_dev *pdev = dev->pci_dev;
if (pci_get_drvdata(pdev))
pci_stop_and_remove_bus_device_locked(pdev);
kref_put(&dev->kref, nvme_free_dev);
return 0;
}
static void nvme_remove_disks(struct work_struct *ws)
{
struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
nvme_free_queues(dev, 1);
nvme_dev_remove(dev);
}
static int nvme_dev_resume(struct nvme_dev *dev)
{
int ret;
ret = nvme_dev_start(dev);
if (ret)
return ret;
if (dev->online_queues < 2) {
spin_lock(&dev_list_lock);
dev->reset_workfn = nvme_remove_disks;
queue_work(nvme_workq, &dev->reset_work);
spin_unlock(&dev_list_lock);
} else {
nvme_unfreeze_queues(dev);
nvme_set_irq_hints(dev);
}
dev->initialized = 1;
return 0;
}
static void nvme_dev_reset(struct nvme_dev *dev)
{
nvme_dev_shutdown(dev);
if (nvme_dev_resume(dev)) {
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
kref_get(&dev->kref);
if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
dev->instance))) {
dev_err(&dev->pci_dev->dev,
"Failed to start controller remove task\n");
kref_put(&dev->kref, nvme_free_dev);
}
}
}
static void nvme_reset_failed_dev(struct work_struct *ws)
{
struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
nvme_dev_reset(dev);
}
static void nvme_reset_workfn(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
dev->reset_workfn(work);
}
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
int node, result = -ENOMEM;
struct nvme_dev *dev;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
node = dev_to_node(&pdev->dev);
if (node == NUMA_NO_NODE)
set_dev_node(&pdev->dev, 0);
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
if (!dev)
return -ENOMEM;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
GFP_KERNEL, node);
if (!dev->entry)
goto free;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
GFP_KERNEL, node);
if (!dev->queues)
goto free;
INIT_LIST_HEAD(&dev->namespaces);
dev->reset_workfn = nvme_reset_failed_dev;
INIT_WORK(&dev->reset_work, nvme_reset_workfn);
dev->pci_dev = pci_dev_get(pdev);
pci_set_drvdata(pdev, dev);
result = nvme_set_instance(dev);
if (result)
goto put_pci;
result = nvme_setup_prp_pools(dev);
if (result)
goto release;
kref_init(&dev->kref);
result = nvme_dev_start(dev);
if (result)
goto release_pools;
if (dev->online_queues > 1)
result = nvme_dev_add(dev);
if (result)
goto shutdown;
scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
dev->miscdev.minor = MISC_DYNAMIC_MINOR;
dev->miscdev.parent = &pdev->dev;
dev->miscdev.name = dev->name;
dev->miscdev.fops = &nvme_dev_fops;
result = misc_register(&dev->miscdev);
if (result)
goto remove;
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_set_irq_hints(dev);
dev->initialized = 1;
return 0;
remove:
nvme_dev_remove(dev);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_dev_remove_admin(dev);
nvme_free_namespaces(dev);
shutdown:
nvme_dev_shutdown(dev);
release_pools:
nvme_free_queues(dev, 0);
nvme_release_prp_pools(dev);
release:
nvme_release_instance(dev);
put_pci:
pci_dev_put(dev->pci_dev);
free:
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
return result;
}
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
if (prepare)
nvme_dev_shutdown(dev);
else
nvme_dev_resume(dev);
}
static void nvme_shutdown(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_shutdown(dev);
}
static void nvme_remove(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
spin_lock(&dev_list_lock);
list_del_init(&dev->node);
spin_unlock(&dev_list_lock);
pci_set_drvdata(pdev, NULL);
flush_work(&dev->reset_work);
misc_deregister(&dev->miscdev);
nvme_dev_shutdown(dev);
nvme_dev_remove(dev);
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
nvme_dev_remove_admin(dev);
nvme_free_queues(dev, 0);
nvme_release_prp_pools(dev);
kref_put(&dev->kref, nvme_free_dev);
}
/* These functions are yet to be implemented */
#define nvme_error_detected NULL
#define nvme_dump_registers NULL
#define nvme_link_reset NULL
#define nvme_slot_reset NULL
#define nvme_error_resume NULL
#ifdef CONFIG_PM_SLEEP
static int nvme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
nvme_dev_shutdown(ndev);
return 0;
}
static int nvme_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
ndev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &ndev->reset_work);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
static const struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.mmio_enabled = nvme_dump_registers,
.link_reset = nvme_link_reset,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
.reset_notify = nvme_reset_notify,
};
/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static const struct pci_device_id nvme_id_table[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);
static struct pci_driver nvme_driver = {
.name = "nvme",
.id_table = nvme_id_table,
.probe = nvme_probe,
.remove = nvme_remove,
.shutdown = nvme_shutdown,
.driver = {
.pm = &nvme_dev_pm_ops,
},
.err_handler = &nvme_err_handler,
};
static int __init nvme_init(void)
{
int result;
init_waitqueue_head(&nvme_kthread_wait);
nvme_workq = create_singlethread_workqueue("nvme");
if (!nvme_workq)
return -ENOMEM;
result = register_blkdev(nvme_major, "nvme");
if (result < 0)
goto kill_workq;
else if (result > 0)
nvme_major = result;
result = pci_register_driver(&nvme_driver);
if (result)
NVMe: Convert to blk-mq This converts the NVMe driver to a blk-mq request-based driver. The NVMe driver is currently bio-based and implements queue logic within itself. By using blk-mq, a lot of these responsibilities can be moved and simplified. The patch is divided into the following blocks: * Per-command data and cmdid have been moved into the struct request field. The cmdid_data can be retrieved using blk_mq_rq_to_pdu() and id maintenance are now handled by blk-mq through the rq->tag field. * The logic for splitting bio's has been moved into the blk-mq layer. The driver instead notifies the block layer about limited gap support in SG lists. * blk-mq handles timeouts and is reimplemented within nvme_timeout(). This both includes abort handling and command cancelation. * Assignment of nvme queues to CPUs are replaced with the blk-mq version. The current blk-mq strategy is to assign the number of mapped queues and CPUs to provide synergy, while the nvme driver assign as many nvme hw queues as possible. This can be implemented in blk-mq if needed. * NVMe queues are merged with the tags structure of blk-mq. * blk-mq takes care of setup/teardown of nvme queues and guards invalid accesses. Therefore, RCU-usage for nvme queues can be removed. * IO tracing and accounting are handled by blk-mq and therefore removed. * Queue suspension logic is replaced with the logic from the block layer. Contributions in this patch from: Sam Bradshaw <sbradshaw@micron.com> Jens Axboe <axboe@fb.com> Keith Busch <keith.busch@intel.com> Robert Nelson <rlnelson@google.com> Acked-by: Keith Busch <keith.busch@intel.com> Acked-by: Jens Axboe <axboe@fb.com> Updated for new ->queue_rq() prototype. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-11-04 18:20:14 +03:00
goto unregister_blkdev;
return 0;
unregister_blkdev:
unregister_blkdev(nvme_major, "nvme");
kill_workq:
destroy_workqueue(nvme_workq);
return result;
}
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
unregister_hotcpu_notifier(&nvme_nb);
unregister_blkdev(nvme_major, "nvme");
destroy_workqueue(nvme_workq);
BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
_nvme_check_size();
}
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_init);
module_exit(nvme_exit);