WSL2-Linux-Kernel/include/linux/highmem.h

336 строки
9.4 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HIGHMEM_H
#define _LINUX_HIGHMEM_H
#include <linux/fs.h>
kmap_atomic: make kunmap_atomic() harder to misuse kunmap_atomic() is currently at level -4 on Rusty's "Hard To Misuse" list[1] ("Follow common convention and you'll get it wrong"), except in some architectures when CONFIG_DEBUG_HIGHMEM is set[2][3]. kunmap() takes a pointer to a struct page; kunmap_atomic(), however, takes takes a pointer to within the page itself. This seems to once in a while trip people up (the convention they are following is the one from kunmap()). Make it much harder to misuse, by moving it to level 9 on Rusty's list[4] ("The compiler/linker won't let you get it wrong"). This is done by refusing to build if the type of its first argument is a pointer to a struct page. The real kunmap_atomic() is renamed to kunmap_atomic_notypecheck() (which is what you would call in case for some strange reason calling it with a pointer to a struct page is not incorrect in your code). The previous version of this patch was compile tested on x86-64. [1] http://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html [2] In these cases, it is at level 5, "Do it right or it will always break at runtime." [3] At least mips and powerpc look very similar, and sparc also seems to share a common ancestor with both; there seems to be quite some degree of copy-and-paste coding here. The include/asm/highmem.h file for these three archs mention x86 CPUs at its top. [4] http://ozlabs.org/~rusty/index.cgi/tech/2008-03-30.html [5] As an aside, could someone tell me why mn10300 uses unsigned long as the first parameter of kunmap_atomic() instead of void *? Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net> Cc: Russell King <linux@arm.linux.org.uk> (arch/arm) Cc: Ralf Baechle <ralf@linux-mips.org> (arch/mips) Cc: David Howells <dhowells@redhat.com> (arch/frv, arch/mn10300) Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> (arch/mn10300) Cc: Kyle McMartin <kyle@mcmartin.ca> (arch/parisc) Cc: Helge Deller <deller@gmx.de> (arch/parisc) Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> (arch/parisc) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> (arch/powerpc) Cc: Paul Mackerras <paulus@samba.org> (arch/powerpc) Cc: "David S. Miller" <davem@davemloft.net> (arch/sparc) Cc: Thomas Gleixner <tglx@linutronix.de> (arch/x86) Cc: Ingo Molnar <mingo@redhat.com> (arch/x86) Cc: "H. Peter Anvin" <hpa@zytor.com> (arch/x86) Cc: Arnd Bergmann <arnd@arndb.de> (include/asm-generic) Cc: Rusty Russell <rusty@rustcorp.com.au> ("Hard To Misuse" list) Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 04:18:32 +04:00
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <asm/cacheflush.h>
#include "highmem-internal.h"
/**
* kmap - Map a page for long term usage
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Can only be invoked from preemptible task context because on 32bit
* systems with CONFIG_HIGHMEM enabled this function might sleep.
*
* For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
* this returns the virtual address of the direct kernel mapping.
*
* The returned virtual address is globally visible and valid up to the
* point where it is unmapped via kunmap(). The pointer can be handed to
* other contexts.
*
* For highmem pages on 32bit systems this can be slow as the mapping space
* is limited and protected by a global lock. In case that there is no
* mapping slot available the function blocks until a slot is released via
* kunmap().
*/
static inline void *kmap(struct page *page);
/**
* kunmap - Unmap the virtual address mapped by kmap()
* @addr: Virtual address to be unmapped
*
* Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
* pages in the low memory area.
*/
static inline void kunmap(struct page *page);
/**
* kmap_to_page - Get the page for a kmap'ed address
* @addr: The address to look up
*
* Returns: The page which is mapped to @addr.
*/
static inline struct page *kmap_to_page(void *addr);
/**
* kmap_flush_unused - Flush all unused kmap mappings in order to
* remove stray mappings
*/
static inline void kmap_flush_unused(void);
/**
* kmap_local_page - Map a page for temporary usage
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Can be invoked from any context.
*
* Requires careful handling when nesting multiple mappings because the map
* management is stack based. The unmap has to be in the reverse order of
* the map operation:
*
* addr1 = kmap_local_page(page1);
* addr2 = kmap_local_page(page2);
* ...
* kunmap_local(addr2);
* kunmap_local(addr1);
*
* Unmapping addr1 before addr2 is invalid and causes malfunction.
*
* Contrary to kmap() mappings the mapping is only valid in the context of
* the caller and cannot be handed to other contexts.
*
* On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
* virtual address of the direct mapping. Only real highmem pages are
* temporarily mapped.
*
* While it is significantly faster than kmap() for the higmem case it
* comes with restrictions about the pointer validity. Only use when really
* necessary.
*
* On HIGHMEM enabled systems mapping a highmem page has the side effect of
* disabling migration in order to keep the virtual address stable across
* preemption. No caller of kmap_local_page() can rely on this side effect.
*/
static inline void *kmap_local_page(struct page *page);
/**
* kmap_atomic - Atomically map a page for temporary usage - Deprecated!
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Effectively a wrapper around kmap_local_page() which disables pagefaults
* and preemption.
*
* Do not use in new code. Use kmap_local_page() instead.
*/
static inline void *kmap_atomic(struct page *page);
/**
* kunmap_atomic - Unmap the virtual address mapped by kmap_atomic()
* @addr: Virtual address to be unmapped
*
* Counterpart to kmap_atomic().
*
* Effectively a wrapper around kunmap_local() which additionally undoes
* the side effects of kmap_atomic(), i.e. reenabling pagefaults and
* preemption.
*/
/* Highmem related interfaces for management code */
static inline unsigned int nr_free_highpages(void);
static inline unsigned long totalhigh_pages(void);
#ifndef ARCH_HAS_FLUSH_ANON_PAGE
static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
2020-06-05 02:47:34 +03:00
{
}
#endif
#ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
static inline void flush_kernel_dcache_page(struct page *page)
{
}
static inline void flush_kernel_vmap_range(void *vaddr, int size)
{
}
static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
{
}
#endif
/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
Allow architectures to override copy_user_highpage() With aliasing VIPT cache support, the ARM implementation of clear_user_page() and copy_user_page() sets up a temporary kernel space mapping such that we have the same cache colour as the userspace page. This avoids having to consider any userspace aliases from this operation. However, when highmem is enabled, kmap_atomic() have to setup mappings. The copy_user_highpage() and clear_user_highpage() call these functions before delegating the copies to copy_user_page() and clear_user_page(). The effect of this is that each of the *_user_highpage() functions setup their own kmap mapping, followed by the *_user_page() functions setting up another mapping. This is rather wasteful. Thankfully, copy_user_highpage() can be overriden by architectures by defining __HAVE_ARCH_COPY_USER_HIGHPAGE. However, replacement of clear_user_highpage() is more difficult because its inline definition is not conditional. It seems that you're expected to define __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and provide a replacement __alloc_zeroed_user_highpage() implementation instead. The allocation itself is fine, so we don't want to override that. What we really want to do is to override clear_user_highpage() with our own version which doesn't kmap_atomic() unnecessarily. Other VIPT architectures (PARISC and SH) would also like to override this function as well. Acked-by: Hugh Dickins <hugh@veritas.com> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-11-27 14:13:58 +03:00
#ifndef clear_user_highpage
static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
{
void *addr = kmap_atomic(page);
clear_user_page(addr, vaddr, page);
kunmap_atomic(addr);
}
Allow architectures to override copy_user_highpage() With aliasing VIPT cache support, the ARM implementation of clear_user_page() and copy_user_page() sets up a temporary kernel space mapping such that we have the same cache colour as the userspace page. This avoids having to consider any userspace aliases from this operation. However, when highmem is enabled, kmap_atomic() have to setup mappings. The copy_user_highpage() and clear_user_highpage() call these functions before delegating the copies to copy_user_page() and clear_user_page(). The effect of this is that each of the *_user_highpage() functions setup their own kmap mapping, followed by the *_user_page() functions setting up another mapping. This is rather wasteful. Thankfully, copy_user_highpage() can be overriden by architectures by defining __HAVE_ARCH_COPY_USER_HIGHPAGE. However, replacement of clear_user_highpage() is more difficult because its inline definition is not conditional. It seems that you're expected to define __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and provide a replacement __alloc_zeroed_user_highpage() implementation instead. The allocation itself is fine, so we don't want to override that. What we really want to do is to override clear_user_highpage() with our own version which doesn't kmap_atomic() unnecessarily. Other VIPT architectures (PARISC and SH) would also like to override this function as well. Acked-by: Hugh Dickins <hugh@veritas.com> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-11-27 14:13:58 +03:00
#endif
#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE
Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated It is often known at allocation time whether a page may be migrated or not. This patch adds a flag called __GFP_MOVABLE and a new mask called GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated using the page migration mechanism or reclaimed by syncing with backing storage and discarding. An API function very similar to alloc_zeroed_user_highpage() is added for __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The flags used by alloc_zeroed_user_highpage() are not changed because it would change the semantics of an existing API. After this patch is applied there are no in-kernel users of alloc_zeroed_user_highpage() so it probably should be marked deprecated if this patch is merged. Note that this patch includes a minor cleanup to the use of __GFP_ZERO in shmem.c to keep all flag modifications to inode->mapping in the shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of Hugh Dickens. Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the concept. Credit to Hugh Dickens for catching issues with shmem swap vector and ramfs allocations. [akpm@linux-foundation.org: build fix] [hugh@veritas.com: __GFP_ZERO cleanup] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:03:05 +04:00
/**
* __alloc_zeroed_user_highpage - Allocate a zeroed HIGHMEM page for a VMA with caller-specified movable GFP flags
* @movableflags: The GFP flags related to the pages future ability to move like __GFP_MOVABLE
* @vma: The VMA the page is to be allocated for
* @vaddr: The virtual address the page will be inserted into
*
* This function will allocate a page for a VMA but the caller is expected
* to specify via movableflags whether the page will be movable in the
* future or not
*
* An architecture may override this function by defining
* __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and providing their own
* implementation.
*/
static inline struct page *
Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated It is often known at allocation time whether a page may be migrated or not. This patch adds a flag called __GFP_MOVABLE and a new mask called GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated using the page migration mechanism or reclaimed by syncing with backing storage and discarding. An API function very similar to alloc_zeroed_user_highpage() is added for __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The flags used by alloc_zeroed_user_highpage() are not changed because it would change the semantics of an existing API. After this patch is applied there are no in-kernel users of alloc_zeroed_user_highpage() so it probably should be marked deprecated if this patch is merged. Note that this patch includes a minor cleanup to the use of __GFP_ZERO in shmem.c to keep all flag modifications to inode->mapping in the shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of Hugh Dickens. Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the concept. Credit to Hugh Dickens for catching issues with shmem swap vector and ramfs allocations. [akpm@linux-foundation.org: build fix] [hugh@veritas.com: __GFP_ZERO cleanup] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:03:05 +04:00
__alloc_zeroed_user_highpage(gfp_t movableflags,
struct vm_area_struct *vma,
unsigned long vaddr)
{
Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated It is often known at allocation time whether a page may be migrated or not. This patch adds a flag called __GFP_MOVABLE and a new mask called GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated using the page migration mechanism or reclaimed by syncing with backing storage and discarding. An API function very similar to alloc_zeroed_user_highpage() is added for __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The flags used by alloc_zeroed_user_highpage() are not changed because it would change the semantics of an existing API. After this patch is applied there are no in-kernel users of alloc_zeroed_user_highpage() so it probably should be marked deprecated if this patch is merged. Note that this patch includes a minor cleanup to the use of __GFP_ZERO in shmem.c to keep all flag modifications to inode->mapping in the shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of Hugh Dickens. Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the concept. Credit to Hugh Dickens for catching issues with shmem swap vector and ramfs allocations. [akpm@linux-foundation.org: build fix] [hugh@veritas.com: __GFP_ZERO cleanup] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:03:05 +04:00
struct page *page = alloc_page_vma(GFP_HIGHUSER | movableflags,
vma, vaddr);
if (page)
clear_user_highpage(page, vaddr);
return page;
}
#endif
Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated It is often known at allocation time whether a page may be migrated or not. This patch adds a flag called __GFP_MOVABLE and a new mask called GFP_HIGH_MOVABLE. Allocations using the __GFP_MOVABLE can be either migrated using the page migration mechanism or reclaimed by syncing with backing storage and discarding. An API function very similar to alloc_zeroed_user_highpage() is added for __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable(). The flags used by alloc_zeroed_user_highpage() are not changed because it would change the semantics of an existing API. After this patch is applied there are no in-kernel users of alloc_zeroed_user_highpage() so it probably should be marked deprecated if this patch is merged. Note that this patch includes a minor cleanup to the use of __GFP_ZERO in shmem.c to keep all flag modifications to inode->mapping in the shmem_dir_alloc() helper function. This clean-up suggestion is courtesy of Hugh Dickens. Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the concept. Credit to Hugh Dickens for catching issues with shmem swap vector and ramfs allocations. [akpm@linux-foundation.org: build fix] [hugh@veritas.com: __GFP_ZERO cleanup] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:03:05 +04:00
/**
* alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
* @vma: The VMA the page is to be allocated for
* @vaddr: The virtual address the page will be inserted into
*
* This function will allocate a page for a VMA that the caller knows will
* be able to migrate in the future using move_pages() or reclaimed
*/
static inline struct page *
alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
unsigned long vaddr)
{
return __alloc_zeroed_user_highpage(__GFP_MOVABLE, vma, vaddr);
}
static inline void clear_highpage(struct page *page)
{
void *kaddr = kmap_atomic(page);
clear_page(kaddr);
kunmap_atomic(kaddr);
}
/*
* If we pass in a base or tail page, we can zero up to PAGE_SIZE.
* If we pass in a head page, we can zero up to the size of the compound page.
*/
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
unsigned start2, unsigned end2);
#else /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
static inline void zero_user_segments(struct page *page,
unsigned start1, unsigned end1,
unsigned start2, unsigned end2)
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
{
void *kaddr = kmap_atomic(page);
unsigned int i;
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
BUG_ON(end1 > page_size(page) || end2 > page_size(page));
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
if (end1 > start1)
memset(kaddr + start1, 0, end1 - start1);
if (end2 > start2)
memset(kaddr + start2, 0, end2 - start2);
kunmap_atomic(kaddr);
for (i = 0; i < compound_nr(page); i++)
flush_dcache_page(page + i);
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
}
#endif /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:28:29 +03:00
static inline void zero_user_segment(struct page *page,
unsigned start, unsigned end)
{
zero_user_segments(page, start, end, 0, 0);
}
static inline void zero_user(struct page *page,
unsigned start, unsigned size)
{
zero_user_segments(page, start, start + size, 0, 0);
}
#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
static inline void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
char *vfrom, *vto;
vfrom = kmap_atomic(from);
vto = kmap_atomic(to);
copy_user_page(vto, vfrom, vaddr, to);
kunmap_atomic(vto);
kunmap_atomic(vfrom);
}
#endif
#ifndef __HAVE_ARCH_COPY_HIGHPAGE
static inline void copy_highpage(struct page *to, struct page *from)
{
char *vfrom, *vto;
vfrom = kmap_atomic(from);
vto = kmap_atomic(to);
copy_page(vto, vfrom);
kunmap_atomic(vto);
kunmap_atomic(vfrom);
}
#endif
static inline void memcpy_page(struct page *dst_page, size_t dst_off,
struct page *src_page, size_t src_off,
size_t len)
{
char *dst = kmap_local_page(dst_page);
char *src = kmap_local_page(src_page);
VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
memcpy(dst + dst_off, src + src_off, len);
kunmap_local(src);
kunmap_local(dst);
}
static inline void memmove_page(struct page *dst_page, size_t dst_off,
struct page *src_page, size_t src_off,
size_t len)
{
char *dst = kmap_local_page(dst_page);
char *src = kmap_local_page(src_page);
VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
memmove(dst + dst_off, src + src_off, len);
kunmap_local(src);
kunmap_local(dst);
}
static inline void memset_page(struct page *page, size_t offset, int val,
size_t len)
{
char *addr = kmap_local_page(page);
VM_BUG_ON(offset + len > PAGE_SIZE);
memset(addr + offset, val, len);
kunmap_local(addr);
}
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
static inline void memcpy_from_page(char *to, struct page *page,
size_t offset, size_t len)
{
char *from = kmap_local_page(page);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
VM_BUG_ON(offset + len > PAGE_SIZE);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
memcpy(to, from + offset, len);
kunmap_local(from);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
}
static inline void memcpy_to_page(struct page *page, size_t offset,
const char *from, size_t len)
{
char *to = kmap_local_page(page);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
VM_BUG_ON(offset + len > PAGE_SIZE);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
memcpy(to + offset, from, len);
kunmap_local(to);
mm/highmem: Lift memcpy_[to|from]_page to core Working through a conversion to a call kmap_local_page() instead of kmap() revealed many places where the pattern kmap/memcpy/kunmap occurred. Eric Biggers, Matthew Wilcox, Christoph Hellwig, Dan Williams, and Al Viro all suggested putting this code into helper functions. Al Viro further pointed out that these functions already existed in the iov_iter code.[1] Various locations for the lifted functions were considered. Headers like mm.h or string.h seem ok but don't really portray the functionality well. pagemap.h made some sense but is for page cache functionality.[2] Another alternative would be to create a new header for the promoted memcpy functions, but it masks the fact that these are designed to copy to/from pages using the kernel direct mappings and complicates matters with a new header. Placing these functions in 'highmem.h' is suboptimal especially with the changes being proposed in the functionality of kmap. From a caller perspective including/using 'highmem.h' implies that the functions defined in that header are only required when highmem is in use which is increasingly not the case with modern processors. However, highmem.h is where all the current functions like this reside (zero_user(), clear_highpage(), clear_user_highpage(), copy_user_highpage(), and copy_highpage()). So it makes the most sense even though it is distasteful for some.[3] Lift memcpy_to_page() and memcpy_from_page() to pagemap.h. [1] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/ https://lore.kernel.org/lkml/20201013112544.GA5249@infradead.org/ [2] https://lore.kernel.org/lkml/20201208122316.GH7338@casper.infradead.org/ [3] https://lore.kernel.org/lkml/20201013200149.GI3576660@ZenIV.linux.org.uk/#t https://lore.kernel.org/lkml/20201208163814.GN1563847@iweiny-DESK2.sc.intel.com/ Cc: Boris Pismenny <borisp@mellanox.com> Cc: Or Gerlitz <gerlitz.or@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Christoph Hellwig <hch@infradead.org> Suggested-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Eric Biggers <ebiggers@kernel.org> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-10 09:22:14 +03:00
}
#endif /* _LINUX_HIGHMEM_H */