WSL2-Linux-Kernel/kernel/power/swap.c

545 строки
13 KiB
C
Исходник Обычный вид История

/*
* linux/kernel/power/swap.c
*
* This file provides functions for reading the suspend image from
* and writing it to a swap partition.
*
* Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
*
* This file is released under the GPLv2.
*
*/
#include <linux/module.h>
#include <linux/smp_lock.h>
#include <linux/file.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/buffer_head.h>
#include <linux/bio.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pm.h>
#include "power.h"
extern char resume_file[];
#define SWSUSP_SIG "S1SUSPEND"
static struct swsusp_header {
char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
swp_entry_t image;
char orig_sig[10];
char sig[10];
} __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
/*
* Saving part...
*/
static unsigned short root_swap = 0xffff;
static int mark_swapfiles(swp_entry_t start)
{
int error;
rw_swap_page_sync(READ,
swp_entry(root_swap, 0),
virt_to_page((unsigned long)&swsusp_header));
if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
!memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
swsusp_header.image = start;
error = rw_swap_page_sync(WRITE,
swp_entry(root_swap, 0),
virt_to_page((unsigned long)
&swsusp_header));
} else {
pr_debug("swsusp: Partition is not swap space.\n");
error = -ENODEV;
}
return error;
}
/**
* swsusp_swap_check - check if the resume device is a swap device
* and get its index (if so)
*/
static int swsusp_swap_check(void) /* This is called before saving image */
{
int res = swap_type_of(swsusp_resume_device);
if (res >= 0) {
root_swap = res;
return 0;
}
return res;
}
/**
* write_page - Write one page to given swap location.
* @buf: Address we're writing.
* @offset: Offset of the swap page we're writing to.
*/
static int write_page(void *buf, unsigned long offset)
{
swp_entry_t entry;
int error = -ENOSPC;
if (offset) {
entry = swp_entry(root_swap, offset);
error = rw_swap_page_sync(WRITE, entry, virt_to_page(buf));
}
return error;
}
/*
* The swap map is a data structure used for keeping track of each page
* written to a swap partition. It consists of many swap_map_page
* structures that contain each an array of MAP_PAGE_SIZE swap entries.
* These structures are stored on the swap and linked together with the
* help of the .next_swap member.
*
* The swap map is created during suspend. The swap map pages are
* allocated and populated one at a time, so we only need one memory
* page to set up the entire structure.
*
* During resume we also only need to use one swap_map_page structure
* at a time.
*/
#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(long) - 1)
struct swap_map_page {
unsigned long entries[MAP_PAGE_ENTRIES];
unsigned long next_swap;
};
/**
* The swap_map_handle structure is used for handling swap in
* a file-alike way
*/
struct swap_map_handle {
struct swap_map_page *cur;
unsigned long cur_swap;
struct bitmap_page *bitmap;
unsigned int k;
};
static void release_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
if (handle->bitmap)
free_bitmap(handle->bitmap);
handle->bitmap = NULL;
}
static int get_swap_writer(struct swap_map_handle *handle)
{
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
if (!handle->cur)
return -ENOMEM;
handle->bitmap = alloc_bitmap(count_swap_pages(root_swap, 0));
if (!handle->bitmap) {
release_swap_writer(handle);
return -ENOMEM;
}
handle->cur_swap = alloc_swap_page(root_swap, handle->bitmap);
if (!handle->cur_swap) {
release_swap_writer(handle);
return -ENOSPC;
}
handle->k = 0;
return 0;
}
static int swap_write_page(struct swap_map_handle *handle, void *buf)
{
int error;
unsigned long offset;
if (!handle->cur)
return -EINVAL;
offset = alloc_swap_page(root_swap, handle->bitmap);
error = write_page(buf, offset);
if (error)
return error;
handle->cur->entries[handle->k++] = offset;
if (handle->k >= MAP_PAGE_ENTRIES) {
offset = alloc_swap_page(root_swap, handle->bitmap);
if (!offset)
return -ENOSPC;
handle->cur->next_swap = offset;
error = write_page(handle->cur, handle->cur_swap);
if (error)
return error;
memset(handle->cur, 0, PAGE_SIZE);
handle->cur_swap = offset;
handle->k = 0;
}
return 0;
}
static int flush_swap_writer(struct swap_map_handle *handle)
{
if (handle->cur && handle->cur_swap)
return write_page(handle->cur, handle->cur_swap);
else
return -EINVAL;
}
/**
* save_image - save the suspend image data
*/
static int save_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_pages)
{
unsigned int m;
int ret;
int error = 0;
printk("Saving image data pages (%u pages) ... ", nr_pages);
m = nr_pages / 100;
if (!m)
m = 1;
nr_pages = 0;
do {
ret = snapshot_read_next(snapshot, PAGE_SIZE);
if (ret > 0) {
error = swap_write_page(handle, data_of(*snapshot));
if (error)
break;
if (!(nr_pages % m))
printk("\b\b\b\b%3d%%", nr_pages / m);
nr_pages++;
}
} while (ret > 0);
if (!error)
printk("\b\b\b\bdone\n");
return error;
}
/**
* enough_swap - Make sure we have enough swap to save the image.
*
* Returns TRUE or FALSE after checking the total amount of swap
* space avaiable from the resume partition.
*/
static int enough_swap(unsigned int nr_pages)
{
unsigned int free_swap = count_swap_pages(root_swap, 1);
pr_debug("swsusp: free swap pages: %u\n", free_swap);
return free_swap > (nr_pages + PAGES_FOR_IO +
(nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
}
/**
* swsusp_write - Write entire image and metadata.
*
* It is important _NOT_ to umount filesystems at this point. We want
* them synced (in case something goes wrong) but we DO not want to mark
* filesystem clean: it is not. (And it does not matter, if we resume
* correctly, we'll mark system clean, anyway.)
*/
int swsusp_write(void)
{
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
unsigned long start;
int error;
if ((error = swsusp_swap_check())) {
printk(KERN_ERR "swsusp: Cannot find swap device, try swapon -a.\n");
return error;
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_read_next(&snapshot, PAGE_SIZE);
if (error < PAGE_SIZE)
return error < 0 ? error : -EFAULT;
header = (struct swsusp_info *)data_of(snapshot);
if (!enough_swap(header->pages)) {
printk(KERN_ERR "swsusp: Not enough free swap\n");
return -ENOSPC;
}
error = get_swap_writer(&handle);
if (!error) {
start = handle.cur_swap;
error = swap_write_page(&handle, header);
}
if (!error)
error = save_image(&handle, &snapshot, header->pages - 1);
if (!error) {
flush_swap_writer(&handle);
printk("S");
error = mark_swapfiles(swp_entry(root_swap, start));
printk("|\n");
}
if (error)
free_all_swap_pages(root_swap, handle.bitmap);
release_swap_writer(&handle);
return error;
}
/*
* Using bio to read from swap.
* This code requires a bit more work than just using buffer heads
* but, it is the recommended way for 2.5/2.6.
* The following are to signal the beginning and end of I/O. Bios
* finish asynchronously, while we want them to happen synchronously.
* A simple atomic_t, and a wait loop take care of this problem.
*/
static atomic_t io_done = ATOMIC_INIT(0);
static int end_io(struct bio *bio, unsigned int num, int err)
{
if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
panic("I/O error reading memory image");
atomic_set(&io_done, 0);
return 0;
}
static struct block_device *resume_bdev;
/**
* submit - submit BIO request.
* @rw: READ or WRITE.
* @off physical offset of page.
* @page: page we're reading or writing.
*
* Straight from the textbook - allocate and initialize the bio.
* If we're writing, make sure the page is marked as dirty.
* Then submit it and wait.
*/
static int submit(int rw, pgoff_t page_off, void *page)
{
int error = 0;
struct bio *bio;
bio = bio_alloc(GFP_ATOMIC, 1);
if (!bio)
return -ENOMEM;
bio->bi_sector = page_off * (PAGE_SIZE >> 9);
bio->bi_bdev = resume_bdev;
bio->bi_end_io = end_io;
if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
error = -EFAULT;
goto Done;
}
atomic_set(&io_done, 1);
submit_bio(rw | (1 << BIO_RW_SYNC), bio);
while (atomic_read(&io_done))
yield();
if (rw == READ)
bio_set_pages_dirty(bio);
Done:
bio_put(bio);
return error;
}
static int bio_read_page(pgoff_t page_off, void *page)
{
return submit(READ, page_off, page);
}
static int bio_write_page(pgoff_t page_off, void *page)
{
return submit(WRITE, page_off, page);
}
/**
* The following functions allow us to read data using a swap map
* in a file-alike way
*/
static void release_swap_reader(struct swap_map_handle *handle)
{
if (handle->cur)
free_page((unsigned long)handle->cur);
handle->cur = NULL;
}
static int get_swap_reader(struct swap_map_handle *handle,
swp_entry_t start)
{
int error;
if (!swp_offset(start))
return -EINVAL;
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
if (!handle->cur)
return -ENOMEM;
error = bio_read_page(swp_offset(start), handle->cur);
if (error) {
release_swap_reader(handle);
return error;
}
handle->k = 0;
return 0;
}
static int swap_read_page(struct swap_map_handle *handle, void *buf)
{
unsigned long offset;
int error;
if (!handle->cur)
return -EINVAL;
offset = handle->cur->entries[handle->k];
if (!offset)
return -EFAULT;
error = bio_read_page(offset, buf);
if (error)
return error;
if (++handle->k >= MAP_PAGE_ENTRIES) {
handle->k = 0;
offset = handle->cur->next_swap;
if (!offset)
release_swap_reader(handle);
else
error = bio_read_page(offset, handle->cur);
}
return error;
}
/**
* load_image - load the image using the swap map handle
* @handle and the snapshot handle @snapshot
* (assume there are @nr_pages pages to load)
*/
static int load_image(struct swap_map_handle *handle,
struct snapshot_handle *snapshot,
unsigned int nr_pages)
{
unsigned int m;
int ret;
int error = 0;
printk("Loading image data pages (%u pages) ... ", nr_pages);
m = nr_pages / 100;
if (!m)
m = 1;
nr_pages = 0;
do {
ret = snapshot_write_next(snapshot, PAGE_SIZE);
if (ret > 0) {
error = swap_read_page(handle, data_of(*snapshot));
if (error)
break;
if (!(nr_pages % m))
printk("\b\b\b\b%3d%%", nr_pages / m);
nr_pages++;
}
} while (ret > 0);
if (!error)
printk("\b\b\b\bdone\n");
if (!snapshot_image_loaded(snapshot))
error = -ENODATA;
return error;
}
int swsusp_read(void)
{
int error;
struct swap_map_handle handle;
struct snapshot_handle snapshot;
struct swsusp_info *header;
if (IS_ERR(resume_bdev)) {
pr_debug("swsusp: block device not initialised\n");
return PTR_ERR(resume_bdev);
}
memset(&snapshot, 0, sizeof(struct snapshot_handle));
error = snapshot_write_next(&snapshot, PAGE_SIZE);
if (error < PAGE_SIZE)
return error < 0 ? error : -EFAULT;
header = (struct swsusp_info *)data_of(snapshot);
error = get_swap_reader(&handle, swsusp_header.image);
if (!error)
error = swap_read_page(&handle, header);
if (!error)
error = load_image(&handle, &snapshot, header->pages - 1);
release_swap_reader(&handle);
blkdev_put(resume_bdev);
if (!error)
pr_debug("swsusp: Reading resume file was successful\n");
else
pr_debug("swsusp: Error %d resuming\n", error);
return error;
}
/**
* swsusp_check - Check for swsusp signature in the resume device
*/
int swsusp_check(void)
{
int error;
resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
if (!IS_ERR(resume_bdev)) {
set_blocksize(resume_bdev, PAGE_SIZE);
memset(&swsusp_header, 0, sizeof(swsusp_header));
if ((error = bio_read_page(0, &swsusp_header)))
return error;
if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
/* Reset swap signature now */
error = bio_write_page(0, &swsusp_header);
} else {
return -EINVAL;
}
if (error)
blkdev_put(resume_bdev);
else
pr_debug("swsusp: Signature found, resuming\n");
} else {
error = PTR_ERR(resume_bdev);
}
if (error)
pr_debug("swsusp: Error %d check for resume file\n", error);
return error;
}
/**
* swsusp_close - close swap device.
*/
void swsusp_close(void)
{
if (IS_ERR(resume_bdev)) {
pr_debug("swsusp: block device not initialised\n");
return;
}
blkdev_put(resume_bdev);
}