WSL2-Linux-Kernel/include/linux/journal-head.h

115 строки
2.9 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/journal-head.h
*
* buffer_head fields for JBD
*
* 27 May 2001 Andrew Morton
* Created - pulled out of fs.h
*/
#ifndef JOURNAL_HEAD_H_INCLUDED
#define JOURNAL_HEAD_H_INCLUDED
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
#include <linux/spinlock.h>
typedef unsigned int tid_t; /* Unique transaction ID */
typedef struct transaction_s transaction_t; /* Compound transaction type */
jbd2: Add buffer triggers Filesystems often to do compute intensive operation on some metadata. If this operation is repeated many times, it can be very expensive. It would be much nicer if the operation could be performed once before a buffer goes to disk. This adds triggers to jbd2 buffer heads. Just before writing a metadata buffer to the journal, jbd2 will optionally call a commit trigger associated with the buffer. If the journal is aborted, an abort trigger will be called on any dirty buffers as they are dropped from pending transactions. ocfs2 will use this feature. Initially I tried to come up with a more generic trigger that could be used for non-buffer-related events like transaction completion. It doesn't tie nicely, because the information a buffer trigger needs (specific to a journal_head) isn't the same as what a transaction trigger needs (specific to a tranaction_t or perhaps journal_t). So I implemented a buffer set, with the understanding that journal/transaction wide triggers should be implemented separately. There is only one trigger set allowed per buffer. I can't think of any reason to attach more than one set. Contrast this with a journal or transaction in which multiple places may want to watch the entire transaction separately. The trigger sets are considered static allocation from the jbd2 perspective. ocfs2 will just have one trigger set per block type, setting the same set on every bh of the same type. Signed-off-by: Joel Becker <joel.becker@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-09-12 02:35:47 +04:00
struct buffer_head;
struct journal_head {
/*
* Points back to our buffer_head. [jbd_lock_bh_journal_head()]
*/
struct buffer_head *b_bh;
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
/*
* Protect the buffer head state
*/
spinlock_t b_state_lock;
/*
* Reference count - see description in journal.c
* [jbd_lock_bh_journal_head()]
*/
int b_jcount;
/*
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* Journalling list for this buffer [b_state_lock]
* NOTE: We *cannot* combine this with b_modified into a bitfield
* as gcc would then (which the C standard allows but which is
* very unuseful) make 64-bit accesses to the bitfield and clobber
* b_jcount if its update races with bitfield modification.
*/
unsigned b_jlist;
/*
* This flag signals the buffer has been modified by
* the currently running transaction
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* [b_state_lock]
*/
unsigned b_modified;
/*
* Copy of the buffer data frozen for writing to the log.
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* [b_state_lock]
*/
char *b_frozen_data;
/*
* Pointer to a saved copy of the buffer containing no uncommitted
* deallocation references, so that allocations can avoid overwriting
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* uncommitted deletes. [b_state_lock]
*/
char *b_committed_data;
/*
* Pointer to the compound transaction which owns this buffer's
* metadata: either the running transaction or the committing
* transaction (if there is one). Only applies to buffers on a
* transaction's data or metadata journaling list.
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* [j_list_lock] [b_state_lock]
* Either of these locks is enough for reading, both are needed for
* changes.
*/
transaction_t *b_transaction;
/*
* Pointer to the running compound transaction which is currently
* modifying the buffer's metadata, if there was already a transaction
* committing it when the new transaction touched it.
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* [t_list_lock] [b_state_lock]
*/
transaction_t *b_next_transaction;
/*
* Doubly-linked list of buffers on a transaction's data, metadata or
jbd2: Make state lock a spinlock Bit-spinlocks are problematic on PREEMPT_RT if functions which might sleep on RT, e.g. spin_lock(), alloc/free(), are invoked inside the lock held region because bit spinlocks disable preemption even on RT. A first attempt was to replace state lock with a spinlock placed in struct buffer_head and make the locking conditional on PREEMPT_RT and DEBUG_BIT_SPINLOCKS. Jan pointed out that there is a 4 byte hole in struct journal_head where a regular spinlock fits in and he would not object to convert the state lock to a spinlock unconditionally. Aside of solving the RT problem, this also gains lockdep coverage for the journal head state lock (bit-spinlocks are not covered by lockdep as it's hard to fit a lockdep map into a single bit). The trivial change would have been to convert the jbd_*lock_bh_state() inlines, but that comes with the downside that these functions take a buffer head pointer which needs to be converted to a journal head pointer which adds another level of indirection. As almost all functions which use this lock have a journal head pointer readily available, it makes more sense to remove the lock helper inlines and write out spin_*lock() at all call sites. Fixup all locking comments as well. Suggested-by: Jan Kara <jack@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jan Kara <jack@suse.cz> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jan Kara <jack@suse.com> Cc: linux-ext4@vger.kernel.org Link: https://lore.kernel.org/r/20190809124233.13277-7-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-08-09 15:42:32 +03:00
* forget queue. [t_list_lock] [b_state_lock]
*/
struct journal_head *b_tnext, *b_tprev;
/*
* Pointer to the compound transaction against which this buffer
* is checkpointed. Only dirty buffers can be checkpointed.
* [j_list_lock]
*/
transaction_t *b_cp_transaction;
/*
* Doubly-linked list of buffers still remaining to be flushed
* before an old transaction can be checkpointed.
* [j_list_lock]
*/
struct journal_head *b_cpnext, *b_cpprev;
jbd2: Add buffer triggers Filesystems often to do compute intensive operation on some metadata. If this operation is repeated many times, it can be very expensive. It would be much nicer if the operation could be performed once before a buffer goes to disk. This adds triggers to jbd2 buffer heads. Just before writing a metadata buffer to the journal, jbd2 will optionally call a commit trigger associated with the buffer. If the journal is aborted, an abort trigger will be called on any dirty buffers as they are dropped from pending transactions. ocfs2 will use this feature. Initially I tried to come up with a more generic trigger that could be used for non-buffer-related events like transaction completion. It doesn't tie nicely, because the information a buffer trigger needs (specific to a journal_head) isn't the same as what a transaction trigger needs (specific to a tranaction_t or perhaps journal_t). So I implemented a buffer set, with the understanding that journal/transaction wide triggers should be implemented separately. There is only one trigger set allowed per buffer. I can't think of any reason to attach more than one set. Contrast this with a journal or transaction in which multiple places may want to watch the entire transaction separately. The trigger sets are considered static allocation from the jbd2 perspective. ocfs2 will just have one trigger set per block type, setting the same set on every bh of the same type. Signed-off-by: Joel Becker <joel.becker@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: <linux-ext4@vger.kernel.org> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-09-12 02:35:47 +04:00
/* Trigger type */
struct jbd2_buffer_trigger_type *b_triggers;
/* Trigger type for the committing transaction's frozen data */
struct jbd2_buffer_trigger_type *b_frozen_triggers;
};
#endif /* JOURNAL_HEAD_H_INCLUDED */