WSL2-Linux-Kernel/drivers/vdpa/Kconfig

32 строки
828 B
Plaintext
Исходник Обычный вид История

vDPA: introduce vDPA bus vDPA device is a device that uses a datapath which complies with the virtio specifications with vendor specific control path. vDPA devices can be both physically located on the hardware or emulated by software. vDPA hardware devices are usually implemented through PCIE with the following types: - PF (Physical Function) - A single Physical Function - VF (Virtual Function) - Device that supports single root I/O virtualization (SR-IOV). Its Virtual Function (VF) represents a virtualized instance of the device that can be assigned to different partitions - ADI (Assignable Device Interface) and its equivalents - With technologies such as Intel Scalable IOV, a virtual device (VDEV) composed by host OS utilizing one or more ADIs. Or its equivalent like SF (Sub function) from Mellanox. >From a driver's perspective, depends on how and where the DMA translation is done, vDPA devices are split into two types: - Platform specific DMA translation - From the driver's perspective, the device can be used on a platform where device access to data in memory is limited and/or translated. An example is a PCIE vDPA whose DMA request was tagged via a bus (e.g PCIE) specific way. DMA translation and protection are done at PCIE bus IOMMU level. - Device specific DMA translation - The device implements DMA isolation and protection through its own logic. An example is a vDPA device which uses on-chip IOMMU. To hide the differences and complexity of the above types for a vDPA device/IOMMU options and in order to present a generic virtio device to the upper layer, a device agnostic framework is required. This patch introduces a software vDPA bus which abstracts the common attributes of vDPA device, vDPA bus driver and the communication method (vdpa_config_ops) between the vDPA device abstraction and the vDPA bus driver. This allows multiple types of drivers to be used for vDPA device like the virtio_vdpa and vhost_vdpa driver to operate on the bus and allow vDPA device could be used by either kernel virtio driver or userspace vhost drivers as: virtio drivers vhost drivers | | [virtio bus] [vhost uAPI] | | virtio device vhost device virtio_vdpa drv vhost_vdpa drv \ / [vDPA bus] | vDPA device hardware drv | [hardware bus] | vDPA hardware With the abstraction of vDPA bus and vDPA bus operations, the difference and complexity of the under layer hardware is hidden from upper layer. The vDPA bus drivers on top can use a unified vdpa_config_ops to control different types of vDPA device. Signed-off-by: Jason Wang <jasowang@redhat.com> Link: https://lore.kernel.org/r/20200326140125.19794-6-jasowang@redhat.com Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-03-26 17:01:21 +03:00
# SPDX-License-Identifier: GPL-2.0-only
menuconfig VDPA
tristate "vDPA drivers"
vDPA: introduce vDPA bus vDPA device is a device that uses a datapath which complies with the virtio specifications with vendor specific control path. vDPA devices can be both physically located on the hardware or emulated by software. vDPA hardware devices are usually implemented through PCIE with the following types: - PF (Physical Function) - A single Physical Function - VF (Virtual Function) - Device that supports single root I/O virtualization (SR-IOV). Its Virtual Function (VF) represents a virtualized instance of the device that can be assigned to different partitions - ADI (Assignable Device Interface) and its equivalents - With technologies such as Intel Scalable IOV, a virtual device (VDEV) composed by host OS utilizing one or more ADIs. Or its equivalent like SF (Sub function) from Mellanox. >From a driver's perspective, depends on how and where the DMA translation is done, vDPA devices are split into two types: - Platform specific DMA translation - From the driver's perspective, the device can be used on a platform where device access to data in memory is limited and/or translated. An example is a PCIE vDPA whose DMA request was tagged via a bus (e.g PCIE) specific way. DMA translation and protection are done at PCIE bus IOMMU level. - Device specific DMA translation - The device implements DMA isolation and protection through its own logic. An example is a vDPA device which uses on-chip IOMMU. To hide the differences and complexity of the above types for a vDPA device/IOMMU options and in order to present a generic virtio device to the upper layer, a device agnostic framework is required. This patch introduces a software vDPA bus which abstracts the common attributes of vDPA device, vDPA bus driver and the communication method (vdpa_config_ops) between the vDPA device abstraction and the vDPA bus driver. This allows multiple types of drivers to be used for vDPA device like the virtio_vdpa and vhost_vdpa driver to operate on the bus and allow vDPA device could be used by either kernel virtio driver or userspace vhost drivers as: virtio drivers vhost drivers | | [virtio bus] [vhost uAPI] | | virtio device vhost device virtio_vdpa drv vhost_vdpa drv \ / [vDPA bus] | vDPA device hardware drv | [hardware bus] | vDPA hardware With the abstraction of vDPA bus and vDPA bus operations, the difference and complexity of the under layer hardware is hidden from upper layer. The vDPA bus drivers on top can use a unified vdpa_config_ops to control different types of vDPA device. Signed-off-by: Jason Wang <jasowang@redhat.com> Link: https://lore.kernel.org/r/20200326140125.19794-6-jasowang@redhat.com Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-03-26 17:01:21 +03:00
help
Enable this module to support vDPA device that uses a
datapath which complies with virtio specifications with
vendor specific control path.
if VDPA
config VDPA_SIM
tristate "vDPA device simulator"
vhost: disable for OABI vhost is currently broken on the some ARM configs. The reason is that the ring element addresses are passed between components with different alignments assumptions. Thus, if guest selects a pointer and host then gets and dereferences it, then alignment assumed by the host's compiler might be greater than the actual alignment of the pointer. compiler on the host from assuming pointer is aligned. This actually triggers on ARM with -mabi=apcs-gnu - which is a deprecated configuration. With this OABI, compiler assumes that all structures are 4 byte aligned - which is stronger than virtio guarantees for available and used rings, which are merely 2 bytes. Thus a guest without -mabi=apcs-gnu running on top of host with -mabi=apcs-gnu will be broken. The correct fix is to force alignment of structures - however that is an intrusive fix that's best deferred until the next release. We didn't previously support such ancient systems at all - this surfaced after vdpa support prompted removing dependency of vhost on VIRTULIZATION. So for now, let's just add something along the lines of depends on !ARM || AEABI to the virtio Kconfig declaration, and add a comment that it has to do with struct member alignment. Note: we can't make VHOST and VHOST_RING themselves have a dependency since these are selected. Add a new symbol for that. We should be able to drop this dependency down the road. Fixes: 20c384f1ea1a0bc7 ("vhost: refine vhost and vringh kconfig") Suggested-by: Ard Biesheuvel <ardb@kernel.org> Suggested-by: Richard Earnshaw <Richard.Earnshaw@arm.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-04-06 15:12:47 +03:00
depends on RUNTIME_TESTING_MENU && HAS_DMA && VHOST_DPN
select VHOST_RING
default n
help
vDPA networking device simulator which loop TX traffic back
to RX. This device is used for testing, prototyping and
development of vDPA.
config IFCVF
tristate "Intel IFC VF vDPA driver"
depends on PCI_MSI
default n
help
This kernel module can drive Intel IFC VF NIC to offload
virtio dataplane traffic to hardware.
To compile this driver as a module, choose M here: the module will
be called ifcvf.
endif # VDPA