WSL2-Linux-Kernel/crypto/drbg.c

2148 строки
59 KiB
C
Исходник Обычный вид История

/*
* DRBG: Deterministic Random Bits Generator
* Based on NIST Recommended DRBG from NIST SP800-90A with the following
* properties:
* * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
* * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
* * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
* * with and without prediction resistance
*
* Copyright Stephan Mueller <smueller@chronox.de>, 2014
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* DRBG Usage
* ==========
* The SP 800-90A DRBG allows the user to specify a personalization string
* for initialization as well as an additional information string for each
* random number request. The following code fragments show how a caller
* uses the kernel crypto API to use the full functionality of the DRBG.
*
* Usage without any additional data
* ---------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
*
* drng = crypto_alloc_rng(drng_name, 0, 0);
* err = crypto_rng_get_bytes(drng, &data, DATALEN);
* crypto_free_rng(drng);
*
*
* Usage with personalization string during initialization
* -------------------------------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
* struct drbg_string pers;
* char personalization[11] = "some-string";
*
* drbg_string_fill(&pers, personalization, strlen(personalization));
* drng = crypto_alloc_rng(drng_name, 0, 0);
* // The reset completely re-initializes the DRBG with the provided
* // personalization string
* err = crypto_rng_reset(drng, &personalization, strlen(personalization));
* err = crypto_rng_get_bytes(drng, &data, DATALEN);
* crypto_free_rng(drng);
*
*
* Usage with additional information string during random number request
* ---------------------------------------------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
* char addtl_string[11] = "some-string";
* string drbg_string addtl;
*
* drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
* drng = crypto_alloc_rng(drng_name, 0, 0);
* // The following call is a wrapper to crypto_rng_get_bytes() and returns
* // the same error codes.
* err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
* crypto_free_rng(drng);
*
*
* Usage with personalization and additional information strings
* -------------------------------------------------------------
* Just mix both scenarios above.
*/
#include <crypto/drbg.h>
#include <linux/kernel.h>
/***************************************************************
* Backend cipher definitions available to DRBG
***************************************************************/
/*
* The order of the DRBG definitions here matter: every DRBG is registered
* as stdrng. Each DRBG receives an increasing cra_priority values the later
* they are defined in this array (see drbg_fill_array).
*
* HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
* the SHA256 / AES 256 over other ciphers. Thus, the favored
* DRBGs are the latest entries in this array.
*/
static const struct drbg_core drbg_cores[] = {
#ifdef CONFIG_CRYPTO_DRBG_CTR
{
.flags = DRBG_CTR | DRBG_STRENGTH128,
.statelen = 32, /* 256 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes128",
.backend_cra_name = "aes",
}, {
.flags = DRBG_CTR | DRBG_STRENGTH192,
.statelen = 40, /* 320 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes192",
.backend_cra_name = "aes",
}, {
.flags = DRBG_CTR | DRBG_STRENGTH256,
.statelen = 48, /* 384 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes256",
.backend_cra_name = "aes",
},
#endif /* CONFIG_CRYPTO_DRBG_CTR */
#ifdef CONFIG_CRYPTO_DRBG_HASH
{
.flags = DRBG_HASH | DRBG_STRENGTH128,
.statelen = 55, /* 440 bits */
.blocklen_bytes = 20,
.cra_name = "sha1",
.backend_cra_name = "sha1",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 111, /* 888 bits */
.blocklen_bytes = 48,
.cra_name = "sha384",
.backend_cra_name = "sha384",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 111, /* 888 bits */
.blocklen_bytes = 64,
.cra_name = "sha512",
.backend_cra_name = "sha512",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 55, /* 440 bits */
.blocklen_bytes = 32,
.cra_name = "sha256",
.backend_cra_name = "sha256",
},
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_HMAC
{
.flags = DRBG_HMAC | DRBG_STRENGTH128,
.statelen = 20, /* block length of cipher */
.blocklen_bytes = 20,
.cra_name = "hmac_sha1",
.backend_cra_name = "hmac(sha1)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 48, /* block length of cipher */
.blocklen_bytes = 48,
.cra_name = "hmac_sha384",
.backend_cra_name = "hmac(sha384)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 64, /* block length of cipher */
.blocklen_bytes = 64,
.cra_name = "hmac_sha512",
.backend_cra_name = "hmac(sha512)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 32, /* block length of cipher */
.blocklen_bytes = 32,
.cra_name = "hmac_sha256",
.backend_cra_name = "hmac(sha256)",
},
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
};
static int drbg_uninstantiate(struct drbg_state *drbg);
/******************************************************************
* Generic helper functions
******************************************************************/
/*
* Return strength of DRBG according to SP800-90A section 8.4
*
* @flags DRBG flags reference
*
* Return: normalized strength in *bytes* value or 32 as default
* to counter programming errors
*/
static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
{
switch (flags & DRBG_STRENGTH_MASK) {
case DRBG_STRENGTH128:
return 16;
case DRBG_STRENGTH192:
return 24;
case DRBG_STRENGTH256:
return 32;
default:
return 32;
}
}
/*
* FIPS 140-2 continuous self test for the noise source
* The test is performed on the noise source input data. Thus, the function
* implicitly knows the size of the buffer to be equal to the security
* strength.
*
* Note, this function disregards the nonce trailing the entropy data during
* initial seeding.
*
* drbg->drbg_mutex must have been taken.
*
* @drbg DRBG handle
* @entropy buffer of seed data to be checked
*
* return:
* 0 on success
* -EAGAIN on when the CTRNG is not yet primed
* < 0 on error
*/
static int drbg_fips_continuous_test(struct drbg_state *drbg,
const unsigned char *entropy)
{
unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
int ret = 0;
if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
return 0;
/* skip test if we test the overall system */
if (list_empty(&drbg->test_data.list))
return 0;
/* only perform test in FIPS mode */
if (!fips_enabled)
return 0;
if (!drbg->fips_primed) {
/* Priming of FIPS test */
memcpy(drbg->prev, entropy, entropylen);
drbg->fips_primed = true;
/* priming: another round is needed */
return -EAGAIN;
}
ret = memcmp(drbg->prev, entropy, entropylen);
if (!ret)
panic("DRBG continuous self test failed\n");
memcpy(drbg->prev, entropy, entropylen);
/* the test shall pass when the two values are not equal */
return 0;
}
/*
* Convert an integer into a byte representation of this integer.
* The byte representation is big-endian
*
* @val value to be converted
* @buf buffer holding the converted integer -- caller must ensure that
* buffer size is at least 32 bit
*/
#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
{
struct s {
__be32 conv;
};
struct s *conversion = (struct s *) buf;
conversion->conv = cpu_to_be32(val);
}
#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
/******************************************************************
* CTR DRBG callback functions
******************************************************************/
#ifdef CONFIG_CRYPTO_DRBG_CTR
#define CRYPTO_DRBG_CTR_STRING "CTR "
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
const unsigned char *key);
static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
const struct drbg_string *in);
static int drbg_init_sym_kernel(struct drbg_state *drbg);
static int drbg_fini_sym_kernel(struct drbg_state *drbg);
static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
u8 *inbuf, u32 inbuflen,
u8 *outbuf, u32 outlen);
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
#define DRBG_OUTSCRATCHLEN 256
/* BCC function for CTR DRBG as defined in 10.4.3 */
static int drbg_ctr_bcc(struct drbg_state *drbg,
unsigned char *out, const unsigned char *key,
struct list_head *in)
{
int ret = 0;
struct drbg_string *curr = NULL;
struct drbg_string data;
short cnt = 0;
drbg_string_fill(&data, out, drbg_blocklen(drbg));
/* 10.4.3 step 2 / 4 */
drbg_kcapi_symsetkey(drbg, key);
list_for_each_entry(curr, in, list) {
const unsigned char *pos = curr->buf;
size_t len = curr->len;
/* 10.4.3 step 4.1 */
while (len) {
/* 10.4.3 step 4.2 */
if (drbg_blocklen(drbg) == cnt) {
cnt = 0;
ret = drbg_kcapi_sym(drbg, out, &data);
if (ret)
return ret;
}
out[cnt] ^= *pos;
pos++;
cnt++;
len--;
}
}
/* 10.4.3 step 4.2 for last block */
if (cnt)
ret = drbg_kcapi_sym(drbg, out, &data);
return ret;
}
/*
* scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
* (and drbg_ctr_bcc, but this function does not need any temporary buffers),
* the scratchpad is used as follows:
* drbg_ctr_update:
* temp
* start: drbg->scratchpad
* length: drbg_statelen(drbg) + drbg_blocklen(drbg)
* note: the cipher writing into this variable works
* blocklen-wise. Now, when the statelen is not a multiple
* of blocklen, the generateion loop below "spills over"
* by at most blocklen. Thus, we need to give sufficient
* memory.
* df_data
* start: drbg->scratchpad +
* drbg_statelen(drbg) + drbg_blocklen(drbg)
* length: drbg_statelen(drbg)
*
* drbg_ctr_df:
* pad
* start: df_data + drbg_statelen(drbg)
* length: drbg_blocklen(drbg)
* iv
* start: pad + drbg_blocklen(drbg)
* length: drbg_blocklen(drbg)
* temp
* start: iv + drbg_blocklen(drbg)
* length: drbg_satelen(drbg) + drbg_blocklen(drbg)
* note: temp is the buffer that the BCC function operates
* on. BCC operates blockwise. drbg_statelen(drbg)
* is sufficient when the DRBG state length is a multiple
* of the block size. For AES192 (and maybe other ciphers)
* this is not correct and the length for temp is
* insufficient (yes, that also means for such ciphers,
* the final output of all BCC rounds are truncated).
* Therefore, add drbg_blocklen(drbg) to cover all
* possibilities.
*/
/* Derivation Function for CTR DRBG as defined in 10.4.2 */
static int drbg_ctr_df(struct drbg_state *drbg,
unsigned char *df_data, size_t bytes_to_return,
struct list_head *seedlist)
{
int ret = -EFAULT;
unsigned char L_N[8];
/* S3 is input */
struct drbg_string S1, S2, S4, cipherin;
LIST_HEAD(bcc_list);
unsigned char *pad = df_data + drbg_statelen(drbg);
unsigned char *iv = pad + drbg_blocklen(drbg);
unsigned char *temp = iv + drbg_blocklen(drbg);
size_t padlen = 0;
unsigned int templen = 0;
/* 10.4.2 step 7 */
unsigned int i = 0;
/* 10.4.2 step 8 */
const unsigned char *K = (unsigned char *)
"\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
unsigned char *X;
size_t generated_len = 0;
size_t inputlen = 0;
struct drbg_string *seed = NULL;
memset(pad, 0, drbg_blocklen(drbg));
memset(iv, 0, drbg_blocklen(drbg));
/* 10.4.2 step 1 is implicit as we work byte-wise */
/* 10.4.2 step 2 */
if ((512/8) < bytes_to_return)
return -EINVAL;
/* 10.4.2 step 2 -- calculate the entire length of all input data */
list_for_each_entry(seed, seedlist, list)
inputlen += seed->len;
drbg_cpu_to_be32(inputlen, &L_N[0]);
/* 10.4.2 step 3 */
drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
/* wrap the padlen appropriately */
if (padlen)
padlen = drbg_blocklen(drbg) - padlen;
/*
* pad / padlen contains the 0x80 byte and the following zero bytes.
* As the calculated padlen value only covers the number of zero
* bytes, this value has to be incremented by one for the 0x80 byte.
*/
padlen++;
pad[0] = 0x80;
/* 10.4.2 step 4 -- first fill the linked list and then order it */
drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
list_add_tail(&S1.list, &bcc_list);
drbg_string_fill(&S2, L_N, sizeof(L_N));
list_add_tail(&S2.list, &bcc_list);
list_splice_tail(seedlist, &bcc_list);
drbg_string_fill(&S4, pad, padlen);
list_add_tail(&S4.list, &bcc_list);
/* 10.4.2 step 9 */
while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
/*
* 10.4.2 step 9.1 - the padding is implicit as the buffer
* holds zeros after allocation -- even the increment of i
* is irrelevant as the increment remains within length of i
*/
drbg_cpu_to_be32(i, iv);
/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
if (ret)
goto out;
/* 10.4.2 step 9.3 */
i++;
templen += drbg_blocklen(drbg);
}
/* 10.4.2 step 11 */
X = temp + (drbg_keylen(drbg));
drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
/* 10.4.2 step 12: overwriting of outval is implemented in next step */
/* 10.4.2 step 13 */
drbg_kcapi_symsetkey(drbg, temp);
while (generated_len < bytes_to_return) {
short blocklen = 0;
/*
* 10.4.2 step 13.1: the truncation of the key length is
* implicit as the key is only drbg_blocklen in size based on
* the implementation of the cipher function callback
*/
ret = drbg_kcapi_sym(drbg, X, &cipherin);
if (ret)
goto out;
blocklen = (drbg_blocklen(drbg) <
(bytes_to_return - generated_len)) ?
drbg_blocklen(drbg) :
(bytes_to_return - generated_len);
/* 10.4.2 step 13.2 and 14 */
memcpy(df_data + generated_len, X, blocklen);
generated_len += blocklen;
}
ret = 0;
out:
memset(iv, 0, drbg_blocklen(drbg));
memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
memset(pad, 0, drbg_blocklen(drbg));
return ret;
}
/*
* update function of CTR DRBG as defined in 10.2.1.2
*
* The reseed variable has an enhanced meaning compared to the update
* functions of the other DRBGs as follows:
* 0 => initial seed from initialization
* 1 => reseed via drbg_seed
* 2 => first invocation from drbg_ctr_update when addtl is present. In
* this case, the df_data scratchpad is not deleted so that it is
* available for another calls to prevent calling the DF function
* again.
* 3 => second invocation from drbg_ctr_update. When the update function
* was called with addtl, the df_data memory already contains the
* DFed addtl information and we do not need to call DF again.
*/
static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = -EFAULT;
/* 10.2.1.2 step 1 */
unsigned char *temp = drbg->scratchpad;
unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
drbg_blocklen(drbg);
if (3 > reseed)
memset(df_data, 0, drbg_statelen(drbg));
if (!reseed) {
/*
* The DRBG uses the CTR mode of the underlying AES cipher. The
* CTR mode increments the counter value after the AES operation
* but SP800-90A requires that the counter is incremented before
* the AES operation. Hence, we increment it at the time we set
* it by one.
*/
crypto_inc(drbg->V, drbg_blocklen(drbg));
ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
drbg_keylen(drbg));
if (ret)
goto out;
}
/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
if (seed) {
ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
if (ret)
goto out;
}
ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
temp, drbg_statelen(drbg));
if (ret)
return ret;
/* 10.2.1.2 step 5 */
ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
drbg_keylen(drbg));
if (ret)
goto out;
/* 10.2.1.2 step 6 */
memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
/* See above: increment counter by one to compensate timing of CTR op */
crypto_inc(drbg->V, drbg_blocklen(drbg));
ret = 0;
out:
memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
if (2 != reseed)
memset(df_data, 0, drbg_statelen(drbg));
return ret;
}
/*
* scratchpad use: drbg_ctr_update is called independently from
* drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
*/
/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
static int drbg_ctr_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct list_head *addtl)
{
int ret;
int len = min_t(int, buflen, INT_MAX);
/* 10.2.1.5.2 step 2 */
if (addtl && !list_empty(addtl)) {
ret = drbg_ctr_update(drbg, addtl, 2);
if (ret)
return 0;
}
/* 10.2.1.5.2 step 4.1 */
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
if (ret)
return ret;
/* 10.2.1.5.2 step 6 */
ret = drbg_ctr_update(drbg, NULL, 3);
if (ret)
len = ret;
return len;
}
static const struct drbg_state_ops drbg_ctr_ops = {
.update = drbg_ctr_update,
.generate = drbg_ctr_generate,
.crypto_init = drbg_init_sym_kernel,
.crypto_fini = drbg_fini_sym_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_CTR */
/******************************************************************
* HMAC DRBG callback functions
******************************************************************/
#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
const struct list_head *in);
static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
const unsigned char *key);
static int drbg_init_hash_kernel(struct drbg_state *drbg);
static int drbg_fini_hash_kernel(struct drbg_state *drbg);
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
#ifdef CONFIG_CRYPTO_DRBG_HMAC
#define CRYPTO_DRBG_HMAC_STRING "HMAC "
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
/* update function of HMAC DRBG as defined in 10.1.2.2 */
static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = -EFAULT;
int i = 0;
struct drbg_string seed1, seed2, vdata;
LIST_HEAD(seedlist);
LIST_HEAD(vdatalist);
if (!reseed) {
/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
memset(drbg->V, 1, drbg_statelen(drbg));
drbg_kcapi_hmacsetkey(drbg, drbg->C);
}
drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
list_add_tail(&seed1.list, &seedlist);
/* buffer of seed2 will be filled in for loop below with one byte */
drbg_string_fill(&seed2, NULL, 1);
list_add_tail(&seed2.list, &seedlist);
/* input data of seed is allowed to be NULL at this point */
if (seed)
list_splice_tail(seed, &seedlist);
drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
list_add_tail(&vdata.list, &vdatalist);
for (i = 2; 0 < i; i--) {
/* first round uses 0x0, second 0x1 */
unsigned char prefix = DRBG_PREFIX0;
if (1 == i)
prefix = DRBG_PREFIX1;
/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
seed2.buf = &prefix;
ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
if (ret)
return ret;
drbg_kcapi_hmacsetkey(drbg, drbg->C);
/* 10.1.2.2 step 2 and 5 -- HMAC for V */
ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
if (ret)
return ret;
/* 10.1.2.2 step 3 */
if (!seed)
return ret;
}
return 0;
}
/* generate function of HMAC DRBG as defined in 10.1.2.5 */
static int drbg_hmac_generate(struct drbg_state *drbg,
unsigned char *buf,
unsigned int buflen,
struct list_head *addtl)
{
int len = 0;
int ret = 0;
struct drbg_string data;
LIST_HEAD(datalist);
/* 10.1.2.5 step 2 */
if (addtl && !list_empty(addtl)) {
ret = drbg_hmac_update(drbg, addtl, 1);
if (ret)
return ret;
}
drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
list_add_tail(&data.list, &datalist);
while (len < buflen) {
unsigned int outlen = 0;
/* 10.1.2.5 step 4.1 */
ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
if (ret)
return ret;
outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
drbg_blocklen(drbg) : (buflen - len);
/* 10.1.2.5 step 4.2 */
memcpy(buf + len, drbg->V, outlen);
len += outlen;
}
/* 10.1.2.5 step 6 */
if (addtl && !list_empty(addtl))
ret = drbg_hmac_update(drbg, addtl, 1);
else
ret = drbg_hmac_update(drbg, NULL, 1);
if (ret)
return ret;
return len;
}
static const struct drbg_state_ops drbg_hmac_ops = {
.update = drbg_hmac_update,
.generate = drbg_hmac_generate,
.crypto_init = drbg_init_hash_kernel,
.crypto_fini = drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
/******************************************************************
* Hash DRBG callback functions
******************************************************************/
#ifdef CONFIG_CRYPTO_DRBG_HASH
#define CRYPTO_DRBG_HASH_STRING "HASH "
MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
/*
* Increment buffer
*
* @dst buffer to increment
* @add value to add
*/
static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
const unsigned char *add, size_t addlen)
{
/* implied: dstlen > addlen */
unsigned char *dstptr;
const unsigned char *addptr;
unsigned int remainder = 0;
size_t len = addlen;
dstptr = dst + (dstlen-1);
addptr = add + (addlen-1);
while (len) {
remainder += *dstptr + *addptr;
*dstptr = remainder & 0xff;
remainder >>= 8;
len--; dstptr--; addptr--;
}
len = dstlen - addlen;
while (len && remainder > 0) {
remainder = *dstptr + 1;
*dstptr = remainder & 0xff;
remainder >>= 8;
len--; dstptr--;
}
}
/*
* scratchpad usage: as drbg_hash_update and drbg_hash_df are used
* interlinked, the scratchpad is used as follows:
* drbg_hash_update
* start: drbg->scratchpad
* length: drbg_statelen(drbg)
* drbg_hash_df:
* start: drbg->scratchpad + drbg_statelen(drbg)
* length: drbg_blocklen(drbg)
*
* drbg_hash_process_addtl uses the scratchpad, but fully completes
* before either of the functions mentioned before are invoked. Therefore,
* drbg_hash_process_addtl does not need to be specifically considered.
*/
/* Derivation Function for Hash DRBG as defined in 10.4.1 */
static int drbg_hash_df(struct drbg_state *drbg,
unsigned char *outval, size_t outlen,
struct list_head *entropylist)
{
int ret = 0;
size_t len = 0;
unsigned char input[5];
unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
struct drbg_string data;
/* 10.4.1 step 3 */
input[0] = 1;
drbg_cpu_to_be32((outlen * 8), &input[1]);
/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
drbg_string_fill(&data, input, 5);
list_add(&data.list, entropylist);
/* 10.4.1 step 4 */
while (len < outlen) {
short blocklen = 0;
/* 10.4.1 step 4.1 */
ret = drbg_kcapi_hash(drbg, tmp, entropylist);
if (ret)
goto out;
/* 10.4.1 step 4.2 */
input[0]++;
blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
drbg_blocklen(drbg) : (outlen - len);
memcpy(outval + len, tmp, blocklen);
len += blocklen;
}
out:
memset(tmp, 0, drbg_blocklen(drbg));
return ret;
}
/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = 0;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
LIST_HEAD(datalist2);
unsigned char *V = drbg->scratchpad;
unsigned char prefix = DRBG_PREFIX1;
if (!seed)
return -EINVAL;
if (reseed) {
/* 10.1.1.3 step 1 */
memcpy(V, drbg->V, drbg_statelen(drbg));
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist);
drbg_string_fill(&data2, V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist);
}
list_splice_tail(seed, &datalist);
/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
if (ret)
goto out;
/* 10.1.1.2 / 10.1.1.3 step 4 */
prefix = DRBG_PREFIX0;
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist2);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist2);
/* 10.1.1.2 / 10.1.1.3 step 4 */
ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
out:
memset(drbg->scratchpad, 0, drbg_statelen(drbg));
return ret;
}
/* processing of additional information string for Hash DRBG */
static int drbg_hash_process_addtl(struct drbg_state *drbg,
struct list_head *addtl)
{
int ret = 0;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
unsigned char prefix = DRBG_PREFIX2;
/* 10.1.1.4 step 2 */
if (!addtl || list_empty(addtl))
return 0;
/* 10.1.1.4 step 2a */
drbg_string_fill(&data1, &prefix, 1);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data1.list, &datalist);
list_add_tail(&data2.list, &datalist);
list_splice_tail(addtl, &datalist);
ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
if (ret)
goto out;
/* 10.1.1.4 step 2b */
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->scratchpad, drbg_blocklen(drbg));
out:
memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
return ret;
}
/* Hashgen defined in 10.1.1.4 */
static int drbg_hash_hashgen(struct drbg_state *drbg,
unsigned char *buf,
unsigned int buflen)
{
int len = 0;
int ret = 0;
unsigned char *src = drbg->scratchpad;
unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
struct drbg_string data;
LIST_HEAD(datalist);
/* 10.1.1.4 step hashgen 2 */
memcpy(src, drbg->V, drbg_statelen(drbg));
drbg_string_fill(&data, src, drbg_statelen(drbg));
list_add_tail(&data.list, &datalist);
while (len < buflen) {
unsigned int outlen = 0;
/* 10.1.1.4 step hashgen 4.1 */
ret = drbg_kcapi_hash(drbg, dst, &datalist);
if (ret) {
len = ret;
goto out;
}
outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
drbg_blocklen(drbg) : (buflen - len);
/* 10.1.1.4 step hashgen 4.2 */
memcpy(buf + len, dst, outlen);
len += outlen;
/* 10.1.1.4 hashgen step 4.3 */
if (len < buflen)
crypto_inc(src, drbg_statelen(drbg));
}
out:
memset(drbg->scratchpad, 0,
(drbg_statelen(drbg) + drbg_blocklen(drbg)));
return len;
}
/* generate function for Hash DRBG as defined in 10.1.1.4 */
static int drbg_hash_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct list_head *addtl)
{
int len = 0;
int ret = 0;
union {
unsigned char req[8];
__be64 req_int;
} u;
unsigned char prefix = DRBG_PREFIX3;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
/* 10.1.1.4 step 2 */
ret = drbg_hash_process_addtl(drbg, addtl);
if (ret)
return ret;
/* 10.1.1.4 step 3 */
len = drbg_hash_hashgen(drbg, buf, buflen);
/* this is the value H as documented in 10.1.1.4 */
/* 10.1.1.4 step 4 */
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist);
ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
if (ret) {
len = ret;
goto out;
}
/* 10.1.1.4 step 5 */
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->scratchpad, drbg_blocklen(drbg));
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->C, drbg_statelen(drbg));
u.req_int = cpu_to_be64(drbg->reseed_ctr);
drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
out:
memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
return len;
}
/*
* scratchpad usage: as update and generate are used isolated, both
* can use the scratchpad
*/
static const struct drbg_state_ops drbg_hash_ops = {
.update = drbg_hash_update,
.generate = drbg_hash_generate,
.crypto_init = drbg_init_hash_kernel,
.crypto_fini = drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HASH */
/******************************************************************
* Functions common for DRBG implementations
******************************************************************/
static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = drbg->d_ops->update(drbg, seed, reseed);
if (ret)
return ret;
drbg->seeded = true;
/* 10.1.1.2 / 10.1.1.3 step 5 */
drbg->reseed_ctr = 1;
return ret;
}
static inline int drbg_get_random_bytes(struct drbg_state *drbg,
unsigned char *entropy,
unsigned int entropylen)
{
int ret;
do {
get_random_bytes(entropy, entropylen);
ret = drbg_fips_continuous_test(drbg, entropy);
if (ret && ret != -EAGAIN)
return ret;
} while (ret);
return 0;
}
static void drbg_async_seed(struct work_struct *work)
{
struct drbg_string data;
LIST_HEAD(seedlist);
struct drbg_state *drbg = container_of(work, struct drbg_state,
seed_work);
unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
unsigned char entropy[32];
int ret;
BUG_ON(!entropylen);
BUG_ON(entropylen > sizeof(entropy));
drbg_string_fill(&data, entropy, entropylen);
list_add_tail(&data.list, &seedlist);
mutex_lock(&drbg->drbg_mutex);
ret = drbg_get_random_bytes(drbg, entropy, entropylen);
if (ret)
goto unlock;
/* If nonblocking pool is initialized, deactivate Jitter RNG */
crypto_free_rng(drbg->jent);
drbg->jent = NULL;
/* Set seeded to false so that if __drbg_seed fails the
* next generate call will trigger a reseed.
*/
drbg->seeded = false;
__drbg_seed(drbg, &seedlist, true);
if (drbg->seeded)
drbg->reseed_threshold = drbg_max_requests(drbg);
unlock:
mutex_unlock(&drbg->drbg_mutex);
memzero_explicit(entropy, entropylen);
}
/*
* Seeding or reseeding of the DRBG
*
* @drbg: DRBG state struct
* @pers: personalization / additional information buffer
* @reseed: 0 for initial seed process, 1 for reseeding
*
* return:
* 0 on success
* error value otherwise
*/
static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
bool reseed)
{
int ret;
unsigned char entropy[((32 + 16) * 2)];
unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
struct drbg_string data1;
LIST_HEAD(seedlist);
/* 9.1 / 9.2 / 9.3.1 step 3 */
if (pers && pers->len > (drbg_max_addtl(drbg))) {
pr_devel("DRBG: personalization string too long %zu\n",
pers->len);
return -EINVAL;
}
if (list_empty(&drbg->test_data.list)) {
drbg_string_fill(&data1, drbg->test_data.buf,
drbg->test_data.len);
pr_devel("DRBG: using test entropy\n");
} else {
/*
* Gather entropy equal to the security strength of the DRBG.
* With a derivation function, a nonce is required in addition
* to the entropy. A nonce must be at least 1/2 of the security
* strength of the DRBG in size. Thus, entropy + nonce is 3/2
* of the strength. The consideration of a nonce is only
* applicable during initial seeding.
*/
BUG_ON(!entropylen);
if (!reseed)
entropylen = ((entropylen + 1) / 2) * 3;
BUG_ON((entropylen * 2) > sizeof(entropy));
/* Get seed from in-kernel /dev/urandom */
ret = drbg_get_random_bytes(drbg, entropy, entropylen);
if (ret)
goto out;
if (!drbg->jent) {
drbg_string_fill(&data1, entropy, entropylen);
pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
entropylen);
} else {
/* Get seed from Jitter RNG */
ret = crypto_rng_get_bytes(drbg->jent,
entropy + entropylen,
entropylen);
if (ret) {
pr_devel("DRBG: jent failed with %d\n", ret);
goto out;
}
drbg_string_fill(&data1, entropy, entropylen * 2);
pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
entropylen * 2);
}
}
list_add_tail(&data1.list, &seedlist);
/*
* concatenation of entropy with personalization str / addtl input)
* the variable pers is directly handed in by the caller, so check its
* contents whether it is appropriate
*/
if (pers && pers->buf && 0 < pers->len) {
list_add_tail(&pers->list, &seedlist);
pr_devel("DRBG: using personalization string\n");
}
if (!reseed) {
memset(drbg->V, 0, drbg_statelen(drbg));
memset(drbg->C, 0, drbg_statelen(drbg));
}
ret = __drbg_seed(drbg, &seedlist, reseed);
out:
memzero_explicit(entropy, entropylen * 2);
return ret;
}
/* Free all substructures in a DRBG state without the DRBG state structure */
static inline void drbg_dealloc_state(struct drbg_state *drbg)
{
if (!drbg)
return;
kzfree(drbg->Vbuf);
drbg->Vbuf = NULL;
drbg->V = NULL;
kzfree(drbg->Cbuf);
drbg->Cbuf = NULL;
drbg->C = NULL;
kzfree(drbg->scratchpadbuf);
drbg->scratchpadbuf = NULL;
drbg->reseed_ctr = 0;
drbg->d_ops = NULL;
drbg->core = NULL;
if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
kzfree(drbg->prev);
drbg->prev = NULL;
drbg->fips_primed = false;
}
}
/*
* Allocate all sub-structures for a DRBG state.
* The DRBG state structure must already be allocated.
*/
static inline int drbg_alloc_state(struct drbg_state *drbg)
{
int ret = -ENOMEM;
unsigned int sb_size = 0;
switch (drbg->core->flags & DRBG_TYPE_MASK) {
#ifdef CONFIG_CRYPTO_DRBG_HMAC
case DRBG_HMAC:
drbg->d_ops = &drbg_hmac_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
#ifdef CONFIG_CRYPTO_DRBG_HASH
case DRBG_HASH:
drbg->d_ops = &drbg_hash_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_CTR
case DRBG_CTR:
drbg->d_ops = &drbg_ctr_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_CTR */
default:
ret = -EOPNOTSUPP;
goto err;
}
ret = drbg->d_ops->crypto_init(drbg);
if (ret < 0)
goto err;
drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
if (!drbg->Vbuf) {
ret = -ENOMEM;
goto fini;
}
drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
if (!drbg->Cbuf) {
ret = -ENOMEM;
goto fini;
}
drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
/* scratchpad is only generated for CTR and Hash */
if (drbg->core->flags & DRBG_HMAC)
sb_size = 0;
else if (drbg->core->flags & DRBG_CTR)
sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
drbg_statelen(drbg) + /* df_data */
drbg_blocklen(drbg) + /* pad */
drbg_blocklen(drbg) + /* iv */
drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
else
sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
if (0 < sb_size) {
drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
if (!drbg->scratchpadbuf) {
ret = -ENOMEM;
goto fini;
}
drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
}
if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
GFP_KERNEL);
if (!drbg->prev)
goto fini;
drbg->fips_primed = false;
}
return 0;
fini:
drbg->d_ops->crypto_fini(drbg);
err:
drbg_dealloc_state(drbg);
return ret;
}
/*************************************************************************
* DRBG interface functions
*************************************************************************/
/*
* DRBG generate function as required by SP800-90A - this function
* generates random numbers
*
* @drbg DRBG state handle
* @buf Buffer where to store the random numbers -- the buffer must already
* be pre-allocated by caller
* @buflen Length of output buffer - this value defines the number of random
* bytes pulled from DRBG
* @addtl Additional input that is mixed into state, may be NULL -- note
* the entropy is pulled by the DRBG internally unconditionally
* as defined in SP800-90A. The additional input is mixed into
* the state in addition to the pulled entropy.
*
* return: 0 when all bytes are generated; < 0 in case of an error
*/
static int drbg_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct drbg_string *addtl)
{
int len = 0;
LIST_HEAD(addtllist);
if (!drbg->core) {
pr_devel("DRBG: not yet seeded\n");
return -EINVAL;
}
if (0 == buflen || !buf) {
pr_devel("DRBG: no output buffer provided\n");
return -EINVAL;
}
if (addtl && NULL == addtl->buf && 0 < addtl->len) {
pr_devel("DRBG: wrong format of additional information\n");
return -EINVAL;
}
/* 9.3.1 step 2 */
len = -EINVAL;
if (buflen > (drbg_max_request_bytes(drbg))) {
pr_devel("DRBG: requested random numbers too large %u\n",
buflen);
goto err;
}
/* 9.3.1 step 3 is implicit with the chosen DRBG */
/* 9.3.1 step 4 */
if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
pr_devel("DRBG: additional information string too long %zu\n",
addtl->len);
goto err;
}
/* 9.3.1 step 5 is implicit with the chosen DRBG */
/*
* 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
* here. The spec is a bit convoluted here, we make it simpler.
*/
if (drbg->reseed_threshold < drbg->reseed_ctr)
drbg->seeded = false;
if (drbg->pr || !drbg->seeded) {
pr_devel("DRBG: reseeding before generation (prediction "
"resistance: %s, state %s)\n",
drbg->pr ? "true" : "false",
drbg->seeded ? "seeded" : "unseeded");
/* 9.3.1 steps 7.1 through 7.3 */
len = drbg_seed(drbg, addtl, true);
if (len)
goto err;
/* 9.3.1 step 7.4 */
addtl = NULL;
}
if (addtl && 0 < addtl->len)
list_add_tail(&addtl->list, &addtllist);
/* 9.3.1 step 8 and 10 */
len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
drbg->reseed_ctr++;
if (0 >= len)
goto err;
/*
* Section 11.3.3 requires to re-perform self tests after some
* generated random numbers. The chosen value after which self
* test is performed is arbitrary, but it should be reasonable.
* However, we do not perform the self tests because of the following
* reasons: it is mathematically impossible that the initial self tests
* were successfully and the following are not. If the initial would
* pass and the following would not, the kernel integrity is violated.
* In this case, the entire kernel operation is questionable and it
* is unlikely that the integrity violation only affects the
* correct operation of the DRBG.
*
* Albeit the following code is commented out, it is provided in
* case somebody has a need to implement the test of 11.3.3.
*/
#if 0
if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
int err = 0;
pr_devel("DRBG: start to perform self test\n");
if (drbg->core->flags & DRBG_HMAC)
err = alg_test("drbg_pr_hmac_sha256",
"drbg_pr_hmac_sha256", 0, 0);
else if (drbg->core->flags & DRBG_CTR)
err = alg_test("drbg_pr_ctr_aes128",
"drbg_pr_ctr_aes128", 0, 0);
else
err = alg_test("drbg_pr_sha256",
"drbg_pr_sha256", 0, 0);
if (err) {
pr_err("DRBG: periodical self test failed\n");
/*
* uninstantiate implies that from now on, only errors
* are returned when reusing this DRBG cipher handle
*/
drbg_uninstantiate(drbg);
return 0;
} else {
pr_devel("DRBG: self test successful\n");
}
}
#endif
/*
* All operations were successful, return 0 as mandated by
* the kernel crypto API interface.
*/
len = 0;
err:
return len;
}
/*
* Wrapper around drbg_generate which can pull arbitrary long strings
* from the DRBG without hitting the maximum request limitation.
*
* Parameters: see drbg_generate
* Return codes: see drbg_generate -- if one drbg_generate request fails,
* the entire drbg_generate_long request fails
*/
static int drbg_generate_long(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct drbg_string *addtl)
{
unsigned int len = 0;
unsigned int slice = 0;
do {
int err = 0;
unsigned int chunk = 0;
slice = ((buflen - len) / drbg_max_request_bytes(drbg));
chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
mutex_lock(&drbg->drbg_mutex);
err = drbg_generate(drbg, buf + len, chunk, addtl);
mutex_unlock(&drbg->drbg_mutex);
if (0 > err)
return err;
len += chunk;
} while (slice > 0 && (len < buflen));
return 0;
}
static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
{
struct drbg_state *drbg = container_of(rdy, struct drbg_state,
random_ready);
schedule_work(&drbg->seed_work);
}
static int drbg_prepare_hrng(struct drbg_state *drbg)
{
int err;
/* We do not need an HRNG in test mode. */
if (list_empty(&drbg->test_data.list))
return 0;
INIT_WORK(&drbg->seed_work, drbg_async_seed);
drbg->random_ready.owner = THIS_MODULE;
drbg->random_ready.func = drbg_schedule_async_seed;
err = add_random_ready_callback(&drbg->random_ready);
switch (err) {
case 0:
break;
case -EALREADY:
err = 0;
/* fall through */
default:
drbg->random_ready.func = NULL;
return err;
}
drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
/*
* Require frequent reseeds until the seed source is fully
* initialized.
*/
drbg->reseed_threshold = 50;
return err;
}
/*
* DRBG instantiation function as required by SP800-90A - this function
* sets up the DRBG handle, performs the initial seeding and all sanity
* checks required by SP800-90A
*
* @drbg memory of state -- if NULL, new memory is allocated
* @pers Personalization string that is mixed into state, may be NULL -- note
* the entropy is pulled by the DRBG internally unconditionally
* as defined in SP800-90A. The additional input is mixed into
* the state in addition to the pulled entropy.
* @coreref reference to core
* @pr prediction resistance enabled
*
* return
* 0 on success
* error value otherwise
*/
static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
int coreref, bool pr)
{
int ret;
bool reseed = true;
pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
"%s\n", coreref, pr ? "enabled" : "disabled");
mutex_lock(&drbg->drbg_mutex);
/* 9.1 step 1 is implicit with the selected DRBG type */
/*
* 9.1 step 2 is implicit as caller can select prediction resistance
* and the flag is copied into drbg->flags --
* all DRBG types support prediction resistance
*/
/* 9.1 step 4 is implicit in drbg_sec_strength */
if (!drbg->core) {
drbg->core = &drbg_cores[coreref];
drbg->pr = pr;
drbg->seeded = false;
drbg->reseed_threshold = drbg_max_requests(drbg);
ret = drbg_alloc_state(drbg);
if (ret)
goto unlock;
ret = drbg_prepare_hrng(drbg);
if (ret)
goto free_everything;
if (IS_ERR(drbg->jent)) {
ret = PTR_ERR(drbg->jent);
drbg->jent = NULL;
if (fips_enabled || ret != -ENOENT)
goto free_everything;
pr_info("DRBG: Continuing without Jitter RNG\n");
}
reseed = false;
}
ret = drbg_seed(drbg, pers, reseed);
if (ret && !reseed)
goto free_everything;
mutex_unlock(&drbg->drbg_mutex);
return ret;
unlock:
mutex_unlock(&drbg->drbg_mutex);
return ret;
free_everything:
mutex_unlock(&drbg->drbg_mutex);
drbg_uninstantiate(drbg);
return ret;
}
/*
* DRBG uninstantiate function as required by SP800-90A - this function
* frees all buffers and the DRBG handle
*
* @drbg DRBG state handle
*
* return
* 0 on success
*/
static int drbg_uninstantiate(struct drbg_state *drbg)
{
if (drbg->random_ready.func) {
del_random_ready_callback(&drbg->random_ready);
cancel_work_sync(&drbg->seed_work);
crypto_free_rng(drbg->jent);
drbg->jent = NULL;
}
if (drbg->d_ops)
drbg->d_ops->crypto_fini(drbg);
drbg_dealloc_state(drbg);
/* no scrubbing of test_data -- this shall survive an uninstantiate */
return 0;
}
/*
* Helper function for setting the test data in the DRBG
*
* @drbg DRBG state handle
* @data test data
* @len test data length
*/
static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
const u8 *data, unsigned int len)
{
struct drbg_state *drbg = crypto_rng_ctx(tfm);
mutex_lock(&drbg->drbg_mutex);
drbg_string_fill(&drbg->test_data, data, len);
mutex_unlock(&drbg->drbg_mutex);
}
/***************************************************************
* Kernel crypto API cipher invocations requested by DRBG
***************************************************************/
#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
struct sdesc {
struct shash_desc shash;
char ctx[];
};
static int drbg_init_hash_kernel(struct drbg_state *drbg)
{
struct sdesc *sdesc;
struct crypto_shash *tfm;
tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
if (IS_ERR(tfm)) {
pr_info("DRBG: could not allocate digest TFM handle: %s\n",
drbg->core->backend_cra_name);
return PTR_ERR(tfm);
}
BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
GFP_KERNEL);
if (!sdesc) {
crypto_free_shash(tfm);
return -ENOMEM;
}
sdesc->shash.tfm = tfm;
drbg->priv_data = sdesc;
return crypto_shash_alignmask(tfm);
}
static int drbg_fini_hash_kernel(struct drbg_state *drbg)
{
struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
if (sdesc) {
crypto_free_shash(sdesc->shash.tfm);
kzfree(sdesc);
}
drbg->priv_data = NULL;
return 0;
}
static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
const unsigned char *key)
{
struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
}
static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
const struct list_head *in)
{
struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
struct drbg_string *input = NULL;
crypto_shash_init(&sdesc->shash);
list_for_each_entry(input, in, list)
crypto_shash_update(&sdesc->shash, input->buf, input->len);
return crypto_shash_final(&sdesc->shash, outval);
}
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
#ifdef CONFIG_CRYPTO_DRBG_CTR
static int drbg_fini_sym_kernel(struct drbg_state *drbg)
{
struct crypto_cipher *tfm =
(struct crypto_cipher *)drbg->priv_data;
if (tfm)
crypto_free_cipher(tfm);
drbg->priv_data = NULL;
if (drbg->ctr_handle)
crypto_free_skcipher(drbg->ctr_handle);
drbg->ctr_handle = NULL;
if (drbg->ctr_req)
skcipher_request_free(drbg->ctr_req);
drbg->ctr_req = NULL;
kfree(drbg->outscratchpadbuf);
drbg->outscratchpadbuf = NULL;
return 0;
}
static int drbg_init_sym_kernel(struct drbg_state *drbg)
{
struct crypto_cipher *tfm;
struct crypto_skcipher *sk_tfm;
struct skcipher_request *req;
unsigned int alignmask;
char ctr_name[CRYPTO_MAX_ALG_NAME];
tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
if (IS_ERR(tfm)) {
pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
drbg->core->backend_cra_name);
return PTR_ERR(tfm);
}
BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
drbg->priv_data = tfm;
if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
drbg_fini_sym_kernel(drbg);
return -EINVAL;
}
sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
if (IS_ERR(sk_tfm)) {
pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
ctr_name);
drbg_fini_sym_kernel(drbg);
return PTR_ERR(sk_tfm);
}
drbg->ctr_handle = sk_tfm;
crypto_init_wait(&drbg->ctr_wait);
req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
if (!req) {
pr_info("DRBG: could not allocate request queue\n");
drbg_fini_sym_kernel(drbg);
return -ENOMEM;
}
drbg->ctr_req = req;
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &drbg->ctr_wait);
alignmask = crypto_skcipher_alignmask(sk_tfm);
drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
GFP_KERNEL);
if (!drbg->outscratchpadbuf) {
drbg_fini_sym_kernel(drbg);
return -ENOMEM;
}
drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
alignmask + 1);
sg_init_table(&drbg->sg_in, 1);
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
return alignmask;
}
static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
const unsigned char *key)
{
struct crypto_cipher *tfm =
(struct crypto_cipher *)drbg->priv_data;
crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
}
static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
const struct drbg_string *in)
{
struct crypto_cipher *tfm =
(struct crypto_cipher *)drbg->priv_data;
/* there is only component in *in */
BUG_ON(in->len < drbg_blocklen(drbg));
crypto_cipher_encrypt_one(tfm, outval, in->buf);
return 0;
}
static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
u8 *inbuf, u32 inlen,
u8 *outbuf, u32 outlen)
{
struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
int ret;
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
if (inbuf) {
/* Use caller-provided input buffer */
sg_set_buf(sg_in, inbuf, inlen);
} else {
/* Use scratchpad for in-place operation */
inlen = scratchpad_use;
memset(drbg->outscratchpad, 0, scratchpad_use);
sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
}
while (outlen) {
u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
/* Output buffer may not be valid for SGL, use scratchpad */
skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
cryptlen, drbg->V);
ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
&drbg->ctr_wait);
if (ret)
goto out;
crypto_init_wait(&drbg->ctr_wait);
memcpy(outbuf, drbg->outscratchpad, cryptlen);
crypto: drbg - in-place cipher operation for CTR The cipher implementations of the kernel crypto API favor in-place cipher operations. Thus, switch the CTR cipher operation in the DRBG to perform in-place operations. This is implemented by using the output buffer as input buffer and zeroizing it before the cipher operation to implement a CTR encryption of a NULL buffer. The speed improvement is quite visibile with the following comparison using the LRNG implementation. Without the patch set: 16 bytes| 12.267661 MB/s| 61338304 bytes | 5000000213 ns 32 bytes| 23.603770 MB/s| 118018848 bytes | 5000000073 ns 64 bytes| 46.732262 MB/s| 233661312 bytes | 5000000241 ns 128 bytes| 90.038042 MB/s| 450190208 bytes | 5000000244 ns 256 bytes| 160.399616 MB/s| 801998080 bytes | 5000000393 ns 512 bytes| 259.878400 MB/s| 1299392000 bytes | 5000001675 ns 1024 bytes| 386.050662 MB/s| 1930253312 bytes | 5000001661 ns 2048 bytes| 493.641728 MB/s| 2468208640 bytes | 5000001598 ns 4096 bytes| 581.835981 MB/s| 2909179904 bytes | 5000003426 ns With the patch set: 16 bytes | 17.051142 MB/s | 85255712 bytes | 5000000854 ns 32 bytes | 32.695898 MB/s | 163479488 bytes | 5000000544 ns 64 bytes | 64.490739 MB/s | 322453696 bytes | 5000000954 ns 128 bytes | 123.285043 MB/s | 616425216 bytes | 5000000201 ns 256 bytes | 233.434573 MB/s | 1167172864 bytes | 5000000573 ns 512 bytes | 384.405197 MB/s | 1922025984 bytes | 5000000671 ns 1024 bytes | 566.313370 MB/s | 2831566848 bytes | 5000001080 ns 2048 bytes | 744.518042 MB/s | 3722590208 bytes | 5000000926 ns 4096 bytes | 867.501670 MB/s | 4337508352 bytes | 5000002181 ns Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-20 20:42:01 +03:00
memzero_explicit(drbg->outscratchpad, cryptlen);
outlen -= cryptlen;
outbuf += cryptlen;
}
ret = 0;
out:
return ret;
}
#endif /* CONFIG_CRYPTO_DRBG_CTR */
/***************************************************************
* Kernel crypto API interface to register DRBG
***************************************************************/
/*
* Look up the DRBG flags by given kernel crypto API cra_name
* The code uses the drbg_cores definition to do this
*
* @cra_name kernel crypto API cra_name
* @coreref reference to integer which is filled with the pointer to
* the applicable core
* @pr reference for setting prediction resistance
*
* return: flags
*/
static inline void drbg_convert_tfm_core(const char *cra_driver_name,
int *coreref, bool *pr)
{
int i = 0;
size_t start = 0;
int len = 0;
*pr = true;
/* disassemble the names */
if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
start = 10;
*pr = false;
} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
start = 8;
} else {
return;
}
/* remove the first part */
len = strlen(cra_driver_name) - start;
for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
len)) {
*coreref = i;
return;
}
}
}
static int drbg_kcapi_init(struct crypto_tfm *tfm)
{
struct drbg_state *drbg = crypto_tfm_ctx(tfm);
mutex_init(&drbg->drbg_mutex);
return 0;
}
static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
{
drbg_uninstantiate(crypto_tfm_ctx(tfm));
}
/*
* Generate random numbers invoked by the kernel crypto API:
* The API of the kernel crypto API is extended as follows:
*
* src is additional input supplied to the RNG.
* slen is the length of src.
* dst is the output buffer where random data is to be stored.
* dlen is the length of dst.
*/
static int drbg_kcapi_random(struct crypto_rng *tfm,
const u8 *src, unsigned int slen,
u8 *dst, unsigned int dlen)
{
struct drbg_state *drbg = crypto_rng_ctx(tfm);
struct drbg_string *addtl = NULL;
struct drbg_string string;
if (slen) {
/* linked list variable is now local to allow modification */
drbg_string_fill(&string, src, slen);
addtl = &string;
}
return drbg_generate_long(drbg, dst, dlen, addtl);
}
/*
* Seed the DRBG invoked by the kernel crypto API
*/
static int drbg_kcapi_seed(struct crypto_rng *tfm,
const u8 *seed, unsigned int slen)
{
struct drbg_state *drbg = crypto_rng_ctx(tfm);
struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
bool pr = false;
struct drbg_string string;
struct drbg_string *seed_string = NULL;
int coreref = 0;
drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
&pr);
if (0 < slen) {
drbg_string_fill(&string, seed, slen);
seed_string = &string;
}
return drbg_instantiate(drbg, seed_string, coreref, pr);
}
/***************************************************************
* Kernel module: code to load the module
***************************************************************/
/*
* Tests as defined in 11.3.2 in addition to the cipher tests: testing
* of the error handling.
*
* Note: testing of failing seed source as defined in 11.3.2 is not applicable
* as seed source of get_random_bytes does not fail.
*
* Note 2: There is no sensible way of testing the reseed counter
* enforcement, so skip it.
*/
static inline int __init drbg_healthcheck_sanity(void)
{
int len = 0;
#define OUTBUFLEN 16
unsigned char buf[OUTBUFLEN];
struct drbg_state *drbg = NULL;
int ret = -EFAULT;
int rc = -EFAULT;
bool pr = false;
int coreref = 0;
struct drbg_string addtl;
size_t max_addtllen, max_request_bytes;
/* only perform test in FIPS mode */
if (!fips_enabled)
return 0;
#ifdef CONFIG_CRYPTO_DRBG_CTR
drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
#elif defined CONFIG_CRYPTO_DRBG_HASH
drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
#else
drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
#endif
drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
if (!drbg)
return -ENOMEM;
mutex_init(&drbg->drbg_mutex);
drbg->core = &drbg_cores[coreref];
drbg->reseed_threshold = drbg_max_requests(drbg);
/*
* if the following tests fail, it is likely that there is a buffer
* overflow as buf is much smaller than the requested or provided
* string lengths -- in case the error handling does not succeed
* we may get an OOPS. And we want to get an OOPS as this is a
* grave bug.
*/
max_addtllen = drbg_max_addtl(drbg);
max_request_bytes = drbg_max_request_bytes(drbg);
drbg_string_fill(&addtl, buf, max_addtllen + 1);
/* overflow addtllen with additonal info string */
len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
BUG_ON(0 < len);
/* overflow max_bits */
len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
BUG_ON(0 < len);
/* overflow max addtllen with personalization string */
ret = drbg_seed(drbg, &addtl, false);
BUG_ON(0 == ret);
/* all tests passed */
rc = 0;
pr_devel("DRBG: Sanity tests for failure code paths successfully "
"completed\n");
kfree(drbg);
return rc;
}
static struct rng_alg drbg_algs[22];
/*
* Fill the array drbg_algs used to register the different DRBGs
* with the kernel crypto API. To fill the array, the information
* from drbg_cores[] is used.
*/
static inline void __init drbg_fill_array(struct rng_alg *alg,
const struct drbg_core *core, int pr)
{
int pos = 0;
static int priority = 200;
memcpy(alg->base.cra_name, "stdrng", 6);
if (pr) {
memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
pos = 8;
} else {
memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
pos = 10;
}
memcpy(alg->base.cra_driver_name + pos, core->cra_name,
strlen(core->cra_name));
alg->base.cra_priority = priority;
priority++;
/*
* If FIPS mode enabled, the selected DRBG shall have the
* highest cra_priority over other stdrng instances to ensure
* it is selected.
*/
if (fips_enabled)
alg->base.cra_priority += 200;
alg->base.cra_ctxsize = sizeof(struct drbg_state);
alg->base.cra_module = THIS_MODULE;
alg->base.cra_init = drbg_kcapi_init;
alg->base.cra_exit = drbg_kcapi_cleanup;
alg->generate = drbg_kcapi_random;
alg->seed = drbg_kcapi_seed;
alg->set_ent = drbg_kcapi_set_entropy;
alg->seedsize = 0;
}
static int __init drbg_init(void)
{
unsigned int i = 0; /* pointer to drbg_algs */
unsigned int j = 0; /* pointer to drbg_cores */
int ret;
ret = drbg_healthcheck_sanity();
if (ret)
return ret;
if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
pr_info("DRBG: Cannot register all DRBG types"
"(slots needed: %zu, slots available: %zu)\n",
ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
return -EFAULT;
}
/*
* each DRBG definition can be used with PR and without PR, thus
* we instantiate each DRBG in drbg_cores[] twice.
*
* As the order of placing them into the drbg_algs array matters
* (the later DRBGs receive a higher cra_priority) we register the
* prediction resistance DRBGs first as the should not be too
* interesting.
*/
for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
}
static void __exit drbg_exit(void)
{
crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
}
subsys_initcall(drbg_init);
module_exit(drbg_exit);
#ifndef CRYPTO_DRBG_HASH_STRING
#define CRYPTO_DRBG_HASH_STRING ""
#endif
#ifndef CRYPTO_DRBG_HMAC_STRING
#define CRYPTO_DRBG_HMAC_STRING ""
#endif
#ifndef CRYPTO_DRBG_CTR_STRING
#define CRYPTO_DRBG_CTR_STRING ""
#endif
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
"using following cores: "
CRYPTO_DRBG_HASH_STRING
CRYPTO_DRBG_HMAC_STRING
CRYPTO_DRBG_CTR_STRING);
MODULE_ALIAS_CRYPTO("stdrng");