WSL2-Linux-Kernel/fs/afs/yfsclient.c

1954 строки
47 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-or-later
/* YFS File Server client stubs
*
* Copyright (C) 2018 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/circ_buf.h>
#include <linux/iversion.h>
#include "internal.h"
#include "afs_fs.h"
#include "xdr_fs.h"
#include "protocol_yfs.h"
#define xdr_size(x) (sizeof(*x) / sizeof(__be32))
static void xdr_decode_YFSFid(const __be32 **_bp, struct afs_fid *fid)
{
const struct yfs_xdr_YFSFid *x = (const void *)*_bp;
fid->vid = xdr_to_u64(x->volume);
fid->vnode = xdr_to_u64(x->vnode.lo);
fid->vnode_hi = ntohl(x->vnode.hi);
fid->unique = ntohl(x->vnode.unique);
*_bp += xdr_size(x);
}
static __be32 *xdr_encode_u32(__be32 *bp, u32 n)
{
*bp++ = htonl(n);
return bp;
}
static __be32 *xdr_encode_u64(__be32 *bp, u64 n)
{
struct yfs_xdr_u64 *x = (void *)bp;
*x = u64_to_xdr(n);
return bp + xdr_size(x);
}
static __be32 *xdr_encode_YFSFid(__be32 *bp, struct afs_fid *fid)
{
struct yfs_xdr_YFSFid *x = (void *)bp;
x->volume = u64_to_xdr(fid->vid);
x->vnode.lo = u64_to_xdr(fid->vnode);
x->vnode.hi = htonl(fid->vnode_hi);
x->vnode.unique = htonl(fid->unique);
return bp + xdr_size(x);
}
static size_t xdr_strlen(unsigned int len)
{
return sizeof(__be32) + round_up(len, sizeof(__be32));
}
static __be32 *xdr_encode_string(__be32 *bp, const char *p, unsigned int len)
{
bp = xdr_encode_u32(bp, len);
bp = memcpy(bp, p, len);
if (len & 3) {
unsigned int pad = 4 - (len & 3);
memset((u8 *)bp + len, 0, pad);
len += pad;
}
return bp + len / sizeof(__be32);
}
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
static __be32 *xdr_encode_name(__be32 *bp, const struct qstr *p)
{
return xdr_encode_string(bp, p->name, p->len);
}
static s64 linux_to_yfs_time(const struct timespec64 *t)
{
/* Convert to 100ns intervals. */
return (u64)t->tv_sec * 10000000 + t->tv_nsec/100;
}
static __be32 *xdr_encode_YFSStoreStatus(__be32 *bp, mode_t *mode,
const struct timespec64 *t)
{
struct yfs_xdr_YFSStoreStatus *x = (void *)bp;
mode_t masked_mode = mode ? *mode & S_IALLUGO : 0;
s64 mtime = linux_to_yfs_time(t);
u32 mask = AFS_SET_MTIME;
mask |= mode ? AFS_SET_MODE : 0;
x->mask = htonl(mask);
x->mode = htonl(masked_mode);
x->mtime_client = u64_to_xdr(mtime);
x->owner = u64_to_xdr(0);
x->group = u64_to_xdr(0);
return bp + xdr_size(x);
}
/*
* Convert a signed 100ns-resolution 64-bit time into a timespec.
*/
static struct timespec64 yfs_time_to_linux(s64 t)
{
struct timespec64 ts;
u64 abs_t;
/*
* Unfortunately can not use normal 64 bit division on 32 bit arch, but
* the alternative, do_div, does not work with negative numbers so have
* to special case them
*/
if (t < 0) {
abs_t = -t;
ts.tv_nsec = (time64_t)(do_div(abs_t, 10000000) * 100);
ts.tv_nsec = -ts.tv_nsec;
ts.tv_sec = -abs_t;
} else {
abs_t = t;
ts.tv_nsec = (time64_t)do_div(abs_t, 10000000) * 100;
ts.tv_sec = abs_t;
}
return ts;
}
static struct timespec64 xdr_to_time(const struct yfs_xdr_u64 xdr)
{
s64 t = xdr_to_u64(xdr);
return yfs_time_to_linux(t);
}
static void yfs_check_req(struct afs_call *call, __be32 *bp)
{
size_t len = (void *)bp - call->request;
if (len > call->request_size)
pr_err("kAFS: %s: Request buffer overflow (%zu>%u)\n",
call->type->name, len, call->request_size);
else if (len < call->request_size)
pr_warn("kAFS: %s: Request buffer underflow (%zu<%u)\n",
call->type->name, len, call->request_size);
}
/*
* Dump a bad file status record.
*/
static void xdr_dump_bad(const __be32 *bp)
{
__be32 x[4];
int i;
pr_notice("YFS XDR: Bad status record\n");
for (i = 0; i < 6 * 4 * 4; i += 16) {
memcpy(x, bp, 16);
bp += 4;
pr_notice("%03x: %08x %08x %08x %08x\n",
i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
}
memcpy(x, bp, 8);
pr_notice("0x60: %08x %08x\n", ntohl(x[0]), ntohl(x[1]));
}
/*
* Decode a YFSFetchStatus block
*/
static void xdr_decode_YFSFetchStatus(const __be32 **_bp,
struct afs_call *call,
struct afs_status_cb *scb)
{
const struct yfs_xdr_YFSFetchStatus *xdr = (const void *)*_bp;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
struct afs_file_status *status = &scb->status;
u32 type;
status->abort_code = ntohl(xdr->abort_code);
if (status->abort_code != 0) {
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
if (status->abort_code == VNOVNODE)
status->nlink = 0;
scb->have_error = true;
goto advance;
}
type = ntohl(xdr->type);
switch (type) {
case AFS_FTYPE_FILE:
case AFS_FTYPE_DIR:
case AFS_FTYPE_SYMLINK:
status->type = type;
break;
default:
goto bad;
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
status->nlink = ntohl(xdr->nlink);
status->author = xdr_to_u64(xdr->author);
status->owner = xdr_to_u64(xdr->owner);
status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
status->anon_access = ntohl(xdr->anon_access);
status->mode = ntohl(xdr->mode) & S_IALLUGO;
status->group = xdr_to_u64(xdr->group);
status->lock_count = ntohl(xdr->lock_count);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
status->mtime_client = xdr_to_time(xdr->mtime_client);
status->mtime_server = xdr_to_time(xdr->mtime_server);
status->size = xdr_to_u64(xdr->size);
status->data_version = xdr_to_u64(xdr->data_version);
scb->have_status = true;
advance:
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
*_bp += xdr_size(xdr);
return;
bad:
xdr_dump_bad(*_bp);
afs_protocol_error(call, afs_eproto_bad_status);
goto advance;
}
/*
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
* Decode a YFSCallBack block
*/
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
static void xdr_decode_YFSCallBack(const __be32 **_bp,
struct afs_call *call,
struct afs_status_cb *scb)
{
struct yfs_xdr_YFSCallBack *x = (void *)*_bp;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
struct afs_callback *cb = &scb->callback;
ktime_t cb_expiry;
cb_expiry = ktime_add(call->issue_time, xdr_to_u64(x->expiration_time) * 100);
cb->expires_at = ktime_divns(cb_expiry, NSEC_PER_SEC);
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
scb->have_cb = true;
*_bp += xdr_size(x);
}
/*
* Decode a YFSVolSync block
*/
static void xdr_decode_YFSVolSync(const __be32 **_bp,
struct afs_volsync *volsync)
{
struct yfs_xdr_YFSVolSync *x = (void *)*_bp;
u64 creation;
if (volsync) {
creation = xdr_to_u64(x->vol_creation_date);
do_div(creation, 10 * 1000 * 1000);
volsync->creation = creation;
}
*_bp += xdr_size(x);
}
/*
* Encode the requested attributes into a YFSStoreStatus block
*/
static __be32 *xdr_encode_YFS_StoreStatus(__be32 *bp, struct iattr *attr)
{
struct yfs_xdr_YFSStoreStatus *x = (void *)bp;
s64 mtime = 0, owner = 0, group = 0;
u32 mask = 0, mode = 0;
mask = 0;
if (attr->ia_valid & ATTR_MTIME) {
mask |= AFS_SET_MTIME;
mtime = linux_to_yfs_time(&attr->ia_mtime);
}
if (attr->ia_valid & ATTR_UID) {
mask |= AFS_SET_OWNER;
owner = from_kuid(&init_user_ns, attr->ia_uid);
}
if (attr->ia_valid & ATTR_GID) {
mask |= AFS_SET_GROUP;
group = from_kgid(&init_user_ns, attr->ia_gid);
}
if (attr->ia_valid & ATTR_MODE) {
mask |= AFS_SET_MODE;
mode = attr->ia_mode & S_IALLUGO;
}
x->mask = htonl(mask);
x->mode = htonl(mode);
x->mtime_client = u64_to_xdr(mtime);
x->owner = u64_to_xdr(owner);
x->group = u64_to_xdr(group);
return bp + xdr_size(x);
}
/*
* Decode a YFSFetchVolumeStatus block.
*/
static void xdr_decode_YFSFetchVolumeStatus(const __be32 **_bp,
struct afs_volume_status *vs)
{
const struct yfs_xdr_YFSFetchVolumeStatus *x = (const void *)*_bp;
u32 flags;
vs->vid = xdr_to_u64(x->vid);
vs->parent_id = xdr_to_u64(x->parent_id);
flags = ntohl(x->flags);
vs->online = flags & yfs_FVSOnline;
vs->in_service = flags & yfs_FVSInservice;
vs->blessed = flags & yfs_FVSBlessed;
vs->needs_salvage = flags & yfs_FVSNeedsSalvage;
vs->type = ntohl(x->type);
vs->min_quota = 0;
vs->max_quota = xdr_to_u64(x->max_quota);
vs->blocks_in_use = xdr_to_u64(x->blocks_in_use);
vs->part_blocks_avail = xdr_to_u64(x->part_blocks_avail);
vs->part_max_blocks = xdr_to_u64(x->part_max_blocks);
vs->vol_copy_date = xdr_to_u64(x->vol_copy_date);
vs->vol_backup_date = xdr_to_u64(x->vol_backup_date);
*_bp += sizeof(*x) / sizeof(__be32);
}
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
/*
* Deliver reply data to operations that just return a file status and a volume
* sync record.
*/
static int yfs_deliver_status_and_volsync(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
const __be32 *bp;
int ret;
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &op->file[0].scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* Deliver reply data to an YFS.FetchData64.
*/
static int yfs_deliver_fs_fetch_data64(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *vp = &op->file[0];
struct afs_read *req = op->fetch.req;
const __be32 *bp;
int ret;
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
_enter("{%u,%zu, %zu/%llu}",
call->unmarshall, call->iov_len, iov_iter_count(call->iter),
req->actual_len);
switch (call->unmarshall) {
case 0:
req->actual_len = 0;
afs_extract_to_tmp64(call);
call->unmarshall++;
fallthrough;
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
/* Extract the returned data length into ->actual_len. This
* may indicate more or less data than was requested will be
* returned.
*/
case 1:
_debug("extract data length");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
req->actual_len = be64_to_cpu(call->tmp64);
_debug("DATA length: %llu", req->actual_len);
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
if (req->actual_len == 0)
goto no_more_data;
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
call->iter = req->iter;
call->iov_len = min(req->actual_len, req->len);
call->unmarshall++;
fallthrough;
/* extract the returned data */
case 2:
_debug("extract data %zu/%llu",
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
iov_iter_count(call->iter), req->actual_len);
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
call->iter = &call->def_iter;
if (req->actual_len <= req->len)
goto no_more_data;
/* Discard any excess data the server gave us */
afs_extract_discard(call, req->actual_len - req->len);
call->unmarshall = 3;
fallthrough;
case 3:
_debug("extract discard %zu/%llu",
iov_iter_count(call->iter), req->actual_len - req->len);
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
no_more_data:
call->unmarshall = 4;
afs_extract_to_buf(call,
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSCallBack) +
sizeof(struct yfs_xdr_YFSVolSync));
fallthrough;
/* extract the metadata */
case 4:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSCallBack(&bp, call, &vp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
req->data_version = vp->scb.status.data_version;
req->file_size = vp->scb.status.size;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
call->unmarshall++;
fallthrough;
case 5:
break;
}
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.FetchData64 operation type
*/
static const struct afs_call_type yfs_RXYFSFetchData64 = {
.name = "YFS.FetchData64",
.op = yfs_FS_FetchData64,
.deliver = yfs_deliver_fs_fetch_data64,
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
.destructor = afs_flat_call_destructor,
};
/*
* Fetch data from a file.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_fetch_data(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_read *req = op->fetch.req;
struct afs_call *call;
__be32 *bp;
_enter(",%x,{%llx:%llu},%llx,%llx",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode,
req->pos, req->len);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSFetchData64,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_u64) * 2,
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSCallBack) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
afs: Set up the iov_iter before calling afs_extract_data() afs_extract_data() sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_XARRAY iterator when reading data to load directly into the inode's pages without needing to create a list of them. This will allow O_DIRECT calls to be supported in future patches. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/152898380012.11616.12094591785228251717.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153685394431.14766.3178466345696987059.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/153999787395.866.11218209749223643998.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/154033911195.12041.3882700371848894587.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/158861250059.340223.1248231474865140653.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465827399.1377938.11181327349704960046.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588533776.3465195.3612752083351956948.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118151238.1232039.17015723405750601161.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161047240.2537118.14721975104810564022.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340410333.1303470.16260122230371140878.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539554187.286939.15305559004905459852.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653810525.2770958.4630666029125411789.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789093719.6155.7877160739235087723.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
req->call_debug_id = call->debug_id;
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSFETCHDATA64);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_u64(bp, req->pos);
bp = xdr_encode_u64(bp, req->len);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data for YFS.CreateFile or YFS.MakeDir.
*/
static int yfs_deliver_fs_create_vnode(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
/* unmarshall the reply once we've received all of it */
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFid(&bp, &op->file[1].fid);
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSFetchStatus(&bp, call, &dvp->scb);
xdr_decode_YFSCallBack(&bp, call, &vp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* FS.CreateFile and FS.MakeDir operation type
*/
static const struct afs_call_type afs_RXFSCreateFile = {
.name = "YFS.CreateFile",
.op = yfs_FS_CreateFile,
.deliver = yfs_deliver_fs_create_vnode,
.destructor = afs_flat_call_destructor,
};
/*
* Create a file.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_create_file(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
size_t reqsz, rplsz;
__be32 *bp;
_enter("");
reqsz = (sizeof(__be32) +
sizeof(__be32) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(name->len) +
sizeof(struct yfs_xdr_YFSStoreStatus) +
sizeof(__be32));
rplsz = (sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSCallBack) +
sizeof(struct yfs_xdr_YFSVolSync));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &afs_RXFSCreateFile, reqsz, rplsz);
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSCREATEFILE);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
bp = xdr_encode_YFSStoreStatus(bp, &op->create.mode, &op->mtime);
bp = xdr_encode_u32(bp, yfs_LockNone); /* ViceLockType */
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
static const struct afs_call_type yfs_RXFSMakeDir = {
.name = "YFS.MakeDir",
.op = yfs_FS_MakeDir,
.deliver = yfs_deliver_fs_create_vnode,
.destructor = afs_flat_call_destructor,
};
/*
* Make a directory.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_make_dir(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
size_t reqsz, rplsz;
__be32 *bp;
_enter("");
reqsz = (sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(name->len) +
sizeof(struct yfs_xdr_YFSStoreStatus));
rplsz = (sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSCallBack) +
sizeof(struct yfs_xdr_YFSVolSync));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXFSMakeDir, reqsz, rplsz);
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSMAKEDIR);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
bp = xdr_encode_YFSStoreStatus(bp, &op->create.mode, &op->mtime);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.RemoveFile2 operation.
*/
static int yfs_deliver_fs_remove_file2(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
struct afs_fid fid;
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &dvp->scb);
xdr_decode_YFSFid(&bp, &fid);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
/* Was deleted if vnode->status.abort_code == VNOVNODE. */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSVolSync(&bp, &op->volsync);
return 0;
}
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
static void yfs_done_fs_remove_file2(struct afs_call *call)
{
if (call->error == -ECONNABORTED &&
call->abort_code == RX_INVALID_OPERATION) {
set_bit(AFS_SERVER_FL_NO_RM2, &call->server->flags);
call->op->flags |= AFS_OPERATION_DOWNGRADE;
}
}
/*
* YFS.RemoveFile2 operation type.
*/
static const struct afs_call_type yfs_RXYFSRemoveFile2 = {
.name = "YFS.RemoveFile2",
.op = yfs_FS_RemoveFile2,
.deliver = yfs_deliver_fs_remove_file2,
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
.done = yfs_done_fs_remove_file2,
.destructor = afs_flat_call_destructor,
};
/*
* Remove a file and retrieve new file status.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_remove_file2(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *dvp = &op->file[0];
const struct qstr *name = &op->dentry->d_name;
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSRemoveFile2,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(name->len),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSREMOVEFILE2);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.RemoveFile or YFS.RemoveDir operation.
*/
static int yfs_deliver_fs_remove(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *dvp = &op->file[0];
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &dvp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
return 0;
}
/*
* FS.RemoveDir and FS.RemoveFile operation types.
*/
static const struct afs_call_type yfs_RXYFSRemoveFile = {
.name = "YFS.RemoveFile",
.op = yfs_FS_RemoveFile,
.deliver = yfs_deliver_fs_remove,
.destructor = afs_flat_call_destructor,
};
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
/*
* Remove a file.
*/
void yfs_fs_remove_file(struct afs_operation *op)
{
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
if (!test_bit(AFS_SERVER_FL_NO_RM2, &op->server->flags))
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return yfs_fs_remove_file2(op);
call = afs_alloc_flat_call(op->net, &yfs_RXYFSRemoveFile,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
xdr_strlen(name->len),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSREMOVEFILE);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
yfs_check_req(call, bp);
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
static const struct afs_call_type yfs_RXYFSRemoveDir = {
.name = "YFS.RemoveDir",
.op = yfs_FS_RemoveDir,
.deliver = yfs_deliver_fs_remove,
.destructor = afs_flat_call_destructor,
};
/*
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
* Remove a directory.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_remove_dir(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSRemoveDir,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
xdr_strlen(name->len),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_u32(bp, YFSREMOVEDIR);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.Link operation.
*/
static int yfs_deliver_fs_link(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSFetchStatus(&bp, call, &dvp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.Link operation type.
*/
static const struct afs_call_type yfs_RXYFSLink = {
.name = "YFS.Link",
.op = yfs_FS_Link,
.deliver = yfs_deliver_fs_link,
.destructor = afs_flat_call_destructor,
};
/*
* Make a hard link.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_link(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSLink,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(name->len) +
sizeof(struct yfs_xdr_YFSFid),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSLINK);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
bp = xdr_encode_YFSFid(bp, &vp->fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &vp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.Symlink operation.
*/
static int yfs_deliver_fs_symlink(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
/* unmarshall the reply once we've received all of it */
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFid(&bp, &vp->fid);
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSFetchStatus(&bp, call, &dvp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.Symlink operation type
*/
static const struct afs_call_type yfs_RXYFSSymlink = {
.name = "YFS.Symlink",
.op = yfs_FS_Symlink,
.deliver = yfs_deliver_fs_symlink,
.destructor = afs_flat_call_destructor,
};
/*
* Create a symbolic link.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_symlink(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
const struct qstr *name = &op->dentry->d_name;
struct afs_vnode_param *dvp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
size_t contents_sz;
mode_t mode = 0777;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
contents_sz = strlen(op->create.symlink);
call = afs_alloc_flat_call(op->net, &yfs_RXYFSSymlink,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(name->len) +
xdr_strlen(contents_sz) +
sizeof(struct yfs_xdr_YFSStoreStatus),
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSYMLINK);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_name(bp, name);
bp = xdr_encode_string(bp, op->create.symlink, contents_sz);
bp = xdr_encode_YFSStoreStatus(bp, &mode, &op->mtime);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call1(call, &dvp->fid, name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.Rename operation.
*/
static int yfs_deliver_fs_rename(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *orig_dvp = &op->file[0];
struct afs_vnode_param *new_dvp = &op->file[1];
const __be32 *bp;
int ret;
_enter("{%u}", call->unmarshall);
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
bp = call->buffer;
/* If the two dirs are the same, we have two copies of the same status
* report, so we just decode it twice.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &orig_dvp->scb);
xdr_decode_YFSFetchStatus(&bp, call, &new_dvp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.Rename operation type
*/
static const struct afs_call_type yfs_RXYFSRename = {
.name = "FS.Rename",
.op = yfs_FS_Rename,
.deliver = yfs_deliver_fs_rename,
.destructor = afs_flat_call_destructor,
};
/*
* Rename a file or directory.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_rename(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *orig_dvp = &op->file[0];
struct afs_vnode_param *new_dvp = &op->file[1];
const struct qstr *orig_name = &op->dentry->d_name;
const struct qstr *new_name = &op->dentry_2->d_name;
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSRename,
sizeof(__be32) +
sizeof(struct yfs_xdr_RPCFlags) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(orig_name->len) +
sizeof(struct yfs_xdr_YFSFid) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_strlen(new_name->len),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSRENAME);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &orig_dvp->fid);
bp = xdr_encode_name(bp, orig_name);
bp = xdr_encode_YFSFid(bp, &new_dvp->fid);
bp = xdr_encode_name(bp, new_name);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call2(call, &orig_dvp->fid, orig_name, new_name);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* YFS.StoreData64 operation type.
*/
static const struct afs_call_type yfs_RXYFSStoreData64 = {
.name = "YFS.StoreData64",
.op = yfs_FS_StoreData64,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
.deliver = yfs_deliver_status_and_volsync,
.destructor = afs_flat_call_destructor,
};
/*
* Store a set of pages to a large file.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_store_data(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
_debug("size %llx, at %llx, i_size %llx",
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
(unsigned long long)op->store.size,
(unsigned long long)op->store.pos,
(unsigned long long)op->store.i_size);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSStoreData64,
sizeof(__be32) +
sizeof(__be32) +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSStoreStatus) +
sizeof(struct yfs_xdr_u64) * 3,
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
call->write_iter = op->store.write_iter;
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSTOREDATA64);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_YFSStoreStatus(bp, NULL, &op->mtime);
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 17:22:28 +03:00
bp = xdr_encode_u64(bp, op->store.pos);
bp = xdr_encode_u64(bp, op->store.size);
bp = xdr_encode_u64(bp, op->store.i_size);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* YFS.StoreStatus operation type
*/
static const struct afs_call_type yfs_RXYFSStoreStatus = {
.name = "YFS.StoreStatus",
.op = yfs_FS_StoreStatus,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
.deliver = yfs_deliver_status_and_volsync,
.destructor = afs_flat_call_destructor,
};
static const struct afs_call_type yfs_RXYFSStoreData64_as_Status = {
.name = "YFS.StoreData64",
.op = yfs_FS_StoreData64,
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
.deliver = yfs_deliver_status_and_volsync,
.destructor = afs_flat_call_destructor,
};
/*
* Set the attributes on a file, using YFS.StoreData64 rather than
* YFS.StoreStatus so as to alter the file size also.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
static void yfs_fs_setattr_size(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct iattr *attr = op->setattr.attr;
__be32 *bp;
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSStoreData64_as_Status,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSStoreStatus) +
sizeof(struct yfs_xdr_u64) * 3,
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSTOREDATA64);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_YFS_StoreStatus(bp, attr);
afs: Fix StoreData op marshalling The marshalling of AFS.StoreData, AFS.StoreData64 and YFS.StoreData64 calls generated by ->setattr() ops for the purpose of expanding a file is incorrect due to older documentation incorrectly describing the way the RPC 'FileLength' parameter is meant to work. The older documentation says that this is the length the file is meant to end up at the end of the operation; however, it was never implemented this way in any of the servers, but rather the file is truncated down to this before the write operation is effected, and never expanded to it (and, indeed, it was renamed to 'TruncPos' in 2014). Fix this by setting the position parameter to the new file length and doing a zero-lengh write there. The bug causes Xwayland to SIGBUS due to unexpected non-expansion of a file it then mmaps. This can be tested by giving the following test program a filename in an AFS directory: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/mman.h> int main(int argc, char *argv[]) { char *p; int fd; if (argc != 2) { fprintf(stderr, "Format: test-trunc-mmap <file>\n"); exit(2); } fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC); if (fd < 0) { perror(argv[1]); exit(1); } if (ftruncate(fd, 0x140008) == -1) { perror("ftruncate"); exit(1); } p = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (p == MAP_FAILED) { perror("mmap"); exit(1); } p[0] = 'a'; if (munmap(p, 4096) < 0) { perror("munmap"); exit(1); } if (close(fd) < 0) { perror("close"); exit(1); } exit(0); } Fixes: 31143d5d515e ("AFS: implement basic file write support") Reported-by: Jonathan Billings <jsbillin@umich.edu> Tested-by: Jonathan Billings <jsbillin@umich.edu> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-28 01:48:02 +03:00
bp = xdr_encode_u64(bp, attr->ia_size); /* position of start of write */
bp = xdr_encode_u64(bp, 0); /* size of write */
bp = xdr_encode_u64(bp, attr->ia_size); /* new file length */
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Set the attributes on a file, using YFS.StoreData64 if there's a change in
* file size, and YFS.StoreStatus otherwise.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_setattr(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct iattr *attr = op->setattr.attr;
__be32 *bp;
if (attr->ia_valid & ATTR_SIZE)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return yfs_fs_setattr_size(op);
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSStoreStatus,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(struct yfs_xdr_YFSStoreStatus),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSTORESTATUS);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_YFS_StoreStatus(bp, attr);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to a YFS.GetVolumeStatus operation.
*/
static int yfs_deliver_fs_get_volume_status(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
const __be32 *bp;
char *p;
u32 size;
int ret;
_enter("{%u}", call->unmarshall);
switch (call->unmarshall) {
case 0:
call->unmarshall++;
afs_extract_to_buf(call, sizeof(struct yfs_xdr_YFSFetchVolumeStatus));
fallthrough;
/* extract the returned status record */
case 1:
_debug("extract status");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchVolumeStatus(&bp, &op->volstatus.vs);
call->unmarshall++;
afs_extract_to_tmp(call);
fallthrough;
/* extract the volume name length */
case 2:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
call->count = ntohl(call->tmp);
_debug("volname length: %u", call->count);
if (call->count >= AFSNAMEMAX)
return afs_protocol_error(call, afs_eproto_volname_len);
size = (call->count + 3) & ~3; /* It's padded */
afs_extract_to_buf(call, size);
call->unmarshall++;
fallthrough;
/* extract the volume name */
case 3:
_debug("extract volname");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
p = call->buffer;
p[call->count] = 0;
_debug("volname '%s'", p);
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
/* extract the offline message length */
case 4:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
call->count = ntohl(call->tmp);
_debug("offline msg length: %u", call->count);
if (call->count >= AFSNAMEMAX)
return afs_protocol_error(call, afs_eproto_offline_msg_len);
size = (call->count + 3) & ~3; /* It's padded */
afs_extract_to_buf(call, size);
call->unmarshall++;
fallthrough;
/* extract the offline message */
case 5:
_debug("extract offline");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
p = call->buffer;
p[call->count] = 0;
_debug("offline '%s'", p);
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
/* extract the message of the day length */
case 6:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
call->count = ntohl(call->tmp);
_debug("motd length: %u", call->count);
if (call->count >= AFSNAMEMAX)
return afs_protocol_error(call, afs_eproto_motd_len);
size = (call->count + 3) & ~3; /* It's padded */
afs_extract_to_buf(call, size);
call->unmarshall++;
fallthrough;
/* extract the message of the day */
case 7:
_debug("extract motd");
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
p = call->buffer;
p[call->count] = 0;
_debug("motd '%s'", p);
call->unmarshall++;
fallthrough;
case 8:
break;
}
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.GetVolumeStatus operation type
*/
static const struct afs_call_type yfs_RXYFSGetVolumeStatus = {
.name = "YFS.GetVolumeStatus",
.op = yfs_FS_GetVolumeStatus,
.deliver = yfs_deliver_fs_get_volume_status,
.destructor = afs_flat_call_destructor,
};
/*
* fetch the status of a volume
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_get_volume_status(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSGetVolumeStatus,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_u64),
max_t(size_t,
sizeof(struct yfs_xdr_YFSFetchVolumeStatus) +
sizeof(__be32),
AFSOPAQUEMAX + 1));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSGETVOLUMESTATUS);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_u64(bp, vp->fid.vid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* YFS.SetLock operation type
*/
static const struct afs_call_type yfs_RXYFSSetLock = {
.name = "YFS.SetLock",
.op = yfs_FS_SetLock,
.deliver = yfs_deliver_status_and_volsync,
.done = afs_lock_op_done,
.destructor = afs_flat_call_destructor,
};
/*
* YFS.ExtendLock operation type
*/
static const struct afs_call_type yfs_RXYFSExtendLock = {
.name = "YFS.ExtendLock",
.op = yfs_FS_ExtendLock,
.deliver = yfs_deliver_status_and_volsync,
.done = afs_lock_op_done,
.destructor = afs_flat_call_destructor,
};
/*
* YFS.ReleaseLock operation type
*/
static const struct afs_call_type yfs_RXYFSReleaseLock = {
.name = "YFS.ReleaseLock",
.op = yfs_FS_ReleaseLock,
.deliver = yfs_deliver_status_and_volsync,
.destructor = afs_flat_call_destructor,
};
/*
* Set a lock on a file
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_set_lock(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSSetLock,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(__be32),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSETLOCK);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_u32(bp, op->lock.type);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_calli(call, &vp->fid, op->lock.type);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* extend a lock on a file
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_extend_lock(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSExtendLock,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSEXTENDLOCK);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* release a lock on a file
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_release_lock(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter("");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSReleaseLock,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
if (!call)
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSRELEASELOCK);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver a reply to YFS.FetchStatus
*/
static int yfs_deliver_fs_fetch_status(struct afs_call *call)
{
struct afs_operation *op = call->op;
struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
const __be32 *bp;
int ret;
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
/* unmarshall the reply once we've received all of it */
bp = call->buffer;
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSCallBack(&bp, call, &vp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
_leave(" = 0 [done]");
return 0;
}
/*
* YFS.FetchStatus operation type
*/
static const struct afs_call_type yfs_RXYFSFetchStatus = {
.name = "YFS.FetchStatus",
.op = yfs_FS_FetchStatus,
.deliver = yfs_deliver_fs_fetch_status,
.destructor = afs_flat_call_destructor,
};
/*
* Fetch the status information for a fid without needing a vnode handle.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_fetch_status(struct afs_operation *op)
{
struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
struct afs_call *call;
__be32 *bp;
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSFetchStatus,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid),
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSCallBack) +
sizeof(struct yfs_xdr_YFSVolSync));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (!call)
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSFETCHSTATUS);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to an YFS.InlineBulkStatus call
*/
static int yfs_deliver_fs_inline_bulk_status(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_status_cb *scb;
const __be32 *bp;
u32 tmp;
int ret;
_enter("{%u}", call->unmarshall);
switch (call->unmarshall) {
case 0:
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
/* Extract the file status count and array in two steps */
case 1:
_debug("extract status count");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
tmp = ntohl(call->tmp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
_debug("status count: %u/%u", tmp, op->nr_files);
if (tmp != op->nr_files)
return afs_protocol_error(call, afs_eproto_ibulkst_count);
call->count = 0;
call->unmarshall++;
more_counts:
afs_extract_to_buf(call, sizeof(struct yfs_xdr_YFSFetchStatus));
fallthrough;
case 2:
_debug("extract status array %u", call->count);
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
switch (call->count) {
case 0:
scb = &op->file[0].scb;
break;
case 1:
scb = &op->file[1].scb;
break;
default:
scb = &op->more_files[call->count - 2].scb;
break;
}
bp = call->buffer;
xdr_decode_YFSFetchStatus(&bp, call, scb);
call->count++;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (call->count < op->nr_files)
goto more_counts;
call->count = 0;
call->unmarshall++;
afs_extract_to_tmp(call);
fallthrough;
/* Extract the callback count and array in two steps */
case 3:
_debug("extract CB count");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
tmp = ntohl(call->tmp);
_debug("CB count: %u", tmp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (tmp != op->nr_files)
return afs_protocol_error(call, afs_eproto_ibulkst_cb_count);
call->count = 0;
call->unmarshall++;
more_cbs:
afs_extract_to_buf(call, sizeof(struct yfs_xdr_YFSCallBack));
fallthrough;
case 4:
_debug("extract CB array");
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
_debug("unmarshall CB array");
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
switch (call->count) {
case 0:
scb = &op->file[0].scb;
break;
case 1:
scb = &op->file[1].scb;
break;
default:
scb = &op->more_files[call->count - 2].scb;
break;
}
bp = call->buffer;
afs: Fix application of status and callback to be under same lock When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-09 17:16:10 +03:00
xdr_decode_YFSCallBack(&bp, call, scb);
call->count++;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (call->count < op->nr_files)
goto more_cbs;
afs_extract_to_buf(call, sizeof(struct yfs_xdr_YFSVolSync));
call->unmarshall++;
fallthrough;
case 5:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
bp = call->buffer;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSVolSync(&bp, &op->volsync);
call->unmarshall++;
fallthrough;
case 6:
break;
}
_leave(" = 0 [done]");
return 0;
}
/*
* FS.InlineBulkStatus operation type
*/
static const struct afs_call_type yfs_RXYFSInlineBulkStatus = {
.name = "YFS.InlineBulkStatus",
.op = yfs_FS_InlineBulkStatus,
.deliver = yfs_deliver_fs_inline_bulk_status,
.destructor = afs_flat_call_destructor,
};
/*
* Fetch the status information for up to 1024 files
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_inline_bulk_status(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *dvp = &op->file[0];
struct afs_vnode_param *vp = &op->file[1];
struct afs_call *call;
__be32 *bp;
int i;
_enter(",%x,{%llx:%llu},%u",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode, op->nr_files);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSInlineBulkStatus,
sizeof(__be32) +
sizeof(__be32) +
sizeof(__be32) +
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
sizeof(struct yfs_xdr_YFSFid) * op->nr_files,
sizeof(struct yfs_xdr_YFSFetchStatus));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (!call)
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSINLINEBULKSTATUS);
bp = xdr_encode_u32(bp, 0); /* RPCFlags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_u32(bp, op->nr_files);
bp = xdr_encode_YFSFid(bp, &dvp->fid);
bp = xdr_encode_YFSFid(bp, &vp->fid);
for (i = 0; i < op->nr_files - 2; i++)
bp = xdr_encode_YFSFid(bp, &op->more_files[i].fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_NOFS);
}
/*
* Deliver reply data to an YFS.FetchOpaqueACL.
*/
static int yfs_deliver_fs_fetch_opaque_acl(struct afs_call *call)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_operation *op = call->op;
struct afs_vnode_param *vp = &op->file[0];
struct yfs_acl *yacl = op->yacl;
struct afs_acl *acl;
const __be32 *bp;
unsigned int size;
int ret;
_enter("{%u}", call->unmarshall);
switch (call->unmarshall) {
case 0:
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
/* Extract the file ACL length */
case 1:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
size = call->count2 = ntohl(call->tmp);
size = round_up(size, 4);
if (yacl->flags & YFS_ACL_WANT_ACL) {
acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
if (!acl)
return -ENOMEM;
yacl->acl = acl;
acl->size = call->count2;
afs_extract_begin(call, acl->data, size);
} else {
afs_extract_discard(call, size);
}
call->unmarshall++;
fallthrough;
/* Extract the file ACL */
case 2:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
/* Extract the volume ACL length */
case 3:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
size = call->count2 = ntohl(call->tmp);
size = round_up(size, 4);
if (yacl->flags & YFS_ACL_WANT_VOL_ACL) {
acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
if (!acl)
return -ENOMEM;
yacl->vol_acl = acl;
acl->size = call->count2;
afs_extract_begin(call, acl->data, size);
} else {
afs_extract_discard(call, size);
}
call->unmarshall++;
fallthrough;
/* Extract the volume ACL */
case 4:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
afs_extract_to_buf(call,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
call->unmarshall++;
fallthrough;
/* extract the metadata */
case 5:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
bp = call->buffer;
yacl->inherit_flag = ntohl(*bp++);
yacl->num_cleaned = ntohl(*bp++);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
xdr_decode_YFSFetchStatus(&bp, call, &vp->scb);
xdr_decode_YFSVolSync(&bp, &op->volsync);
call->unmarshall++;
fallthrough;
case 6:
break;
}
_leave(" = 0 [done]");
return 0;
}
void yfs_free_opaque_acl(struct yfs_acl *yacl)
{
if (yacl) {
kfree(yacl->acl);
kfree(yacl->vol_acl);
kfree(yacl);
}
}
/*
* YFS.FetchOpaqueACL operation type
*/
static const struct afs_call_type yfs_RXYFSFetchOpaqueACL = {
.name = "YFS.FetchOpaqueACL",
.op = yfs_FS_FetchOpaqueACL,
.deliver = yfs_deliver_fs_fetch_opaque_acl,
.destructor = afs_flat_call_destructor,
};
/*
* Fetch the YFS advanced ACLs for a file.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_fetch_opaque_acl(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
__be32 *bp;
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSFetchOpaqueACL,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid),
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (!call)
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSFETCHOPAQUEACL);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_KERNEL);
}
/*
* YFS.StoreOpaqueACL2 operation type
*/
static const struct afs_call_type yfs_RXYFSStoreOpaqueACL2 = {
.name = "YFS.StoreOpaqueACL2",
.op = yfs_FS_StoreOpaqueACL2,
.deliver = yfs_deliver_status_and_volsync,
.destructor = afs_flat_call_destructor,
};
/*
* Fetch the YFS ACL for a file.
*/
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
void yfs_fs_store_opaque_acl2(struct afs_operation *op)
{
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_vnode_param *vp = &op->file[0];
struct afs_call *call;
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
struct afs_acl *acl = op->acl;
size_t size;
__be32 *bp;
_enter(",%x,{%llx:%llu},,",
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
key_serial(op->key), vp->fid.vid, vp->fid.vnode);
size = round_up(acl->size, 4);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
call = afs_alloc_flat_call(op->net, &yfs_RXYFSStoreOpaqueACL2,
sizeof(__be32) * 2 +
sizeof(struct yfs_xdr_YFSFid) +
sizeof(__be32) + size,
sizeof(struct yfs_xdr_YFSFetchStatus) +
sizeof(struct yfs_xdr_YFSVolSync));
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
if (!call)
return afs_op_nomem(op);
/* marshall the parameters */
bp = call->request;
bp = xdr_encode_u32(bp, YFSSTOREOPAQUEACL2);
bp = xdr_encode_u32(bp, 0); /* RPC flags */
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
bp = xdr_encode_YFSFid(bp, &vp->fid);
bp = xdr_encode_u32(bp, acl->size);
memcpy(bp, acl->data, acl->size);
if (acl->size != size)
memset((void *)bp + acl->size, 0, size - acl->size);
bp += size / sizeof(__be32);
yfs_check_req(call, bp);
afs: Build an abstraction around an "operation" concept Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-10 22:51:51 +03:00
trace_afs_make_fs_call(call, &vp->fid);
afs_make_op_call(op, call, GFP_KERNEL);
}