WSL2-Linux-Kernel/sound/isa/es18xx.c

2435 строки
69 KiB
C
Исходник Обычный вид История

/*
* Driver for generic ESS AudioDrive ES18xx soundcards
* Copyright (c) by Christian Fischbach <fishbach@pool.informatik.rwth-aachen.de>
* Copyright (c) by Abramo Bagnara <abramo@alsa-project.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* GENERAL NOTES:
*
* BUGS:
* - There are pops (we can't delay in trigger function, cause midlevel
* often need to trigger down and then up very quickly).
* Any ideas?
* - Support for 16 bit DMA seems to be broken. I've no hardware to tune it.
*/
/*
* ES1868 NOTES:
* - The chip has one half duplex pcm (with very limited full duplex support).
*
* - Duplex stereophonic sound is impossible.
* - Record and playback must share the same frequency rate.
*
* - The driver use dma2 for playback and dma1 for capture.
*/
/*
* ES1869 NOTES:
*
* - there are a first full duplex pcm and a second playback only pcm
* (incompatible with first pcm capture)
*
* - there is support for the capture volume and ESS Spatializer 3D effect.
*
* - contrarily to some pages in DS_1869.PDF the rates can be set
* independently.
*
* - Zoom Video is implemented by sharing the FM DAC, thus the user can
* have either FM playback or Video playback but not both simultaneously.
* The Video Playback Switch mixer control toggles this choice.
*
* BUGS:
*
* - There is a major trouble I noted:
*
* using both channel for playback stereo 16 bit samples at 44100 Hz
* the second pcm (Audio1) DMA slows down irregularly and sound is garbled.
*
* The same happens using Audio1 for captureing.
*
* The Windows driver does not suffer of this (although it use Audio1
* only for captureing). I'm unable to discover why.
*
*/
/*
* ES1879 NOTES:
* - When Zoom Video is enabled (reg 0x71 bit 6 toggled on) the PCM playback
* seems to be effected (speaker_test plays a lower frequency). Can't find
* anything in the datasheet to account for this, so a Video Playback Switch
* control has been included to allow ZV to be enabled only when necessary.
* Then again on at least one test system the 0x71 bit 6 enable bit is not
* needed for ZV, so maybe the datasheet is entirely wrong here.
*/
#include <linux/init.h>
#include <linux/err.h>
#include <linux/isa.h>
#include <linux/pnp.h>
#include <linux/isapnp.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#define SNDRV_LEGACY_FIND_FREE_IRQ
#define SNDRV_LEGACY_FIND_FREE_DMA
#include <sound/initval.h>
#define PFX "es18xx: "
struct snd_es18xx {
unsigned long port; /* port of ESS chip */
unsigned long ctrl_port; /* Control port of ESS chip */
struct resource *res_port;
struct resource *res_mpu_port;
struct resource *res_ctrl_port;
int irq; /* IRQ number of ESS chip */
int dma1; /* DMA1 */
int dma2; /* DMA2 */
unsigned short version; /* version of ESS chip */
int caps; /* Chip capabilities */
unsigned short audio2_vol; /* volume level of audio2 */
unsigned short active; /* active channel mask */
unsigned int dma1_shift;
unsigned int dma2_shift;
struct snd_pcm *pcm;
struct snd_pcm_substream *playback_a_substream;
struct snd_pcm_substream *capture_a_substream;
struct snd_pcm_substream *playback_b_substream;
struct snd_rawmidi *rmidi;
struct snd_kcontrol *hw_volume;
struct snd_kcontrol *hw_switch;
struct snd_kcontrol *master_volume;
struct snd_kcontrol *master_switch;
spinlock_t reg_lock;
spinlock_t mixer_lock;
#ifdef CONFIG_PM
unsigned char pm_reg;
#endif
#ifdef CONFIG_PNP
struct pnp_dev *dev;
struct pnp_dev *devc;
#endif
};
#define AUDIO1_IRQ 0x01
#define AUDIO2_IRQ 0x02
#define HWV_IRQ 0x04
#define MPU_IRQ 0x08
#define ES18XX_PCM2 0x0001 /* Has two useable PCM */
#define ES18XX_SPATIALIZER 0x0002 /* Has 3D Spatializer */
#define ES18XX_RECMIX 0x0004 /* Has record mixer */
#define ES18XX_DUPLEX_MONO 0x0008 /* Has mono duplex only */
#define ES18XX_DUPLEX_SAME 0x0010 /* Playback and record must share the same rate */
#define ES18XX_NEW_RATE 0x0020 /* More precise rate setting */
#define ES18XX_AUXB 0x0040 /* AuxB mixer control */
#define ES18XX_HWV 0x0080 /* Has separate hardware volume mixer controls*/
#define ES18XX_MONO 0x0100 /* Mono_in mixer control */
#define ES18XX_I2S 0x0200 /* I2S mixer control */
#define ES18XX_MUTEREC 0x0400 /* Record source can be muted */
#define ES18XX_CONTROL 0x0800 /* Has control ports */
/* Power Management */
#define ES18XX_PM 0x07
#define ES18XX_PM_GPO0 0x01
#define ES18XX_PM_GPO1 0x02
#define ES18XX_PM_PDR 0x04
#define ES18XX_PM_ANA 0x08
#define ES18XX_PM_FM 0x020
#define ES18XX_PM_SUS 0x080
/* Lowlevel */
#define DAC1 0x01
#define ADC1 0x02
#define DAC2 0x04
#define MILLISECOND 10000
static int snd_es18xx_dsp_command(struct snd_es18xx *chip, unsigned char val)
{
int i;
for(i = MILLISECOND; i; i--)
if ((inb(chip->port + 0x0C) & 0x80) == 0) {
outb(val, chip->port + 0x0C);
return 0;
}
snd_printk(KERN_ERR "dsp_command: timeout (0x%x)\n", val);
return -EINVAL;
}
static int snd_es18xx_dsp_get_byte(struct snd_es18xx *chip)
{
int i;
for(i = MILLISECOND/10; i; i--)
if (inb(chip->port + 0x0C) & 0x40)
return inb(chip->port + 0x0A);
snd_printk(KERN_ERR "dsp_get_byte failed: 0x%lx = 0x%x!!!\n",
chip->port + 0x0A, inb(chip->port + 0x0A));
return -ENODEV;
}
#undef REG_DEBUG
static int snd_es18xx_write(struct snd_es18xx *chip,
unsigned char reg, unsigned char data)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&chip->reg_lock, flags);
ret = snd_es18xx_dsp_command(chip, reg);
if (ret < 0)
goto end;
ret = snd_es18xx_dsp_command(chip, data);
end:
spin_unlock_irqrestore(&chip->reg_lock, flags);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Reg %02x set to %02x\n", reg, data);
#endif
return ret;
}
static int snd_es18xx_read(struct snd_es18xx *chip, unsigned char reg)
{
unsigned long flags;
int ret, data;
spin_lock_irqsave(&chip->reg_lock, flags);
ret = snd_es18xx_dsp_command(chip, 0xC0);
if (ret < 0)
goto end;
ret = snd_es18xx_dsp_command(chip, reg);
if (ret < 0)
goto end;
data = snd_es18xx_dsp_get_byte(chip);
ret = data;
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Reg %02x now is %02x (%d)\n", reg, data, ret);
#endif
end:
spin_unlock_irqrestore(&chip->reg_lock, flags);
return ret;
}
/* Return old value */
static int snd_es18xx_bits(struct snd_es18xx *chip, unsigned char reg,
unsigned char mask, unsigned char val)
{
int ret;
unsigned char old, new, oval;
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
ret = snd_es18xx_dsp_command(chip, 0xC0);
if (ret < 0)
goto end;
ret = snd_es18xx_dsp_command(chip, reg);
if (ret < 0)
goto end;
ret = snd_es18xx_dsp_get_byte(chip);
if (ret < 0) {
goto end;
}
old = ret;
oval = old & mask;
if (val != oval) {
ret = snd_es18xx_dsp_command(chip, reg);
if (ret < 0)
goto end;
new = (old & ~mask) | (val & mask);
ret = snd_es18xx_dsp_command(chip, new);
if (ret < 0)
goto end;
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Reg %02x was %02x, set to %02x (%d)\n",
reg, old, new, ret);
#endif
}
ret = oval;
end:
spin_unlock_irqrestore(&chip->reg_lock, flags);
return ret;
}
static inline void snd_es18xx_mixer_write(struct snd_es18xx *chip,
unsigned char reg, unsigned char data)
{
unsigned long flags;
spin_lock_irqsave(&chip->mixer_lock, flags);
outb(reg, chip->port + 0x04);
outb(data, chip->port + 0x05);
spin_unlock_irqrestore(&chip->mixer_lock, flags);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Mixer reg %02x set to %02x\n", reg, data);
#endif
}
static inline int snd_es18xx_mixer_read(struct snd_es18xx *chip, unsigned char reg)
{
unsigned long flags;
int data;
spin_lock_irqsave(&chip->mixer_lock, flags);
outb(reg, chip->port + 0x04);
data = inb(chip->port + 0x05);
spin_unlock_irqrestore(&chip->mixer_lock, flags);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Mixer reg %02x now is %02x\n", reg, data);
#endif
return data;
}
/* Return old value */
static inline int snd_es18xx_mixer_bits(struct snd_es18xx *chip, unsigned char reg,
unsigned char mask, unsigned char val)
{
unsigned char old, new, oval;
unsigned long flags;
spin_lock_irqsave(&chip->mixer_lock, flags);
outb(reg, chip->port + 0x04);
old = inb(chip->port + 0x05);
oval = old & mask;
if (val != oval) {
new = (old & ~mask) | (val & mask);
outb(new, chip->port + 0x05);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Mixer reg %02x was %02x, set to %02x\n",
reg, old, new);
#endif
}
spin_unlock_irqrestore(&chip->mixer_lock, flags);
return oval;
}
static inline int snd_es18xx_mixer_writable(struct snd_es18xx *chip, unsigned char reg,
unsigned char mask)
{
int old, expected, new;
unsigned long flags;
spin_lock_irqsave(&chip->mixer_lock, flags);
outb(reg, chip->port + 0x04);
old = inb(chip->port + 0x05);
expected = old ^ mask;
outb(expected, chip->port + 0x05);
new = inb(chip->port + 0x05);
spin_unlock_irqrestore(&chip->mixer_lock, flags);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Mixer reg %02x was %02x, set to %02x, now is %02x\n",
reg, old, expected, new);
#endif
return expected == new;
}
static int __devinit snd_es18xx_reset(struct snd_es18xx *chip)
{
int i;
outb(0x03, chip->port + 0x06);
inb(chip->port + 0x06);
outb(0x00, chip->port + 0x06);
for(i = 0; i < MILLISECOND && !(inb(chip->port + 0x0E) & 0x80); i++);
if (inb(chip->port + 0x0A) != 0xAA)
return -1;
return 0;
}
static int snd_es18xx_reset_fifo(struct snd_es18xx *chip)
{
outb(0x02, chip->port + 0x06);
inb(chip->port + 0x06);
outb(0x00, chip->port + 0x06);
return 0;
}
static struct snd_ratnum new_clocks[2] = {
{
.num = 793800,
.den_min = 1,
.den_max = 128,
.den_step = 1,
},
{
.num = 768000,
.den_min = 1,
.den_max = 128,
.den_step = 1,
}
};
static struct snd_pcm_hw_constraint_ratnums new_hw_constraints_clocks = {
.nrats = 2,
.rats = new_clocks,
};
static struct snd_ratnum old_clocks[2] = {
{
.num = 795444,
.den_min = 1,
.den_max = 128,
.den_step = 1,
},
{
.num = 397722,
.den_min = 1,
.den_max = 128,
.den_step = 1,
}
};
static struct snd_pcm_hw_constraint_ratnums old_hw_constraints_clocks = {
.nrats = 2,
.rats = old_clocks,
};
static void snd_es18xx_rate_set(struct snd_es18xx *chip,
struct snd_pcm_substream *substream,
int mode)
{
unsigned int bits, div0;
struct snd_pcm_runtime *runtime = substream->runtime;
if (chip->caps & ES18XX_NEW_RATE) {
if (runtime->rate_num == new_clocks[0].num)
bits = 128 - runtime->rate_den;
else
bits = 256 - runtime->rate_den;
} else {
if (runtime->rate_num == old_clocks[0].num)
bits = 256 - runtime->rate_den;
else
bits = 128 - runtime->rate_den;
}
/* set filter register */
div0 = 256 - 7160000*20/(8*82*runtime->rate);
if ((chip->caps & ES18XX_PCM2) && mode == DAC2) {
snd_es18xx_mixer_write(chip, 0x70, bits);
/*
* Comment from kernel oss driver:
* FKS: fascinating: 0x72 doesn't seem to work.
*/
snd_es18xx_write(chip, 0xA2, div0);
snd_es18xx_mixer_write(chip, 0x72, div0);
} else {
snd_es18xx_write(chip, 0xA1, bits);
snd_es18xx_write(chip, 0xA2, div0);
}
}
static int snd_es18xx_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
int shift, err;
shift = 0;
if (params_channels(hw_params) == 2)
shift++;
if (snd_pcm_format_width(params_format(hw_params)) == 16)
shift++;
if (substream->number == 0 && (chip->caps & ES18XX_PCM2)) {
if ((chip->caps & ES18XX_DUPLEX_MONO) &&
(chip->capture_a_substream) &&
params_channels(hw_params) != 1) {
_snd_pcm_hw_param_setempty(hw_params, SNDRV_PCM_HW_PARAM_CHANNELS);
return -EBUSY;
}
chip->dma2_shift = shift;
} else {
chip->dma1_shift = shift;
}
if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
return err;
return 0;
}
static int snd_es18xx_pcm_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int snd_es18xx_playback1_prepare(struct snd_es18xx *chip,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned int count = snd_pcm_lib_period_bytes(substream);
snd_es18xx_rate_set(chip, substream, DAC2);
/* Transfer Count Reload */
count = 0x10000 - count;
snd_es18xx_mixer_write(chip, 0x74, count & 0xff);
snd_es18xx_mixer_write(chip, 0x76, count >> 8);
/* Set format */
snd_es18xx_mixer_bits(chip, 0x7A, 0x07,
((runtime->channels == 1) ? 0x00 : 0x02) |
(snd_pcm_format_width(runtime->format) == 16 ? 0x01 : 0x00) |
(snd_pcm_format_unsigned(runtime->format) ? 0x00 : 0x04));
/* Set DMA controller */
snd_dma_program(chip->dma2, runtime->dma_addr, size, DMA_MODE_WRITE | DMA_AUTOINIT);
return 0;
}
static int snd_es18xx_playback1_trigger(struct snd_es18xx *chip,
struct snd_pcm_substream *substream,
int cmd)
{
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (chip->active & DAC2)
return 0;
chip->active |= DAC2;
/* Start DMA */
if (chip->dma2 >= 4)
snd_es18xx_mixer_write(chip, 0x78, 0xb3);
else
snd_es18xx_mixer_write(chip, 0x78, 0x93);
#ifdef AVOID_POPS
/* Avoid pops */
udelay(100000);
if (chip->caps & ES18XX_PCM2)
/* Restore Audio 2 volume */
snd_es18xx_mixer_write(chip, 0x7C, chip->audio2_vol);
else
/* Enable PCM output */
snd_es18xx_dsp_command(chip, 0xD1);
#endif
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (!(chip->active & DAC2))
return 0;
chip->active &= ~DAC2;
/* Stop DMA */
snd_es18xx_mixer_write(chip, 0x78, 0x00);
#ifdef AVOID_POPS
udelay(25000);
if (chip->caps & ES18XX_PCM2)
/* Set Audio 2 volume to 0 */
snd_es18xx_mixer_write(chip, 0x7C, 0);
else
/* Disable PCM output */
snd_es18xx_dsp_command(chip, 0xD3);
#endif
break;
default:
return -EINVAL;
}
return 0;
}
static int snd_es18xx_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
int shift, err;
shift = 0;
if ((chip->caps & ES18XX_DUPLEX_MONO) &&
chip->playback_a_substream &&
params_channels(hw_params) != 1) {
_snd_pcm_hw_param_setempty(hw_params, SNDRV_PCM_HW_PARAM_CHANNELS);
return -EBUSY;
}
if (params_channels(hw_params) == 2)
shift++;
if (snd_pcm_format_width(params_format(hw_params)) == 16)
shift++;
chip->dma1_shift = shift;
if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
return err;
return 0;
}
static int snd_es18xx_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned int count = snd_pcm_lib_period_bytes(substream);
snd_es18xx_reset_fifo(chip);
/* Set stereo/mono */
snd_es18xx_bits(chip, 0xA8, 0x03, runtime->channels == 1 ? 0x02 : 0x01);
snd_es18xx_rate_set(chip, substream, ADC1);
/* Transfer Count Reload */
count = 0x10000 - count;
snd_es18xx_write(chip, 0xA4, count & 0xff);
snd_es18xx_write(chip, 0xA5, count >> 8);
#ifdef AVOID_POPS
udelay(100000);
#endif
/* Set format */
snd_es18xx_write(chip, 0xB7,
snd_pcm_format_unsigned(runtime->format) ? 0x51 : 0x71);
snd_es18xx_write(chip, 0xB7, 0x90 |
((runtime->channels == 1) ? 0x40 : 0x08) |
(snd_pcm_format_width(runtime->format) == 16 ? 0x04 : 0x00) |
(snd_pcm_format_unsigned(runtime->format) ? 0x00 : 0x20));
/* Set DMA controller */
snd_dma_program(chip->dma1, runtime->dma_addr, size, DMA_MODE_READ | DMA_AUTOINIT);
return 0;
}
static int snd_es18xx_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (chip->active & ADC1)
return 0;
chip->active |= ADC1;
/* Start DMA */
snd_es18xx_write(chip, 0xB8, 0x0f);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (!(chip->active & ADC1))
return 0;
chip->active &= ~ADC1;
/* Stop DMA */
snd_es18xx_write(chip, 0xB8, 0x00);
break;
default:
return -EINVAL;
}
return 0;
}
static int snd_es18xx_playback2_prepare(struct snd_es18xx *chip,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned int count = snd_pcm_lib_period_bytes(substream);
snd_es18xx_reset_fifo(chip);
/* Set stereo/mono */
snd_es18xx_bits(chip, 0xA8, 0x03, runtime->channels == 1 ? 0x02 : 0x01);
snd_es18xx_rate_set(chip, substream, DAC1);
/* Transfer Count Reload */
count = 0x10000 - count;
snd_es18xx_write(chip, 0xA4, count & 0xff);
snd_es18xx_write(chip, 0xA5, count >> 8);
/* Set format */
snd_es18xx_write(chip, 0xB6,
snd_pcm_format_unsigned(runtime->format) ? 0x80 : 0x00);
snd_es18xx_write(chip, 0xB7,
snd_pcm_format_unsigned(runtime->format) ? 0x51 : 0x71);
snd_es18xx_write(chip, 0xB7, 0x90 |
(runtime->channels == 1 ? 0x40 : 0x08) |
(snd_pcm_format_width(runtime->format) == 16 ? 0x04 : 0x00) |
(snd_pcm_format_unsigned(runtime->format) ? 0x00 : 0x20));
/* Set DMA controller */
snd_dma_program(chip->dma1, runtime->dma_addr, size, DMA_MODE_WRITE | DMA_AUTOINIT);
return 0;
}
static int snd_es18xx_playback2_trigger(struct snd_es18xx *chip,
struct snd_pcm_substream *substream,
int cmd)
{
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (chip->active & DAC1)
return 0;
chip->active |= DAC1;
/* Start DMA */
snd_es18xx_write(chip, 0xB8, 0x05);
#ifdef AVOID_POPS
/* Avoid pops */
udelay(100000);
/* Enable Audio 1 */
snd_es18xx_dsp_command(chip, 0xD1);
#endif
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (!(chip->active & DAC1))
return 0;
chip->active &= ~DAC1;
/* Stop DMA */
snd_es18xx_write(chip, 0xB8, 0x00);
#ifdef AVOID_POPS
/* Avoid pops */
udelay(25000);
/* Disable Audio 1 */
snd_es18xx_dsp_command(chip, 0xD3);
#endif
break;
default:
return -EINVAL;
}
return 0;
}
static int snd_es18xx_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
if (substream->number == 0 && (chip->caps & ES18XX_PCM2))
return snd_es18xx_playback1_prepare(chip, substream);
else
return snd_es18xx_playback2_prepare(chip, substream);
}
static int snd_es18xx_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
if (substream->number == 0 && (chip->caps & ES18XX_PCM2))
return snd_es18xx_playback1_trigger(chip, substream, cmd);
else
return snd_es18xx_playback2_trigger(chip, substream, cmd);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t snd_es18xx_interrupt(int irq, void *dev_id)
{
struct snd_card *card = dev_id;
struct snd_es18xx *chip = card->private_data;
unsigned char status;
if (chip->caps & ES18XX_CONTROL) {
/* Read Interrupt status */
status = inb(chip->ctrl_port + 6);
} else {
/* Read Interrupt status */
status = snd_es18xx_mixer_read(chip, 0x7f) >> 4;
}
#if 0
else {
status = 0;
if (inb(chip->port + 0x0C) & 0x01)
status |= AUDIO1_IRQ;
if (snd_es18xx_mixer_read(chip, 0x7A) & 0x80)
status |= AUDIO2_IRQ;
if ((chip->caps & ES18XX_HWV) &&
snd_es18xx_mixer_read(chip, 0x64) & 0x10)
status |= HWV_IRQ;
}
#endif
/* Audio 1 & Audio 2 */
if (status & AUDIO2_IRQ) {
if (chip->active & DAC2)
snd_pcm_period_elapsed(chip->playback_a_substream);
/* ack interrupt */
snd_es18xx_mixer_bits(chip, 0x7A, 0x80, 0x00);
}
if (status & AUDIO1_IRQ) {
/* ok.. capture is active */
if (chip->active & ADC1)
snd_pcm_period_elapsed(chip->capture_a_substream);
/* ok.. playback2 is active */
else if (chip->active & DAC1)
snd_pcm_period_elapsed(chip->playback_b_substream);
/* ack interrupt */
inb(chip->port + 0x0E);
}
/* MPU */
if ((status & MPU_IRQ) && chip->rmidi)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
/* Hardware volume */
if (status & HWV_IRQ) {
int split = 0;
if (chip->caps & ES18XX_HWV) {
split = snd_es18xx_mixer_read(chip, 0x64) & 0x80;
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->hw_switch->id);
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->hw_volume->id);
}
if (!split) {
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->master_switch->id);
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->master_volume->id);
}
/* ack interrupt */
snd_es18xx_mixer_write(chip, 0x66, 0x00);
}
return IRQ_HANDLED;
}
static snd_pcm_uframes_t snd_es18xx_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
int pos;
if (substream->number == 0 && (chip->caps & ES18XX_PCM2)) {
if (!(chip->active & DAC2))
return 0;
pos = snd_dma_pointer(chip->dma2, size);
return pos >> chip->dma2_shift;
} else {
if (!(chip->active & DAC1))
return 0;
pos = snd_dma_pointer(chip->dma1, size);
return pos >> chip->dma1_shift;
}
}
static snd_pcm_uframes_t snd_es18xx_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
int pos;
if (!(chip->active & ADC1))
return 0;
pos = snd_dma_pointer(chip->dma1, size);
return pos >> chip->dma1_shift;
}
static struct snd_pcm_hardware snd_es18xx_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_es18xx_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static int snd_es18xx_playback_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
if (substream->number == 0 && (chip->caps & ES18XX_PCM2)) {
if ((chip->caps & ES18XX_DUPLEX_MONO) &&
chip->capture_a_substream &&
chip->capture_a_substream->runtime->channels != 1)
return -EAGAIN;
chip->playback_a_substream = substream;
} else if (substream->number <= 1) {
if (chip->capture_a_substream)
return -EAGAIN;
chip->playback_b_substream = substream;
} else {
snd_BUG();
return -EINVAL;
}
substream->runtime->hw = snd_es18xx_playback;
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
(chip->caps & ES18XX_NEW_RATE) ? &new_hw_constraints_clocks : &old_hw_constraints_clocks);
return 0;
}
static int snd_es18xx_capture_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
if (chip->playback_b_substream)
return -EAGAIN;
if ((chip->caps & ES18XX_DUPLEX_MONO) &&
chip->playback_a_substream &&
chip->playback_a_substream->runtime->channels != 1)
return -EAGAIN;
chip->capture_a_substream = substream;
substream->runtime->hw = snd_es18xx_capture;
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
(chip->caps & ES18XX_NEW_RATE) ? &new_hw_constraints_clocks : &old_hw_constraints_clocks);
return 0;
}
static int snd_es18xx_playback_close(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
if (substream->number == 0 && (chip->caps & ES18XX_PCM2))
chip->playback_a_substream = NULL;
else
chip->playback_b_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_es18xx_capture_close(struct snd_pcm_substream *substream)
{
struct snd_es18xx *chip = snd_pcm_substream_chip(substream);
chip->capture_a_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
/*
* MIXER part
*/
/* Record source mux routines:
* Depending on the chipset this mux switches between 4, 5, or 8 possible inputs.
* bit table for the 4/5 source mux:
* reg 1C:
* b2 b1 b0 muxSource
* x 0 x microphone
* 0 1 x CD
* 1 1 0 line
* 1 1 1 mixer
* if it's "mixer" and it's a 5 source mux chipset then reg 7A bit 3 determines
* either the play mixer or the capture mixer.
*
* "map4Source" translates from source number to reg bit pattern
* "invMap4Source" translates from reg bit pattern to source number
*/
static int snd_es18xx_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static char *texts5Source[5] = {
"Mic", "CD", "Line", "Master", "Mix"
};
static char *texts8Source[8] = {
"Mic", "Mic Master", "CD", "AOUT",
"Mic1", "Mix", "Line", "Master"
};
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
switch (chip->version) {
case 0x1868:
case 0x1878:
uinfo->value.enumerated.items = 4;
if (uinfo->value.enumerated.item > 3)
uinfo->value.enumerated.item = 3;
strcpy(uinfo->value.enumerated.name,
texts5Source[uinfo->value.enumerated.item]);
break;
case 0x1887:
case 0x1888:
uinfo->value.enumerated.items = 5;
if (uinfo->value.enumerated.item > 4)
uinfo->value.enumerated.item = 4;
strcpy(uinfo->value.enumerated.name, texts5Source[uinfo->value.enumerated.item]);
break;
case 0x1869: /* DS somewhat contradictory for 1869: could be be 5 or 8 */
case 0x1879:
uinfo->value.enumerated.items = 8;
if (uinfo->value.enumerated.item > 7)
uinfo->value.enumerated.item = 7;
strcpy(uinfo->value.enumerated.name, texts8Source[uinfo->value.enumerated.item]);
break;
default:
return -EINVAL;
}
return 0;
}
static int snd_es18xx_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
static unsigned char invMap4Source[8] = {0, 0, 1, 1, 0, 0, 2, 3};
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
int muxSource = snd_es18xx_mixer_read(chip, 0x1c) & 0x07;
if (!(chip->version == 0x1869 || chip->version == 0x1879)) {
muxSource = invMap4Source[muxSource];
if (muxSource==3 &&
(chip->version == 0x1887 || chip->version == 0x1888) &&
(snd_es18xx_mixer_read(chip, 0x7a) & 0x08)
)
muxSource = 4;
}
ucontrol->value.enumerated.item[0] = muxSource;
return 0;
}
static int snd_es18xx_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
static unsigned char map4Source[4] = {0, 2, 6, 7};
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
unsigned char val = ucontrol->value.enumerated.item[0];
unsigned char retVal = 0;
switch (chip->version) {
/* 5 source chips */
case 0x1887:
case 0x1888:
if (val > 4)
return -EINVAL;
if (val == 4) {
retVal = snd_es18xx_mixer_bits(chip, 0x7a, 0x08, 0x08) != 0x08;
val = 3;
} else
retVal = snd_es18xx_mixer_bits(chip, 0x7a, 0x08, 0x00) != 0x00;
/* 4 source chips */
case 0x1868:
case 0x1878:
if (val > 3)
return -EINVAL;
val = map4Source[val];
break;
/* 8 source chips */
case 0x1869:
case 0x1879:
if (val > 7)
return -EINVAL;
break;
default:
return -EINVAL;
}
return (snd_es18xx_mixer_bits(chip, 0x1c, 0x07, val) != val) || retVal;
}
#define snd_es18xx_info_spatializer_enable snd_ctl_boolean_mono_info
static int snd_es18xx_get_spatializer_enable(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
unsigned char val = snd_es18xx_mixer_read(chip, 0x50);
ucontrol->value.integer.value[0] = !!(val & 8);
return 0;
}
static int snd_es18xx_put_spatializer_enable(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
unsigned char oval, nval;
int change;
nval = ucontrol->value.integer.value[0] ? 0x0c : 0x04;
oval = snd_es18xx_mixer_read(chip, 0x50) & 0x0c;
change = nval != oval;
if (change) {
snd_es18xx_mixer_write(chip, 0x50, nval & ~0x04);
snd_es18xx_mixer_write(chip, 0x50, nval);
}
return change;
}
static int snd_es18xx_info_hw_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 63;
return 0;
}
static int snd_es18xx_get_hw_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = snd_es18xx_mixer_read(chip, 0x61) & 0x3f;
ucontrol->value.integer.value[1] = snd_es18xx_mixer_read(chip, 0x63) & 0x3f;
return 0;
}
#define snd_es18xx_info_hw_switch snd_ctl_boolean_stereo_info
static int snd_es18xx_get_hw_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = !(snd_es18xx_mixer_read(chip, 0x61) & 0x40);
ucontrol->value.integer.value[1] = !(snd_es18xx_mixer_read(chip, 0x63) & 0x40);
return 0;
}
static void snd_es18xx_hwv_free(struct snd_kcontrol *kcontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
chip->master_volume = NULL;
chip->master_switch = NULL;
chip->hw_volume = NULL;
chip->hw_switch = NULL;
}
static int snd_es18xx_reg_bits(struct snd_es18xx *chip, unsigned char reg,
unsigned char mask, unsigned char val)
{
if (reg < 0xa0)
return snd_es18xx_mixer_bits(chip, reg, mask, val);
else
return snd_es18xx_bits(chip, reg, mask, val);
}
static int snd_es18xx_reg_read(struct snd_es18xx *chip, unsigned char reg)
{
if (reg < 0xa0)
return snd_es18xx_mixer_read(chip, reg);
else
return snd_es18xx_read(chip, reg);
}
#define ES18XX_SINGLE(xname, xindex, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_es18xx_info_single, \
.get = snd_es18xx_get_single, .put = snd_es18xx_put_single, \
.private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
static int snd_es18xx_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_es18xx_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
int val;
val = snd_es18xx_reg_read(chip, reg);
ucontrol->value.integer.value[0] = (val >> shift) & mask;
if (invert)
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
return 0;
}
static int snd_es18xx_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned char val;
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
mask <<= shift;
val <<= shift;
return snd_es18xx_reg_bits(chip, reg, mask, val) != val;
}
#define ES18XX_DOUBLE(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_es18xx_info_double, \
.get = snd_es18xx_get_double, .put = snd_es18xx_put_double, \
.private_value = left_reg | (right_reg << 8) | (shift_left << 16) | (shift_right << 19) | (mask << 24) | (invert << 22) }
static int snd_es18xx_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 24) & 0xff;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_es18xx_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
int left_reg = kcontrol->private_value & 0xff;
int right_reg = (kcontrol->private_value >> 8) & 0xff;
int shift_left = (kcontrol->private_value >> 16) & 0x07;
int shift_right = (kcontrol->private_value >> 19) & 0x07;
int mask = (kcontrol->private_value >> 24) & 0xff;
int invert = (kcontrol->private_value >> 22) & 1;
unsigned char left, right;
left = snd_es18xx_reg_read(chip, left_reg);
if (left_reg != right_reg)
right = snd_es18xx_reg_read(chip, right_reg);
else
right = left;
ucontrol->value.integer.value[0] = (left >> shift_left) & mask;
ucontrol->value.integer.value[1] = (right >> shift_right) & mask;
if (invert) {
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
}
return 0;
}
static int snd_es18xx_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_es18xx *chip = snd_kcontrol_chip(kcontrol);
int left_reg = kcontrol->private_value & 0xff;
int right_reg = (kcontrol->private_value >> 8) & 0xff;
int shift_left = (kcontrol->private_value >> 16) & 0x07;
int shift_right = (kcontrol->private_value >> 19) & 0x07;
int mask = (kcontrol->private_value >> 24) & 0xff;
int invert = (kcontrol->private_value >> 22) & 1;
int change;
unsigned char val1, val2, mask1, mask2;
val1 = ucontrol->value.integer.value[0] & mask;
val2 = ucontrol->value.integer.value[1] & mask;
if (invert) {
val1 = mask - val1;
val2 = mask - val2;
}
val1 <<= shift_left;
val2 <<= shift_right;
mask1 = mask << shift_left;
mask2 = mask << shift_right;
if (left_reg != right_reg) {
change = 0;
if (snd_es18xx_reg_bits(chip, left_reg, mask1, val1) != val1)
change = 1;
if (snd_es18xx_reg_bits(chip, right_reg, mask2, val2) != val2)
change = 1;
} else {
change = (snd_es18xx_reg_bits(chip, left_reg, mask1 | mask2,
val1 | val2) != (val1 | val2));
}
return change;
}
/* Mixer controls
* These arrays contain setup data for mixer controls.
*
* The controls that are universal to all chipsets are fully initialized
* here.
*/
static struct snd_kcontrol_new snd_es18xx_base_controls[] = {
ES18XX_DOUBLE("Master Playback Volume", 0, 0x60, 0x62, 0, 0, 63, 0),
ES18XX_DOUBLE("Master Playback Switch", 0, 0x60, 0x62, 6, 6, 1, 1),
ES18XX_DOUBLE("Line Playback Volume", 0, 0x3e, 0x3e, 4, 0, 15, 0),
ES18XX_DOUBLE("CD Playback Volume", 0, 0x38, 0x38, 4, 0, 15, 0),
ES18XX_DOUBLE("FM Playback Volume", 0, 0x36, 0x36, 4, 0, 15, 0),
ES18XX_DOUBLE("Mic Playback Volume", 0, 0x1a, 0x1a, 4, 0, 15, 0),
ES18XX_DOUBLE("Aux Playback Volume", 0, 0x3a, 0x3a, 4, 0, 15, 0),
ES18XX_SINGLE("Record Monitor", 0, 0xa8, 3, 1, 0),
ES18XX_DOUBLE("Capture Volume", 0, 0xb4, 0xb4, 4, 0, 15, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = snd_es18xx_info_mux,
.get = snd_es18xx_get_mux,
.put = snd_es18xx_put_mux,
}
};
static struct snd_kcontrol_new snd_es18xx_recmix_controls[] = {
ES18XX_DOUBLE("PCM Capture Volume", 0, 0x69, 0x69, 4, 0, 15, 0),
ES18XX_DOUBLE("Mic Capture Volume", 0, 0x68, 0x68, 4, 0, 15, 0),
ES18XX_DOUBLE("Line Capture Volume", 0, 0x6e, 0x6e, 4, 0, 15, 0),
ES18XX_DOUBLE("FM Capture Volume", 0, 0x6b, 0x6b, 4, 0, 15, 0),
ES18XX_DOUBLE("CD Capture Volume", 0, 0x6a, 0x6a, 4, 0, 15, 0),
ES18XX_DOUBLE("Aux Capture Volume", 0, 0x6c, 0x6c, 4, 0, 15, 0)
};
/*
* The chipset specific mixer controls
*/
static struct snd_kcontrol_new snd_es18xx_opt_speaker =
ES18XX_SINGLE("Beep Playback Volume", 0, 0x3c, 0, 7, 0);
static struct snd_kcontrol_new snd_es18xx_opt_1869[] = {
ES18XX_SINGLE("Capture Switch", 0, 0x1c, 4, 1, 1),
ES18XX_SINGLE("Video Playback Switch", 0, 0x7f, 0, 1, 0),
ES18XX_DOUBLE("Mono Playback Volume", 0, 0x6d, 0x6d, 4, 0, 15, 0),
ES18XX_DOUBLE("Mono Capture Volume", 0, 0x6f, 0x6f, 4, 0, 15, 0)
};
static struct snd_kcontrol_new snd_es18xx_opt_1878 =
ES18XX_DOUBLE("Video Playback Volume", 0, 0x68, 0x68, 4, 0, 15, 0);
static struct snd_kcontrol_new snd_es18xx_opt_1879[] = {
ES18XX_SINGLE("Video Playback Switch", 0, 0x71, 6, 1, 0),
ES18XX_DOUBLE("Video Playback Volume", 0, 0x6d, 0x6d, 4, 0, 15, 0),
ES18XX_DOUBLE("Video Capture Volume", 0, 0x6f, 0x6f, 4, 0, 15, 0)
};
static struct snd_kcontrol_new snd_es18xx_pcm1_controls[] = {
ES18XX_DOUBLE("PCM Playback Volume", 0, 0x14, 0x14, 4, 0, 15, 0),
};
static struct snd_kcontrol_new snd_es18xx_pcm2_controls[] = {
ES18XX_DOUBLE("PCM Playback Volume", 0, 0x7c, 0x7c, 4, 0, 15, 0),
ES18XX_DOUBLE("PCM Playback Volume", 1, 0x14, 0x14, 4, 0, 15, 0)
};
static struct snd_kcontrol_new snd_es18xx_spatializer_controls[] = {
ES18XX_SINGLE("3D Control - Level", 0, 0x52, 0, 63, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "3D Control - Switch",
.info = snd_es18xx_info_spatializer_enable,
.get = snd_es18xx_get_spatializer_enable,
.put = snd_es18xx_put_spatializer_enable,
}
};
static struct snd_kcontrol_new snd_es18xx_micpre1_control =
ES18XX_SINGLE("Mic Boost (+26dB)", 0, 0xa9, 2, 1, 0);
static struct snd_kcontrol_new snd_es18xx_micpre2_control =
ES18XX_SINGLE("Mic Boost (+26dB)", 0, 0x7d, 3, 1, 0);
static struct snd_kcontrol_new snd_es18xx_hw_volume_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Hardware Master Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_es18xx_info_hw_volume,
.get = snd_es18xx_get_hw_volume,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Hardware Master Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_es18xx_info_hw_switch,
.get = snd_es18xx_get_hw_switch,
},
ES18XX_SINGLE("Hardware Master Volume Split", 0, 0x64, 7, 1, 0),
};
static int __devinit snd_es18xx_config_read(struct snd_es18xx *chip, unsigned char reg)
{
int data;
outb(reg, chip->ctrl_port);
data = inb(chip->ctrl_port + 1);
return data;
}
static void __devinit snd_es18xx_config_write(struct snd_es18xx *chip,
unsigned char reg, unsigned char data)
{
/* No need for spinlocks, this function is used only in
otherwise protected init code */
outb(reg, chip->ctrl_port);
outb(data, chip->ctrl_port + 1);
#ifdef REG_DEBUG
snd_printk(KERN_DEBUG "Config reg %02x set to %02x\n", reg, data);
#endif
}
static int __devinit snd_es18xx_initialize(struct snd_es18xx *chip,
unsigned long mpu_port,
unsigned long fm_port)
{
int mask = 0;
/* enable extended mode */
snd_es18xx_dsp_command(chip, 0xC6);
/* Reset mixer registers */
snd_es18xx_mixer_write(chip, 0x00, 0x00);
/* Audio 1 DMA demand mode (4 bytes/request) */
snd_es18xx_write(chip, 0xB9, 2);
if (chip->caps & ES18XX_CONTROL) {
/* Hardware volume IRQ */
snd_es18xx_config_write(chip, 0x27, chip->irq);
if (fm_port > 0 && fm_port != SNDRV_AUTO_PORT) {
/* FM I/O */
snd_es18xx_config_write(chip, 0x62, fm_port >> 8);
snd_es18xx_config_write(chip, 0x63, fm_port & 0xff);
}
if (mpu_port > 0 && mpu_port != SNDRV_AUTO_PORT) {
/* MPU-401 I/O */
snd_es18xx_config_write(chip, 0x64, mpu_port >> 8);
snd_es18xx_config_write(chip, 0x65, mpu_port & 0xff);
/* MPU-401 IRQ */
snd_es18xx_config_write(chip, 0x28, chip->irq);
}
/* Audio1 IRQ */
snd_es18xx_config_write(chip, 0x70, chip->irq);
/* Audio2 IRQ */
snd_es18xx_config_write(chip, 0x72, chip->irq);
/* Audio1 DMA */
snd_es18xx_config_write(chip, 0x74, chip->dma1);
/* Audio2 DMA */
snd_es18xx_config_write(chip, 0x75, chip->dma2);
/* Enable Audio 1 IRQ */
snd_es18xx_write(chip, 0xB1, 0x50);
/* Enable Audio 2 IRQ */
snd_es18xx_mixer_write(chip, 0x7A, 0x40);
/* Enable Audio 1 DMA */
snd_es18xx_write(chip, 0xB2, 0x50);
/* Enable MPU and hardware volume interrupt */
snd_es18xx_mixer_write(chip, 0x64, 0x42);
/* Enable ESS wavetable input */
snd_es18xx_mixer_bits(chip, 0x48, 0x10, 0x10);
}
else {
int irqmask, dma1mask, dma2mask;
switch (chip->irq) {
case 2:
case 9:
irqmask = 0;
break;
case 5:
irqmask = 1;
break;
case 7:
irqmask = 2;
break;
case 10:
irqmask = 3;
break;
default:
snd_printk(KERN_ERR "invalid irq %d\n", chip->irq);
return -ENODEV;
}
switch (chip->dma1) {
case 0:
dma1mask = 1;
break;
case 1:
dma1mask = 2;
break;
case 3:
dma1mask = 3;
break;
default:
snd_printk(KERN_ERR "invalid dma1 %d\n", chip->dma1);
return -ENODEV;
}
switch (chip->dma2) {
case 0:
dma2mask = 0;
break;
case 1:
dma2mask = 1;
break;
case 3:
dma2mask = 2;
break;
case 5:
dma2mask = 3;
break;
default:
snd_printk(KERN_ERR "invalid dma2 %d\n", chip->dma2);
return -ENODEV;
}
/* Enable and set Audio 1 IRQ */
snd_es18xx_write(chip, 0xB1, 0x50 | (irqmask << 2));
/* Enable and set Audio 1 DMA */
snd_es18xx_write(chip, 0xB2, 0x50 | (dma1mask << 2));
/* Set Audio 2 DMA */
snd_es18xx_mixer_bits(chip, 0x7d, 0x07, 0x04 | dma2mask);
/* Enable Audio 2 IRQ and DMA
Set capture mixer input */
snd_es18xx_mixer_write(chip, 0x7A, 0x68);
/* Enable and set hardware volume interrupt */
snd_es18xx_mixer_write(chip, 0x64, 0x06);
if (mpu_port > 0 && mpu_port != SNDRV_AUTO_PORT) {
/* MPU401 share irq with audio
Joystick enabled
FM enabled */
snd_es18xx_mixer_write(chip, 0x40,
0x43 | (mpu_port & 0xf0) >> 1);
}
snd_es18xx_mixer_write(chip, 0x7f, ((irqmask + 1) << 1) | 0x01);
}
if (chip->caps & ES18XX_NEW_RATE) {
/* Change behaviour of register A1
4x oversampling
2nd channel DAC asynchronous */
snd_es18xx_mixer_write(chip, 0x71, 0x32);
}
if (!(chip->caps & ES18XX_PCM2)) {
/* Enable DMA FIFO */
snd_es18xx_write(chip, 0xB7, 0x80);
}
if (chip->caps & ES18XX_SPATIALIZER) {
/* Set spatializer parameters to recommended values */
snd_es18xx_mixer_write(chip, 0x54, 0x8f);
snd_es18xx_mixer_write(chip, 0x56, 0x95);
snd_es18xx_mixer_write(chip, 0x58, 0x94);
snd_es18xx_mixer_write(chip, 0x5a, 0x80);
}
/* Flip the "enable I2S" bits for those chipsets that need it */
switch (chip->version) {
case 0x1879:
//Leaving I2S enabled on the 1879 screws up the PCM playback (rate effected somehow)
//so a Switch control has been added to toggle this 0x71 bit on/off:
//snd_es18xx_mixer_bits(chip, 0x71, 0x40, 0x40);
/* Note: we fall through on purpose here. */
case 0x1878:
snd_es18xx_config_write(chip, 0x29, snd_es18xx_config_read(chip, 0x29) | 0x40);
break;
}
/* Mute input source */
if (chip->caps & ES18XX_MUTEREC)
mask = 0x10;
if (chip->caps & ES18XX_RECMIX)
snd_es18xx_mixer_write(chip, 0x1c, 0x05 | mask);
else {
snd_es18xx_mixer_write(chip, 0x1c, 0x00 | mask);
snd_es18xx_write(chip, 0xb4, 0x00);
}
#ifndef AVOID_POPS
/* Enable PCM output */
snd_es18xx_dsp_command(chip, 0xD1);
#endif
return 0;
}
static int __devinit snd_es18xx_identify(struct snd_es18xx *chip)
{
int hi,lo;
/* reset */
if (snd_es18xx_reset(chip) < 0) {
snd_printk(KERN_ERR "reset at 0x%lx failed!!!\n", chip->port);
return -ENODEV;
}
snd_es18xx_dsp_command(chip, 0xe7);
hi = snd_es18xx_dsp_get_byte(chip);
if (hi < 0) {
return hi;
}
lo = snd_es18xx_dsp_get_byte(chip);
if ((lo & 0xf0) != 0x80) {
return -ENODEV;
}
if (hi == 0x48) {
chip->version = 0x488;
return 0;
}
if (hi != 0x68) {
return -ENODEV;
}
if ((lo & 0x0f) < 8) {
chip->version = 0x688;
return 0;
}
outb(0x40, chip->port + 0x04);
udelay(10);
hi = inb(chip->port + 0x05);
udelay(10);
lo = inb(chip->port + 0x05);
if (hi != lo) {
chip->version = hi << 8 | lo;
chip->ctrl_port = inb(chip->port + 0x05) << 8;
udelay(10);
chip->ctrl_port += inb(chip->port + 0x05);
if ((chip->res_ctrl_port = request_region(chip->ctrl_port, 8, "ES18xx - CTRL")) == NULL) {
snd_printk(KERN_ERR PFX "unable go grab port 0x%lx\n", chip->ctrl_port);
return -EBUSY;
}
return 0;
}
/* If has Hardware volume */
if (snd_es18xx_mixer_writable(chip, 0x64, 0x04)) {
/* If has Audio2 */
if (snd_es18xx_mixer_writable(chip, 0x70, 0x7f)) {
/* If has volume count */
if (snd_es18xx_mixer_writable(chip, 0x64, 0x20)) {
chip->version = 0x1887;
} else {
chip->version = 0x1888;
}
} else {
chip->version = 0x1788;
}
}
else
chip->version = 0x1688;
return 0;
}
static int __devinit snd_es18xx_probe(struct snd_es18xx *chip,
unsigned long mpu_port,
unsigned long fm_port)
{
if (snd_es18xx_identify(chip) < 0) {
snd_printk(KERN_ERR PFX "[0x%lx] ESS chip not found\n", chip->port);
return -ENODEV;
}
switch (chip->version) {
case 0x1868:
chip->caps = ES18XX_DUPLEX_MONO | ES18XX_DUPLEX_SAME | ES18XX_CONTROL;
break;
case 0x1869:
chip->caps = ES18XX_PCM2 | ES18XX_SPATIALIZER | ES18XX_RECMIX | ES18XX_NEW_RATE | ES18XX_AUXB | ES18XX_MONO | ES18XX_MUTEREC | ES18XX_CONTROL | ES18XX_HWV;
break;
case 0x1878:
chip->caps = ES18XX_DUPLEX_MONO | ES18XX_DUPLEX_SAME | ES18XX_I2S | ES18XX_CONTROL;
break;
case 0x1879:
chip->caps = ES18XX_PCM2 | ES18XX_SPATIALIZER | ES18XX_RECMIX | ES18XX_NEW_RATE | ES18XX_AUXB | ES18XX_I2S | ES18XX_CONTROL | ES18XX_HWV;
break;
case 0x1887:
case 0x1888:
chip->caps = ES18XX_PCM2 | ES18XX_RECMIX | ES18XX_AUXB | ES18XX_DUPLEX_SAME;
break;
default:
snd_printk(KERN_ERR "[0x%lx] unsupported chip ES%x\n",
chip->port, chip->version);
return -ENODEV;
}
snd_printd("[0x%lx] ESS%x chip found\n", chip->port, chip->version);
if (chip->dma1 == chip->dma2)
chip->caps &= ~(ES18XX_PCM2 | ES18XX_DUPLEX_SAME);
return snd_es18xx_initialize(chip, mpu_port, fm_port);
}
static struct snd_pcm_ops snd_es18xx_playback_ops = {
.open = snd_es18xx_playback_open,
.close = snd_es18xx_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_es18xx_playback_hw_params,
.hw_free = snd_es18xx_pcm_hw_free,
.prepare = snd_es18xx_playback_prepare,
.trigger = snd_es18xx_playback_trigger,
.pointer = snd_es18xx_playback_pointer,
};
static struct snd_pcm_ops snd_es18xx_capture_ops = {
.open = snd_es18xx_capture_open,
.close = snd_es18xx_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_es18xx_capture_hw_params,
.hw_free = snd_es18xx_pcm_hw_free,
.prepare = snd_es18xx_capture_prepare,
.trigger = snd_es18xx_capture_trigger,
.pointer = snd_es18xx_capture_pointer,
};
static int __devinit snd_es18xx_pcm(struct snd_card *card, int device,
struct snd_pcm **rpcm)
{
struct snd_es18xx *chip = card->private_data;
struct snd_pcm *pcm;
char str[16];
int err;
if (rpcm)
*rpcm = NULL;
sprintf(str, "ES%x", chip->version);
if (chip->caps & ES18XX_PCM2)
err = snd_pcm_new(card, str, device, 2, 1, &pcm);
else
err = snd_pcm_new(card, str, device, 1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_es18xx_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_es18xx_capture_ops);
/* global setup */
pcm->private_data = chip;
pcm->info_flags = 0;
if (chip->caps & ES18XX_DUPLEX_SAME)
pcm->info_flags |= SNDRV_PCM_INFO_JOINT_DUPLEX;
if (! (chip->caps & ES18XX_PCM2))
pcm->info_flags |= SNDRV_PCM_INFO_HALF_DUPLEX;
sprintf(pcm->name, "ESS AudioDrive ES%x", chip->version);
chip->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_isa_data(),
64*1024,
chip->dma1 > 3 || chip->dma2 > 3 ? 128*1024 : 64*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
/* Power Management support functions */
#ifdef CONFIG_PM
static int snd_es18xx_suspend(struct snd_card *card, pm_message_t state)
{
struct snd_es18xx *chip = card->private_data;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
/* power down */
chip->pm_reg = (unsigned char)snd_es18xx_read(chip, ES18XX_PM);
chip->pm_reg |= (ES18XX_PM_FM | ES18XX_PM_SUS);
snd_es18xx_write(chip, ES18XX_PM, chip->pm_reg);
snd_es18xx_write(chip, ES18XX_PM, chip->pm_reg ^= ES18XX_PM_SUS);
return 0;
}
static int snd_es18xx_resume(struct snd_card *card)
{
struct snd_es18xx *chip = card->private_data;
/* restore PM register, we won't wake till (not 0x07) i/o activity though */
snd_es18xx_write(chip, ES18XX_PM, chip->pm_reg ^= ES18XX_PM_FM);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif /* CONFIG_PM */
static int snd_es18xx_free(struct snd_card *card)
{
struct snd_es18xx *chip = card->private_data;
release_and_free_resource(chip->res_port);
release_and_free_resource(chip->res_ctrl_port);
release_and_free_resource(chip->res_mpu_port);
if (chip->irq >= 0)
free_irq(chip->irq, (void *) card);
if (chip->dma1 >= 0) {
disable_dma(chip->dma1);
free_dma(chip->dma1);
}
if (chip->dma2 >= 0 && chip->dma1 != chip->dma2) {
disable_dma(chip->dma2);
free_dma(chip->dma2);
}
return 0;
}
static int snd_es18xx_dev_free(struct snd_device *device)
{
return snd_es18xx_free(device->card);
}
static int __devinit snd_es18xx_new_device(struct snd_card *card,
unsigned long port,
unsigned long mpu_port,
unsigned long fm_port,
int irq, int dma1, int dma2)
{
struct snd_es18xx *chip = card->private_data;
static struct snd_device_ops ops = {
.dev_free = snd_es18xx_dev_free,
};
int err;
spin_lock_init(&chip->reg_lock);
spin_lock_init(&chip->mixer_lock);
chip->port = port;
chip->irq = -1;
chip->dma1 = -1;
chip->dma2 = -1;
chip->audio2_vol = 0x00;
chip->active = 0;
chip->res_port = request_region(port, 16, "ES18xx");
if (chip->res_port == NULL) {
snd_es18xx_free(card);
snd_printk(KERN_ERR PFX "unable to grap ports 0x%lx-0x%lx\n", port, port + 16 - 1);
return -EBUSY;
}
if (request_irq(irq, snd_es18xx_interrupt, IRQF_DISABLED, "ES18xx",
(void *) card)) {
snd_es18xx_free(card);
snd_printk(KERN_ERR PFX "unable to grap IRQ %d\n", irq);
return -EBUSY;
}
chip->irq = irq;
if (request_dma(dma1, "ES18xx DMA 1")) {
snd_es18xx_free(card);
snd_printk(KERN_ERR PFX "unable to grap DMA1 %d\n", dma1);
return -EBUSY;
}
chip->dma1 = dma1;
if (dma2 != dma1 && request_dma(dma2, "ES18xx DMA 2")) {
snd_es18xx_free(card);
snd_printk(KERN_ERR PFX "unable to grap DMA2 %d\n", dma2);
return -EBUSY;
}
chip->dma2 = dma2;
if (snd_es18xx_probe(chip, mpu_port, fm_port) < 0) {
snd_es18xx_free(card);
return -ENODEV;
}
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0) {
snd_es18xx_free(card);
return err;
}
return 0;
}
static int __devinit snd_es18xx_mixer(struct snd_card *card)
{
struct snd_es18xx *chip = card->private_data;
int err;
unsigned int idx;
strcpy(card->mixername, chip->pcm->name);
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_base_controls); idx++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(&snd_es18xx_base_controls[idx], chip);
if (chip->caps & ES18XX_HWV) {
switch (idx) {
case 0:
chip->master_volume = kctl;
kctl->private_free = snd_es18xx_hwv_free;
break;
case 1:
chip->master_switch = kctl;
kctl->private_free = snd_es18xx_hwv_free;
break;
}
}
if ((err = snd_ctl_add(card, kctl)) < 0)
return err;
}
if (chip->caps & ES18XX_PCM2) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_pcm2_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_pcm2_controls[idx], chip))) < 0)
return err;
}
} else {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_pcm1_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_pcm1_controls[idx], chip))) < 0)
return err;
}
}
if (chip->caps & ES18XX_RECMIX) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_recmix_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_recmix_controls[idx], chip))) < 0)
return err;
}
}
switch (chip->version) {
default:
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_micpre1_control, chip))) < 0)
return err;
break;
case 0x1869:
case 0x1879:
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_micpre2_control, chip))) < 0)
return err;
break;
}
if (chip->caps & ES18XX_SPATIALIZER) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_spatializer_controls); idx++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_spatializer_controls[idx], chip))) < 0)
return err;
}
}
if (chip->caps & ES18XX_HWV) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_hw_volume_controls); idx++) {
struct snd_kcontrol *kctl;
kctl = snd_ctl_new1(&snd_es18xx_hw_volume_controls[idx], chip);
if (idx == 0)
chip->hw_volume = kctl;
else
chip->hw_switch = kctl;
kctl->private_free = snd_es18xx_hwv_free;
if ((err = snd_ctl_add(card, kctl)) < 0)
return err;
}
}
/* finish initializing other chipset specific controls
*/
if (chip->version != 0x1868) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_opt_speaker,
chip));
if (err < 0)
return err;
}
if (chip->version == 0x1869) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_opt_1869); idx++) {
err = snd_ctl_add(card,
snd_ctl_new1(&snd_es18xx_opt_1869[idx],
chip));
if (err < 0)
return err;
}
} else if (chip->version == 0x1878) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_es18xx_opt_1878,
chip));
if (err < 0)
return err;
} else if (chip->version == 0x1879) {
for (idx = 0; idx < ARRAY_SIZE(snd_es18xx_opt_1879); idx++) {
err = snd_ctl_add(card,
snd_ctl_new1(&snd_es18xx_opt_1879[idx],
chip));
if (err < 0)
return err;
}
}
return 0;
}
/* Card level */
MODULE_AUTHOR("Christian Fischbach <fishbach@pool.informatik.rwth-aachen.de>, Abramo Bagnara <abramo@alsa-project.org>");
MODULE_DESCRIPTION("ESS ES18xx AudioDrive");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ESS,ES1868 PnP AudioDrive},"
"{ESS,ES1869 PnP AudioDrive},"
"{ESS,ES1878 PnP AudioDrive},"
"{ESS,ES1879 PnP AudioDrive},"
"{ESS,ES1887 PnP AudioDrive},"
"{ESS,ES1888 PnP AudioDrive},"
"{ESS,ES1887 AudioDrive},"
"{ESS,ES1888 AudioDrive}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_ISAPNP; /* Enable this card */
#ifdef CONFIG_PNP
static int isapnp[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_ISAPNP;
#endif
static long port[SNDRV_CARDS] = SNDRV_DEFAULT_PORT; /* 0x220,0x240,0x260,0x280 */
#ifndef CONFIG_PNP
static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1};
#else
static long mpu_port[SNDRV_CARDS] = SNDRV_DEFAULT_PORT;
#endif
static long fm_port[SNDRV_CARDS] = SNDRV_DEFAULT_PORT;
static int irq[SNDRV_CARDS] = SNDRV_DEFAULT_IRQ; /* 5,7,9,10 */
static int dma1[SNDRV_CARDS] = SNDRV_DEFAULT_DMA; /* 0,1,3 */
static int dma2[SNDRV_CARDS] = SNDRV_DEFAULT_DMA; /* 0,1,3 */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for ES18xx soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for ES18xx soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable ES18xx soundcard.");
#ifdef CONFIG_PNP
module_param_array(isapnp, bool, NULL, 0444);
MODULE_PARM_DESC(isapnp, "PnP detection for specified soundcard.");
#endif
module_param_array(port, long, NULL, 0444);
MODULE_PARM_DESC(port, "Port # for ES18xx driver.");
module_param_array(mpu_port, long, NULL, 0444);
MODULE_PARM_DESC(mpu_port, "MPU-401 port # for ES18xx driver.");
module_param_array(fm_port, long, NULL, 0444);
MODULE_PARM_DESC(fm_port, "FM port # for ES18xx driver.");
module_param_array(irq, int, NULL, 0444);
MODULE_PARM_DESC(irq, "IRQ # for ES18xx driver.");
module_param_array(dma1, int, NULL, 0444);
MODULE_PARM_DESC(dma1, "DMA 1 # for ES18xx driver.");
module_param_array(dma2, int, NULL, 0444);
MODULE_PARM_DESC(dma2, "DMA 2 # for ES18xx driver.");
#ifdef CONFIG_PNP
static int isa_registered;
static int pnp_registered;
static int pnpc_registered;
static struct pnp_device_id snd_audiodrive_pnpbiosids[] = {
{ .id = "ESS1869" },
{ .id = "ESS1879" },
{ .id = "" } /* end */
};
MODULE_DEVICE_TABLE(pnp, snd_audiodrive_pnpbiosids);
/* PnP main device initialization */
static int __devinit snd_audiodrive_pnp_init_main(int dev, struct pnp_dev *pdev)
{
if (pnp_activate_dev(pdev) < 0) {
snd_printk(KERN_ERR PFX "PnP configure failure (out of resources?)\n");
return -EBUSY;
}
/* ok. hack using Vendor-Defined Card-Level registers */
/* skip csn and logdev initialization - already done in isapnp_configure */
if (pnp_device_is_isapnp(pdev)) {
isapnp_cfg_begin(isapnp_card_number(pdev), isapnp_csn_number(pdev));
isapnp_write_byte(0x27, pnp_irq(pdev, 0)); /* Hardware Volume IRQ Number */
if (mpu_port[dev] != SNDRV_AUTO_PORT)
isapnp_write_byte(0x28, pnp_irq(pdev, 0)); /* MPU-401 IRQ Number */
isapnp_write_byte(0x72, pnp_irq(pdev, 0)); /* second IRQ */
isapnp_cfg_end();
}
port[dev] = pnp_port_start(pdev, 0);
fm_port[dev] = pnp_port_start(pdev, 1);
mpu_port[dev] = pnp_port_start(pdev, 2);
dma1[dev] = pnp_dma(pdev, 0);
dma2[dev] = pnp_dma(pdev, 1);
irq[dev] = pnp_irq(pdev, 0);
snd_printdd("PnP ES18xx: port=0x%lx, fm port=0x%lx, mpu port=0x%lx\n", port[dev], fm_port[dev], mpu_port[dev]);
snd_printdd("PnP ES18xx: dma1=%i, dma2=%i, irq=%i\n", dma1[dev], dma2[dev], irq[dev]);
return 0;
}
static int __devinit snd_audiodrive_pnp(int dev, struct snd_es18xx *chip,
struct pnp_dev *pdev)
{
chip->dev = pdev;
if (snd_audiodrive_pnp_init_main(dev, chip->dev) < 0)
return -EBUSY;
return 0;
}
static struct pnp_card_device_id snd_audiodrive_pnpids[] = {
/* ESS 1868 (integrated on Compaq dual P-Pro motherboard and Genius 18PnP 3D) */
{ .id = "ESS1868", .devs = { { "ESS1868" }, { "ESS0000" } } },
/* ESS 1868 (integrated on Maxisound Cards) */
{ .id = "ESS1868", .devs = { { "ESS8601" }, { "ESS8600" } } },
/* ESS 1868 (integrated on Maxisound Cards) */
{ .id = "ESS1868", .devs = { { "ESS8611" }, { "ESS8610" } } },
/* ESS ES1869 Plug and Play AudioDrive */
{ .id = "ESS0003", .devs = { { "ESS1869" }, { "ESS0006" } } },
/* ESS 1869 */
{ .id = "ESS1869", .devs = { { "ESS1869" }, { "ESS0006" } } },
/* ESS 1878 */
{ .id = "ESS1878", .devs = { { "ESS1878" }, { "ESS0004" } } },
/* ESS 1879 */
{ .id = "ESS1879", .devs = { { "ESS1879" }, { "ESS0009" } } },
/* --- */
{ .id = "" } /* end */
};
MODULE_DEVICE_TABLE(pnp_card, snd_audiodrive_pnpids);
static int __devinit snd_audiodrive_pnpc(int dev, struct snd_es18xx *chip,
struct pnp_card_link *card,
const struct pnp_card_device_id *id)
{
chip->dev = pnp_request_card_device(card, id->devs[0].id, NULL);
if (chip->dev == NULL)
return -EBUSY;
chip->devc = pnp_request_card_device(card, id->devs[1].id, NULL);
if (chip->devc == NULL)
return -EBUSY;
/* Control port initialization */
if (pnp_activate_dev(chip->devc) < 0) {
snd_printk(KERN_ERR PFX "PnP control configure failure (out of resources?)\n");
return -EAGAIN;
}
snd_printdd("pnp: port=0x%llx\n",
(unsigned long long)pnp_port_start(chip->devc, 0));
if (snd_audiodrive_pnp_init_main(dev, chip->dev) < 0)
return -EBUSY;
return 0;
}
#endif /* CONFIG_PNP */
#ifdef CONFIG_PNP
#define is_isapnp_selected(dev) isapnp[dev]
#else
#define is_isapnp_selected(dev) 0
#endif
static int snd_es18xx_card_new(int dev, struct snd_card **cardp)
{
return snd_card_create(index[dev], id[dev], THIS_MODULE,
sizeof(struct snd_es18xx), cardp);
}
static int __devinit snd_audiodrive_probe(struct snd_card *card, int dev)
{
struct snd_es18xx *chip = card->private_data;
struct snd_opl3 *opl3;
int err;
err = snd_es18xx_new_device(card,
port[dev], mpu_port[dev], fm_port[dev],
irq[dev], dma1[dev], dma2[dev]);
if (err < 0)
return err;
sprintf(card->driver, "ES%x", chip->version);
sprintf(card->shortname, "ESS AudioDrive ES%x", chip->version);
if (dma1[dev] != dma2[dev])
sprintf(card->longname, "%s at 0x%lx, irq %d, dma1 %d, dma2 %d",
card->shortname,
chip->port,
irq[dev], dma1[dev], dma2[dev]);
else
sprintf(card->longname, "%s at 0x%lx, irq %d, dma %d",
card->shortname,
chip->port,
irq[dev], dma1[dev]);
err = snd_es18xx_pcm(card, 0, NULL);
if (err < 0)
return err;
err = snd_es18xx_mixer(card);
if (err < 0)
return err;
if (fm_port[dev] > 0 && fm_port[dev] != SNDRV_AUTO_PORT) {
if (snd_opl3_create(card, fm_port[dev], fm_port[dev] + 2,
OPL3_HW_OPL3, 0, &opl3) < 0) {
snd_printk(KERN_WARNING PFX
"opl3 not detected at 0x%lx\n",
fm_port[dev]);
} else {
err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
if (err < 0)
return err;
}
}
if (mpu_port[dev] > 0 && mpu_port[dev] != SNDRV_AUTO_PORT) {
err = snd_mpu401_uart_new(card, 0, MPU401_HW_ES18XX,
mpu_port[dev], 0,
irq[dev], 0, &chip->rmidi);
if (err < 0)
return err;
}
return snd_card_register(card);
}
static int __devinit snd_es18xx_isa_match(struct device *pdev, unsigned int dev)
{
return enable[dev] && !is_isapnp_selected(dev);
}
static int __devinit snd_es18xx_isa_probe1(int dev, struct device *devptr)
{
struct snd_card *card;
int err;
err = snd_es18xx_card_new(dev, &card);
if (err < 0)
return err;
snd_card_set_dev(card, devptr);
if ((err = snd_audiodrive_probe(card, dev)) < 0) {
snd_card_free(card);
return err;
}
dev_set_drvdata(devptr, card);
return 0;
}
static int __devinit snd_es18xx_isa_probe(struct device *pdev, unsigned int dev)
{
int err;
static int possible_irqs[] = {5, 9, 10, 7, 11, 12, -1};
static int possible_dmas[] = {1, 0, 3, 5, -1};
if (irq[dev] == SNDRV_AUTO_IRQ) {
if ((irq[dev] = snd_legacy_find_free_irq(possible_irqs)) < 0) {
snd_printk(KERN_ERR PFX "unable to find a free IRQ\n");
return -EBUSY;
}
}
if (dma1[dev] == SNDRV_AUTO_DMA) {
if ((dma1[dev] = snd_legacy_find_free_dma(possible_dmas)) < 0) {
snd_printk(KERN_ERR PFX "unable to find a free DMA1\n");
return -EBUSY;
}
}
if (dma2[dev] == SNDRV_AUTO_DMA) {
if ((dma2[dev] = snd_legacy_find_free_dma(possible_dmas)) < 0) {
snd_printk(KERN_ERR PFX "unable to find a free DMA2\n");
return -EBUSY;
}
}
if (port[dev] != SNDRV_AUTO_PORT) {
return snd_es18xx_isa_probe1(dev, pdev);
} else {
static unsigned long possible_ports[] = {0x220, 0x240, 0x260, 0x280};
int i;
for (i = 0; i < ARRAY_SIZE(possible_ports); i++) {
port[dev] = possible_ports[i];
err = snd_es18xx_isa_probe1(dev, pdev);
if (! err)
return 0;
}
return err;
}
}
static int __devexit snd_es18xx_isa_remove(struct device *devptr,
unsigned int dev)
{
snd_card_free(dev_get_drvdata(devptr));
dev_set_drvdata(devptr, NULL);
return 0;
}
#ifdef CONFIG_PM
static int snd_es18xx_isa_suspend(struct device *dev, unsigned int n,
pm_message_t state)
{
return snd_es18xx_suspend(dev_get_drvdata(dev), state);
}
static int snd_es18xx_isa_resume(struct device *dev, unsigned int n)
{
return snd_es18xx_resume(dev_get_drvdata(dev));
}
#endif
#define DEV_NAME "es18xx"
static struct isa_driver snd_es18xx_isa_driver = {
.match = snd_es18xx_isa_match,
.probe = snd_es18xx_isa_probe,
.remove = __devexit_p(snd_es18xx_isa_remove),
#ifdef CONFIG_PM
.suspend = snd_es18xx_isa_suspend,
.resume = snd_es18xx_isa_resume,
#endif
.driver = {
.name = DEV_NAME
},
};
#ifdef CONFIG_PNP
static int __devinit snd_audiodrive_pnp_detect(struct pnp_dev *pdev,
const struct pnp_device_id *id)
{
static int dev;
int err;
struct snd_card *card;
if (pnp_device_is_isapnp(pdev))
return -ENOENT; /* we have another procedure - card */
for (; dev < SNDRV_CARDS; dev++) {
if (enable[dev] && isapnp[dev])
break;
}
if (dev >= SNDRV_CARDS)
return -ENODEV;
err = snd_es18xx_card_new(dev, &card);
if (err < 0)
return err;
if ((err = snd_audiodrive_pnp(dev, card->private_data, pdev)) < 0) {
snd_card_free(card);
return err;
}
snd_card_set_dev(card, &pdev->dev);
if ((err = snd_audiodrive_probe(card, dev)) < 0) {
snd_card_free(card);
return err;
}
pnp_set_drvdata(pdev, card);
dev++;
return 0;
}
static void __devexit snd_audiodrive_pnp_remove(struct pnp_dev * pdev)
{
snd_card_free(pnp_get_drvdata(pdev));
pnp_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int snd_audiodrive_pnp_suspend(struct pnp_dev *pdev, pm_message_t state)
{
return snd_es18xx_suspend(pnp_get_drvdata(pdev), state);
}
static int snd_audiodrive_pnp_resume(struct pnp_dev *pdev)
{
return snd_es18xx_resume(pnp_get_drvdata(pdev));
}
#endif
static struct pnp_driver es18xx_pnp_driver = {
.name = "es18xx-pnpbios",
.id_table = snd_audiodrive_pnpbiosids,
.probe = snd_audiodrive_pnp_detect,
.remove = __devexit_p(snd_audiodrive_pnp_remove),
#ifdef CONFIG_PM
.suspend = snd_audiodrive_pnp_suspend,
.resume = snd_audiodrive_pnp_resume,
#endif
};
static int __devinit snd_audiodrive_pnpc_detect(struct pnp_card_link *pcard,
const struct pnp_card_device_id *pid)
{
static int dev;
struct snd_card *card;
int res;
for ( ; dev < SNDRV_CARDS; dev++) {
if (enable[dev] && isapnp[dev])
break;
}
if (dev >= SNDRV_CARDS)
return -ENODEV;
res = snd_es18xx_card_new(dev, &card);
if (res < 0)
return res;
if ((res = snd_audiodrive_pnpc(dev, card->private_data, pcard, pid)) < 0) {
snd_card_free(card);
return res;
}
snd_card_set_dev(card, &pcard->card->dev);
if ((res = snd_audiodrive_probe(card, dev)) < 0) {
snd_card_free(card);
return res;
}
pnp_set_card_drvdata(pcard, card);
dev++;
return 0;
}
static void __devexit snd_audiodrive_pnpc_remove(struct pnp_card_link * pcard)
{
snd_card_free(pnp_get_card_drvdata(pcard));
pnp_set_card_drvdata(pcard, NULL);
}
#ifdef CONFIG_PM
static int snd_audiodrive_pnpc_suspend(struct pnp_card_link *pcard, pm_message_t state)
{
return snd_es18xx_suspend(pnp_get_card_drvdata(pcard), state);
}
static int snd_audiodrive_pnpc_resume(struct pnp_card_link *pcard)
{
return snd_es18xx_resume(pnp_get_card_drvdata(pcard));
}
#endif
static struct pnp_card_driver es18xx_pnpc_driver = {
.flags = PNP_DRIVER_RES_DISABLE,
.name = "es18xx",
.id_table = snd_audiodrive_pnpids,
.probe = snd_audiodrive_pnpc_detect,
.remove = __devexit_p(snd_audiodrive_pnpc_remove),
#ifdef CONFIG_PM
.suspend = snd_audiodrive_pnpc_suspend,
.resume = snd_audiodrive_pnpc_resume,
#endif
};
#endif /* CONFIG_PNP */
static int __init alsa_card_es18xx_init(void)
{
int err;
err = isa_register_driver(&snd_es18xx_isa_driver, SNDRV_CARDS);
#ifdef CONFIG_PNP
if (!err)
isa_registered = 1;
err = pnp_register_driver(&es18xx_pnp_driver);
if (!err)
pnp_registered = 1;
err = pnp_register_card_driver(&es18xx_pnpc_driver);
if (!err)
pnpc_registered = 1;
if (isa_registered || pnp_registered)
err = 0;
#endif
return err;
}
static void __exit alsa_card_es18xx_exit(void)
{
#ifdef CONFIG_PNP
if (pnpc_registered)
pnp_unregister_card_driver(&es18xx_pnpc_driver);
if (pnp_registered)
pnp_unregister_driver(&es18xx_pnp_driver);
if (isa_registered)
#endif
isa_unregister_driver(&snd_es18xx_isa_driver);
}
module_init(alsa_card_es18xx_init)
module_exit(alsa_card_es18xx_exit)