WSL2-Linux-Kernel/fs/jffs2/fs.c

765 строки
20 KiB
C
Исходник Обычный вид История

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
* Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/mtd/mtd.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/vfs.h>
#include <linux/crc32.h>
#include "nodelist.h"
static int jffs2_flash_setup(struct jffs2_sb_info *c);
int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
{
struct jffs2_full_dnode *old_metadata, *new_metadata;
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_raw_inode *ri;
union jffs2_device_node dev;
unsigned char *mdata = NULL;
int mdatalen = 0;
unsigned int ivalid;
uint32_t alloclen;
int ret;
int alloc_type = ALLOC_NORMAL;
jffs2_dbg(1, "%s(): ino #%lu\n", __func__, inode->i_ino);
/* Special cases - we don't want more than one data node
for these types on the medium at any time. So setattr
must read the original data associated with the node
(i.e. the device numbers or the target name) and write
it out again with the appropriate data attached */
if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
/* For these, we don't actually need to read the old node */
mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
mdata = (char *)&dev;
jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
__func__, mdatalen);
} else if (S_ISLNK(inode->i_mode)) {
mutex_lock(&f->sem);
mdatalen = f->metadata->size;
mdata = kmalloc(f->metadata->size, GFP_USER);
if (!mdata) {
mutex_unlock(&f->sem);
return -ENOMEM;
}
ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
if (ret) {
mutex_unlock(&f->sem);
kfree(mdata);
return ret;
}
mutex_unlock(&f->sem);
jffs2_dbg(1, "%s(): Writing %d bytes of symlink target\n",
__func__, mdatalen);
}
ri = jffs2_alloc_raw_inode();
if (!ri) {
if (S_ISLNK(inode->i_mode))
kfree(mdata);
return -ENOMEM;
}
ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &alloclen,
ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
if (ret) {
jffs2_free_raw_inode(ri);
if (S_ISLNK(inode->i_mode))
kfree(mdata);
return ret;
}
mutex_lock(&f->sem);
ivalid = iattr->ia_valid;
ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
ri->ino = cpu_to_je32(inode->i_ino);
ri->version = cpu_to_je32(++f->highest_version);
ri->uid = cpu_to_je16((ivalid & ATTR_UID)?
from_kuid(&init_user_ns, iattr->ia_uid):i_uid_read(inode));
ri->gid = cpu_to_je16((ivalid & ATTR_GID)?
from_kgid(&init_user_ns, iattr->ia_gid):i_gid_read(inode));
if (ivalid & ATTR_MODE)
ri->mode = cpu_to_jemode(iattr->ia_mode);
else
ri->mode = cpu_to_jemode(inode->i_mode);
ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
ri->offset = cpu_to_je32(0);
ri->csize = ri->dsize = cpu_to_je32(mdatalen);
ri->compr = JFFS2_COMPR_NONE;
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
/* It's an extension. Make it a hole node */
ri->compr = JFFS2_COMPR_ZERO;
ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
ri->offset = cpu_to_je32(inode->i_size);
} else if (ivalid & ATTR_SIZE && !iattr->ia_size) {
/* For truncate-to-zero, treat it as deletion because
it'll always be obsoleting all previous nodes */
alloc_type = ALLOC_DELETION;
}
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
if (mdatalen)
ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
else
ri->data_crc = cpu_to_je32(0);
new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, alloc_type);
if (S_ISLNK(inode->i_mode))
kfree(mdata);
if (IS_ERR(new_metadata)) {
jffs2_complete_reservation(c);
jffs2_free_raw_inode(ri);
mutex_unlock(&f->sem);
return PTR_ERR(new_metadata);
}
/* It worked. Update the inode */
inode->i_atime = ITIME(je32_to_cpu(ri->atime));
inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
inode->i_mode = jemode_to_cpu(ri->mode);
i_uid_write(inode, je16_to_cpu(ri->uid));
i_gid_write(inode, je16_to_cpu(ri->gid));
old_metadata = f->metadata;
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
jffs2_add_full_dnode_to_inode(c, f, new_metadata);
inode->i_size = iattr->ia_size;
inode->i_blocks = (inode->i_size + 511) >> 9;
f->metadata = NULL;
} else {
f->metadata = new_metadata;
}
if (old_metadata) {
jffs2_mark_node_obsolete(c, old_metadata->raw);
jffs2_free_full_dnode(old_metadata);
}
jffs2_free_raw_inode(ri);
mutex_unlock(&f->sem);
jffs2_complete_reservation(c);
/* We have to do the truncate_setsize() without f->sem held, since
some pages may be locked and waiting for it in readpage().
We are protected from a simultaneous write() extending i_size
back past iattr->ia_size, because do_truncate() holds the
generic inode semaphore. */
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size) {
truncate_setsize(inode, iattr->ia_size);
inode->i_blocks = (inode->i_size + 511) >> 9;
}
return 0;
}
int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
{
struct inode *inode = d_inode(dentry);
int rc;
rc = inode_change_ok(inode, iattr);
if (rc)
return rc;
rc = jffs2_do_setattr(inode, iattr);
if (!rc && (iattr->ia_valid & ATTR_MODE))
rc = posix_acl_chmod(inode, inode->i_mode);
return rc;
}
int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(dentry->d_sb);
unsigned long avail;
buf->f_type = JFFS2_SUPER_MAGIC;
buf->f_bsize = 1 << PAGE_SHIFT;
buf->f_blocks = c->flash_size >> PAGE_SHIFT;
buf->f_files = 0;
buf->f_ffree = 0;
buf->f_namelen = JFFS2_MAX_NAME_LEN;
buf->f_fsid.val[0] = JFFS2_SUPER_MAGIC;
buf->f_fsid.val[1] = c->mtd->index;
spin_lock(&c->erase_completion_lock);
avail = c->dirty_size + c->free_size;
if (avail > c->sector_size * c->resv_blocks_write)
avail -= c->sector_size * c->resv_blocks_write;
else
avail = 0;
spin_unlock(&c->erase_completion_lock);
buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
return 0;
}
void jffs2_evict_inode (struct inode *inode)
{
/* We can forget about this inode for now - drop all
* the nodelists associated with it, etc.
*/
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
jffs2_dbg(1, "%s(): ino #%lu mode %o\n",
__func__, inode->i_ino, inode->i_mode);
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:49 +04:00
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
jffs2_do_clear_inode(c, f);
}
struct inode *jffs2_iget(struct super_block *sb, unsigned long ino)
{
struct jffs2_inode_info *f;
struct jffs2_sb_info *c;
struct jffs2_raw_inode latest_node;
union jffs2_device_node jdev;
struct inode *inode;
dev_t rdev = 0;
int ret;
jffs2_dbg(1, "%s(): ino == %lu\n", __func__, ino);
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
f = JFFS2_INODE_INFO(inode);
c = JFFS2_SB_INFO(inode->i_sb);
jffs2_init_inode_info(f);
mutex_lock(&f->sem);
ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
if (ret)
goto error;
inode->i_mode = jemode_to_cpu(latest_node.mode);
i_uid_write(inode, je16_to_cpu(latest_node.uid));
i_gid_write(inode, je16_to_cpu(latest_node.gid));
inode->i_size = je32_to_cpu(latest_node.isize);
inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
set_nlink(inode, f->inocache->pino_nlink);
inode->i_blocks = (inode->i_size + 511) >> 9;
switch (inode->i_mode & S_IFMT) {
case S_IFLNK:
inode->i_op = &jffs2_symlink_inode_operations;
inode->i_link = f->target;
break;
case S_IFDIR:
{
struct jffs2_full_dirent *fd;
set_nlink(inode, 2); /* parent and '.' */
for (fd=f->dents; fd; fd = fd->next) {
if (fd->type == DT_DIR && fd->ino)
inc_nlink(inode);
}
/* Root dir gets i_nlink 3 for some reason */
if (inode->i_ino == 1)
inc_nlink(inode);
inode->i_op = &jffs2_dir_inode_operations;
inode->i_fop = &jffs2_dir_operations;
break;
}
case S_IFREG:
inode->i_op = &jffs2_file_inode_operations;
inode->i_fop = &jffs2_file_operations;
inode->i_mapping->a_ops = &jffs2_file_address_operations;
inode->i_mapping->nrpages = 0;
break;
case S_IFBLK:
case S_IFCHR:
/* Read the device numbers from the media */
if (f->metadata->size != sizeof(jdev.old_id) &&
f->metadata->size != sizeof(jdev.new_id)) {
pr_notice("Device node has strange size %d\n",
f->metadata->size);
goto error_io;
}
jffs2_dbg(1, "Reading device numbers from flash\n");
ret = jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size);
if (ret < 0) {
/* Eep */
pr_notice("Read device numbers for inode %lu failed\n",
(unsigned long)inode->i_ino);
goto error;
}
if (f->metadata->size == sizeof(jdev.old_id))
rdev = old_decode_dev(je16_to_cpu(jdev.old_id));
else
rdev = new_decode_dev(je32_to_cpu(jdev.new_id));
case S_IFSOCK:
case S_IFIFO:
inode->i_op = &jffs2_file_inode_operations;
init_special_inode(inode, inode->i_mode, rdev);
break;
default:
pr_warn("%s(): Bogus i_mode %o for ino %lu\n",
__func__, inode->i_mode, (unsigned long)inode->i_ino);
}
mutex_unlock(&f->sem);
jffs2_dbg(1, "jffs2_read_inode() returning\n");
unlock_new_inode(inode);
return inode;
error_io:
ret = -EIO;
error:
mutex_unlock(&f->sem);
jffs2_do_clear_inode(c, f);
iget_failed(inode);
return ERR_PTR(ret);
}
void jffs2_dirty_inode(struct inode *inode, int flags)
{
struct iattr iattr;
if (!(inode->i_state & I_DIRTY_DATASYNC)) {
jffs2_dbg(2, "%s(): not calling setattr() for ino #%lu\n",
__func__, inode->i_ino);
return;
}
jffs2_dbg(1, "%s(): calling setattr() for ino #%lu\n",
__func__, inode->i_ino);
iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
iattr.ia_mode = inode->i_mode;
iattr.ia_uid = inode->i_uid;
iattr.ia_gid = inode->i_gid;
iattr.ia_atime = inode->i_atime;
iattr.ia_mtime = inode->i_mtime;
iattr.ia_ctime = inode->i_ctime;
jffs2_do_setattr(inode, &iattr);
}
int jffs2_do_remount_fs(struct super_block *sb, int *flags, char *data)
{
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
return -EROFS;
/* We stop if it was running, then restart if it needs to.
This also catches the case where it was stopped and this
is just a remount to restart it.
Flush the writebuffer, if neccecary, else we loose it */
if (!(sb->s_flags & MS_RDONLY)) {
jffs2_stop_garbage_collect_thread(c);
mutex_lock(&c->alloc_sem);
jffs2_flush_wbuf_pad(c);
mutex_unlock(&c->alloc_sem);
}
if (!(*flags & MS_RDONLY))
jffs2_start_garbage_collect_thread(c);
*flags |= MS_NOATIME;
return 0;
}
/* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
fill in the raw_inode while you're at it. */
struct inode *jffs2_new_inode (struct inode *dir_i, umode_t mode, struct jffs2_raw_inode *ri)
{
struct inode *inode;
struct super_block *sb = dir_i->i_sb;
struct jffs2_sb_info *c;
struct jffs2_inode_info *f;
int ret;
jffs2_dbg(1, "%s(): dir_i %ld, mode 0x%x\n",
__func__, dir_i->i_ino, mode);
c = JFFS2_SB_INFO(sb);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
f = JFFS2_INODE_INFO(inode);
jffs2_init_inode_info(f);
mutex_lock(&f->sem);
memset(ri, 0, sizeof(*ri));
/* Set OS-specific defaults for new inodes */
ri->uid = cpu_to_je16(from_kuid(&init_user_ns, current_fsuid()));
if (dir_i->i_mode & S_ISGID) {
ri->gid = cpu_to_je16(i_gid_read(dir_i));
if (S_ISDIR(mode))
mode |= S_ISGID;
} else {
ri->gid = cpu_to_je16(from_kgid(&init_user_ns, current_fsgid()));
}
/* POSIX ACLs have to be processed now, at least partly.
The umask is only applied if there's no default ACL */
ret = jffs2_init_acl_pre(dir_i, inode, &mode);
if (ret) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
ret = jffs2_do_new_inode (c, f, mode, ri);
if (ret) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
set_nlink(inode, 1);
inode->i_ino = je32_to_cpu(ri->ino);
inode->i_mode = jemode_to_cpu(ri->mode);
i_gid_write(inode, je16_to_cpu(ri->gid));
i_uid_write(inode, je16_to_cpu(ri->uid));
inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
inode->i_blocks = 0;
inode->i_size = 0;
if (insert_inode_locked(inode) < 0) {
mutex_unlock(&f->sem);
make_bad_inode(inode);
iput(inode);
return ERR_PTR(-EINVAL);
}
return inode;
}
static int calculate_inocache_hashsize(uint32_t flash_size)
{
/*
* Pick a inocache hash size based on the size of the medium.
* Count how many megabytes we're dealing with, apply a hashsize twice
* that size, but rounding down to the usual big powers of 2. And keep
* to sensible bounds.
*/
int size_mb = flash_size / 1024 / 1024;
int hashsize = (size_mb * 2) & ~0x3f;
if (hashsize < INOCACHE_HASHSIZE_MIN)
return INOCACHE_HASHSIZE_MIN;
if (hashsize > INOCACHE_HASHSIZE_MAX)
return INOCACHE_HASHSIZE_MAX;
return hashsize;
}
int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
{
struct jffs2_sb_info *c;
struct inode *root_i;
int ret;
size_t blocks;
c = JFFS2_SB_INFO(sb);
/* Do not support the MLC nand */
if (c->mtd->type == MTD_MLCNANDFLASH)
return -EINVAL;
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
if (c->mtd->type == MTD_NANDFLASH) {
pr_err("Cannot operate on NAND flash unless jffs2 NAND support is compiled in\n");
return -EINVAL;
}
if (c->mtd->type == MTD_DATAFLASH) {
pr_err("Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in\n");
return -EINVAL;
}
#endif
c->flash_size = c->mtd->size;
c->sector_size = c->mtd->erasesize;
blocks = c->flash_size / c->sector_size;
/*
* Size alignment check
*/
if ((c->sector_size * blocks) != c->flash_size) {
c->flash_size = c->sector_size * blocks;
pr_info("Flash size not aligned to erasesize, reducing to %dKiB\n",
c->flash_size / 1024);
}
if (c->flash_size < 5*c->sector_size) {
pr_err("Too few erase blocks (%d)\n",
c->flash_size / c->sector_size);
return -EINVAL;
}
c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
/* NAND (or other bizarre) flash... do setup accordingly */
ret = jffs2_flash_setup(c);
if (ret)
return ret;
c->inocache_hashsize = calculate_inocache_hashsize(c->flash_size);
c->inocache_list = kcalloc(c->inocache_hashsize, sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
if (!c->inocache_list) {
ret = -ENOMEM;
goto out_wbuf;
}
jffs2_init_xattr_subsystem(c);
if ((ret = jffs2_do_mount_fs(c)))
goto out_inohash;
jffs2_dbg(1, "%s(): Getting root inode\n", __func__);
root_i = jffs2_iget(sb, 1);
if (IS_ERR(root_i)) {
jffs2_dbg(1, "get root inode failed\n");
ret = PTR_ERR(root_i);
goto out_root;
}
ret = -ENOMEM;
MTD merge for 3.4 Artem's cleanup of the MTD API continues apace. Fixes and improvements for ST FSMC and SuperH FLCTL NAND, amongst others. More work on DiskOnChip G3, new driver for DiskOnChip G4. Clean up debug/warning printks in JFFS2 to use pr_<level>. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iEYEABECAAYFAk92K6UACgkQdwG7hYl686NrMACfWQJRWasR78MWKfkT2vWZwTFJ X5AAoKiSYO2pfo5gWJGOAahNC1zUqMX0 =i3Vb -----END PGP SIGNATURE----- Merge tag 'for-linus-3.4' of git://git.infradead.org/mtd-2.6 Pull MTD changes from David Woodhouse: - Artem's cleanup of the MTD API continues apace. - Fixes and improvements for ST FSMC and SuperH FLCTL NAND, amongst others. - More work on DiskOnChip G3, new driver for DiskOnChip G4. - Clean up debug/warning printks in JFFS2 to use pr_<level>. Fix up various trivial conflicts, largely due to changes in calling conventions for things like dmaengine_prep_slave_sg() (new inline wrapper to hide new parameter, clashing with rewrite of previously last parameter that used to be an 'append' flag, and is now a bitmap of 'unsigned long flags'). (Also some header file fallout - like so many merges this merge window - and silly conflicts with sparse fixes) * tag 'for-linus-3.4' of git://git.infradead.org/mtd-2.6: (120 commits) mtd: docg3 add protection against concurrency mtd: docg3 refactor cascade floors structure mtd: docg3 increase write/erase timeout mtd: docg3 fix inbound calculations mtd: nand: gpmi: fix function annotations mtd: phram: fix section mismatch for phram_setup mtd: unify initialization of erase_info->fail_addr mtd: support ONFI multi lun NAND mtd: sm_ftl: fix typo in major number. mtd: add device-tree support to spear_smi mtd: spear_smi: Remove default partition information from driver mtd: Add device-tree support to fsmc_nand mtd: fix section mismatch for doc_probe_device mtd: nand/fsmc: Remove sparse warnings and errors mtd: nand/fsmc: Add DMA support mtd: nand/fsmc: Access the NAND device word by word whenever possible mtd: nand/fsmc: Use dev_err to report error scenario mtd: nand/fsmc: Use devm routines mtd: nand/fsmc: Modify fsmc driver to accept nand timing parameters via platform mtd: fsmc_nand: add pm callbacks to support hibernation ...
2012-03-31 04:31:56 +04:00
jffs2_dbg(1, "%s(): d_make_root()\n", __func__);
sb->s_root = d_make_root(root_i);
if (!sb->s_root)
goto out_root;
sb->s_maxbytes = 0xFFFFFFFF;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = JFFS2_SUPER_MAGIC;
if (!(sb->s_flags & MS_RDONLY))
jffs2_start_garbage_collect_thread(c);
return 0;
out_root:
jffs2_free_ino_caches(c);
jffs2_free_raw_node_refs(c);
if (jffs2_blocks_use_vmalloc(c))
vfree(c->blocks);
else
kfree(c->blocks);
out_inohash:
jffs2_clear_xattr_subsystem(c);
kfree(c->inocache_list);
out_wbuf:
jffs2_flash_cleanup(c);
return ret;
}
void jffs2_gc_release_inode(struct jffs2_sb_info *c,
struct jffs2_inode_info *f)
{
iput(OFNI_EDONI_2SFFJ(f));
}
struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
int inum, int unlinked)
{
struct inode *inode;
struct jffs2_inode_cache *ic;
if (unlinked) {
/* The inode has zero nlink but its nodes weren't yet marked
obsolete. This has to be because we're still waiting for
the final (close() and) iput() to happen.
There's a possibility that the final iput() could have
happened while we were contemplating. In order to ensure
that we don't cause a new read_inode() (which would fail)
for the inode in question, we use ilookup() in this case
instead of iget().
The nlink can't _become_ zero at this point because we're
holding the alloc_sem, and jffs2_do_unlink() would also
need that while decrementing nlink on any inode.
*/
inode = ilookup(OFNI_BS_2SFFJ(c), inum);
if (!inode) {
jffs2_dbg(1, "ilookup() failed for ino #%u; inode is probably deleted.\n",
inum);
spin_lock(&c->inocache_lock);
ic = jffs2_get_ino_cache(c, inum);
if (!ic) {
jffs2_dbg(1, "Inode cache for ino #%u is gone\n",
inum);
spin_unlock(&c->inocache_lock);
return NULL;
}
if (ic->state != INO_STATE_CHECKEDABSENT) {
/* Wait for progress. Don't just loop */
jffs2_dbg(1, "Waiting for ino #%u in state %d\n",
ic->ino, ic->state);
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
} else {
spin_unlock(&c->inocache_lock);
}
return NULL;
}
} else {
/* Inode has links to it still; they're not going away because
jffs2_do_unlink() would need the alloc_sem and we have it.
Just iget() it, and if read_inode() is necessary that's OK.
*/
inode = jffs2_iget(OFNI_BS_2SFFJ(c), inum);
if (IS_ERR(inode))
return ERR_CAST(inode);
}
if (is_bad_inode(inode)) {
pr_notice("Eep. read_inode() failed for ino #%u. unlinked %d\n",
inum, unlinked);
/* NB. This will happen again. We need to do something appropriate here. */
iput(inode);
return ERR_PTR(-EIO);
}
return JFFS2_INODE_INFO(inode);
}
unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
struct jffs2_inode_info *f,
unsigned long offset,
unsigned long *priv)
{
struct inode *inode = OFNI_EDONI_2SFFJ(f);
struct page *pg;
mm: remove read_cache_page_async() This patch removes read_cache_page_async() which wasn't really needed anywhere and simplifies the code around it a bit. read_cache_page_async() is useful when we want to read a page into the cache without waiting for it to complete. This happens when the appropriate callback 'filler' doesn't complete its read operation and releases the page lock immediately, and instead queues a different completion routine to do that. This never actually happened anywhere in the code. read_cache_page_async() had 3 different callers: - read_cache_page() which is the sync version, it would just wait for the requested read to complete using wait_on_page_read(). - JFFS2 would call it from jffs2_gc_fetch_page(), but the filler function it supplied doesn't do any async reads, and would complete before the filler function returns - making it actually a sync read. - CRAMFS would call it using the read_mapping_page_async() wrapper, with a similar story to JFFS2 - the filler function doesn't do anything that reminds async reads and would always complete before the filler function returns. To sum it up, the code in mm/filemap.c never took advantage of having read_cache_page_async(). While there are filler callbacks that do async reads (such as the block one), we always called it with the read_cache_page(). This patch adds a mandatory wait for read to complete when adding a new page to the cache, and removes read_cache_page_async() and its wrappers. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:48:18 +04:00
pg = read_cache_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
(void *)jffs2_do_readpage_unlock, inode);
if (IS_ERR(pg))
return (void *)pg;
*priv = (unsigned long)pg;
return kmap(pg);
}
void jffs2_gc_release_page(struct jffs2_sb_info *c,
unsigned char *ptr,
unsigned long *priv)
{
struct page *pg = (void *)*priv;
kunmap(pg);
page_cache_release(pg);
}
static int jffs2_flash_setup(struct jffs2_sb_info *c) {
int ret = 0;
if (jffs2_cleanmarker_oob(c)) {
/* NAND flash... do setup accordingly */
ret = jffs2_nand_flash_setup(c);
if (ret)
return ret;
}
/* and Dataflash */
if (jffs2_dataflash(c)) {
ret = jffs2_dataflash_setup(c);
if (ret)
return ret;
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
ret = jffs2_nor_wbuf_flash_setup(c);
if (ret)
return ret;
}
/* and an UBI volume */
if (jffs2_ubivol(c)) {
ret = jffs2_ubivol_setup(c);
if (ret)
return ret;
}
return ret;
}
void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
if (jffs2_cleanmarker_oob(c)) {
jffs2_nand_flash_cleanup(c);
}
/* and DataFlash */
if (jffs2_dataflash(c)) {
jffs2_dataflash_cleanup(c);
}
/* and Intel "Sibley" flash */
if (jffs2_nor_wbuf_flash(c)) {
jffs2_nor_wbuf_flash_cleanup(c);
}
/* and an UBI volume */
if (jffs2_ubivol(c)) {
jffs2_ubivol_cleanup(c);
}
}