WSL2-Linux-Kernel/include/linux/pm_domain.h

264 строки
7.7 KiB
C
Исходник Обычный вид История

/*
* pm_domain.h - Definitions and headers related to device power domains.
*
* Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
*
* This file is released under the GPLv2.
*/
#ifndef _LINUX_PM_DOMAIN_H
#define _LINUX_PM_DOMAIN_H
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/notifier.h>
/* Defines used for the flags field in the struct generic_pm_domain */
#define GENPD_FLAG_PM_CLK (1U << 0) /* PM domain uses PM clk */
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
#define GENPD_MAX_NUM_STATES 8 /* Number of possible low power states */
enum gpd_status {
GPD_STATE_ACTIVE = 0, /* PM domain is active */
GPD_STATE_POWER_OFF, /* PM domain is off */
};
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 00:13:19 +04:00
struct dev_power_governor {
bool (*power_down_ok)(struct dev_pm_domain *domain);
bool (*suspend_ok)(struct device *dev);
};
struct gpd_dev_ops {
int (*start)(struct device *dev);
int (*stop)(struct device *dev);
bool (*active_wakeup)(struct device *dev);
};
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
struct genpd_power_state {
s64 power_off_latency_ns;
s64 power_on_latency_ns;
};
struct generic_pm_domain {
struct dev_pm_domain domain; /* PM domain operations */
struct list_head gpd_list_node; /* Node in the global PM domains list */
PM / Domains: Allow generic PM domains to have multiple masters Currently, for a given generic PM domain there may be only one parent domain (i.e. a PM domain it depends on). However, there is at least one real-life case in which there should be two parents (masters) for one PM domain (the A3RV domain on SH7372 turns out to depend on the A4LC domain and it depends on the A4R domain and the same time). For this reason, allow a PM domain to have multiple parents (masters) by introducing objects representing links between PM domains. The (logical) links between PM domains represent relationships in which one domain is a master (i.e. it is depended on) and another domain is a slave (i.e. it depends on the master) with the rule that the slave cannot be powered on if the master is not powered on and the master cannot be powered off if the slave is not powered off. Each struct generic_pm_domain object representing a PM domain has two lists of links, a list of links in which it is a master and a list of links in which it is a slave. The first of these lists replaces the list of subdomains and the second one is used in place of the parent pointer. Each link is represented by struct gpd_link object containing pointers to the master and the slave and two struct list_head members allowing it to hook into two lists (the master's list of "master" links and the slave's list of "slave" links). This allows the code to get to the link from each side (either from the master or from the slave) and follow it in each direction. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-09 01:43:40 +04:00
struct list_head master_links; /* Links with PM domain as a master */
struct list_head slave_links; /* Links with PM domain as a slave */
struct list_head dev_list; /* List of devices */
struct mutex lock;
struct dev_power_governor *gov;
struct work_struct power_off_work;
struct fwnode_handle *provider; /* Identity of the domain provider */
bool has_provider;
const char *name;
atomic_t sd_count; /* Number of subdomains with power "on" */
enum gpd_status status; /* Current state of the domain */
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 00:13:19 +04:00
unsigned int device_count; /* Number of devices */
unsigned int suspended_count; /* System suspend device counter */
unsigned int prepared_count; /* Suspend counter of prepared devices */
int (*power_off)(struct generic_pm_domain *domain);
int (*power_on)(struct generic_pm_domain *domain);
struct gpd_dev_ops dev_ops;
s64 max_off_time_ns; /* Maximum allowed "suspended" time. */
bool max_off_time_changed;
bool cached_power_down_ok;
int (*attach_dev)(struct generic_pm_domain *domain,
struct device *dev);
void (*detach_dev)(struct generic_pm_domain *domain,
struct device *dev);
unsigned int flags; /* Bit field of configs for genpd */
PM / Domains: Support for multiple states Some hardware (eg. OMAP), has the ability to enter different low power modes for a given power domain. This allows for more fine grained control over the power state of the platform. As a typical example, some registers of the hardware may be implemented with retention flip-flops and be able to retain their state at lower voltages allowing for faster on/off latencies and an increased window of opportunity to enter an intermediate low power state other than "off" When trying to set a power domain to off, the genpd governor will choose the deepest state that will respect the qos constraints of all the devices and sub-domains on the power domain. The state chosen by the governor is saved in the "state_idx" field of the generic_pm_domain structure and shall be used by the power_off and power_on callbacks to perform the necessary actions to set the power domain into (and out of) the state indicated by state_idx. States must be declared in ascending order from shallowest to deepest, deepest meaning the state which takes longer to enter and exit. For platforms that don't declare any states, a single a single "off" state is used. Once all platforms are converted to use the state array, the legacy on/off latencies will be removed. [ Lina: Modified genpd state initialization and remove use of save_state_latency_ns in genpd timing data ] Suggested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Axel Haslam <ahaslam+renesas@baylibre.com> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-02-15 13:10:51 +03:00
struct genpd_power_state states[GENPD_MAX_NUM_STATES];
unsigned int state_count; /* number of states */
unsigned int state_idx; /* state that genpd will go to when off */
};
PM / Domains: System-wide transitions support for generic domains (v5) Make generic PM domains support system-wide power transitions (system suspend and hibernation). Add suspend, resume, freeze, thaw, poweroff and restore callbacks to be associated with struct generic_pm_domain objects and make pm_genpd_init() use them as appropriate. The new callbacks do nothing for devices belonging to power domains that were powered down at run time (before the transition). For the other devices the action carried out depends on the type of the transition. During system suspend the power domain .suspend() callback executes pm_generic_suspend() for the device, while the PM domain .suspend_noirq() callback runs pm_generic_suspend_noirq() for it, stops it and eventually removes power from the PM domain it belongs to (after all devices in the domain have been stopped and its subdomains have been powered off). During system resume the PM domain .resume_noirq() callback restores power to the PM domain (when executed for it first time), starts the device and executes pm_generic_resume_noirq() for it, while the .resume() callback executes pm_generic_resume() for the device. Finally, the .complete() callback executes pm_runtime_idle() for the device which should put it back into the suspended state if its runtime PM usage count is equal to zero at that time. The actions carried out during hibernation and resume from it are analogous to the ones described above. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Kevin Hilman <khilman@ti.com>
2011-07-02 00:13:19 +04:00
static inline struct generic_pm_domain *pd_to_genpd(struct dev_pm_domain *pd)
{
return container_of(pd, struct generic_pm_domain, domain);
}
PM / Domains: Allow generic PM domains to have multiple masters Currently, for a given generic PM domain there may be only one parent domain (i.e. a PM domain it depends on). However, there is at least one real-life case in which there should be two parents (masters) for one PM domain (the A3RV domain on SH7372 turns out to depend on the A4LC domain and it depends on the A4R domain and the same time). For this reason, allow a PM domain to have multiple parents (masters) by introducing objects representing links between PM domains. The (logical) links between PM domains represent relationships in which one domain is a master (i.e. it is depended on) and another domain is a slave (i.e. it depends on the master) with the rule that the slave cannot be powered on if the master is not powered on and the master cannot be powered off if the slave is not powered off. Each struct generic_pm_domain object representing a PM domain has two lists of links, a list of links in which it is a master and a list of links in which it is a slave. The first of these lists replaces the list of subdomains and the second one is used in place of the parent pointer. Each link is represented by struct gpd_link object containing pointers to the master and the slave and two struct list_head members allowing it to hook into two lists (the master's list of "master" links and the slave's list of "slave" links). This allows the code to get to the link from each side (either from the master or from the slave) and follow it in each direction. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-08-09 01:43:40 +04:00
struct gpd_link {
struct generic_pm_domain *master;
struct list_head master_node;
struct generic_pm_domain *slave;
struct list_head slave_node;
};
struct gpd_timing_data {
s64 suspend_latency_ns;
s64 resume_latency_ns;
s64 effective_constraint_ns;
bool constraint_changed;
bool cached_suspend_ok;
};
struct pm_domain_data {
struct list_head list_node;
struct device *dev;
};
struct generic_pm_domain_data {
struct pm_domain_data base;
struct gpd_timing_data td;
struct notifier_block nb;
};
#ifdef CONFIG_PM_GENERIC_DOMAINS
static inline struct generic_pm_domain_data *to_gpd_data(struct pm_domain_data *pdd)
{
return container_of(pdd, struct generic_pm_domain_data, base);
}
static inline struct generic_pm_domain_data *dev_gpd_data(struct device *dev)
{
return to_gpd_data(dev->power.subsys_data->domain_data);
}
extern int __pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev,
struct gpd_timing_data *td);
extern int pm_genpd_remove_device(struct generic_pm_domain *genpd,
struct device *dev);
extern int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *new_subdomain);
extern int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *target);
extern int pm_genpd_init(struct generic_pm_domain *genpd,
struct dev_power_governor *gov, bool is_off);
extern int pm_genpd_remove(struct generic_pm_domain *genpd);
extern struct dev_power_governor simple_qos_governor;
extern struct dev_power_governor pm_domain_always_on_gov;
#else
static inline struct generic_pm_domain_data *dev_gpd_data(struct device *dev)
{
return ERR_PTR(-ENOSYS);
}
static inline int __pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev,
struct gpd_timing_data *td)
{
return -ENOSYS;
}
static inline int pm_genpd_remove_device(struct generic_pm_domain *genpd,
struct device *dev)
{
return -ENOSYS;
}
static inline int pm_genpd_add_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *new_sd)
{
return -ENOSYS;
}
static inline int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd,
struct generic_pm_domain *target)
{
return -ENOSYS;
}
static inline int pm_genpd_init(struct generic_pm_domain *genpd,
struct dev_power_governor *gov, bool is_off)
{
return -ENOSYS;
}
static inline int pm_genpd_remove(struct generic_pm_domain *genpd)
{
return -ENOTSUPP;
}
#endif
static inline int pm_genpd_add_device(struct generic_pm_domain *genpd,
struct device *dev)
{
return __pm_genpd_add_device(genpd, dev, NULL);
}
#ifdef CONFIG_PM_GENERIC_DOMAINS_SLEEP
extern void pm_genpd_syscore_poweroff(struct device *dev);
extern void pm_genpd_syscore_poweron(struct device *dev);
#else
static inline void pm_genpd_syscore_poweroff(struct device *dev) {}
static inline void pm_genpd_syscore_poweron(struct device *dev) {}
#endif
/* OF PM domain providers */
struct of_device_id;
struct genpd_onecell_data {
struct generic_pm_domain **domains;
unsigned int num_domains;
};
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
int of_genpd_add_provider_simple(struct device_node *np,
struct generic_pm_domain *genpd);
int of_genpd_add_provider_onecell(struct device_node *np,
struct genpd_onecell_data *data);
void of_genpd_del_provider(struct device_node *np);
extern int of_genpd_add_device(struct of_phandle_args *args,
struct device *dev);
extern int of_genpd_add_subdomain(struct of_phandle_args *parent,
struct of_phandle_args *new_subdomain);
extern struct generic_pm_domain *of_genpd_remove_last(struct device_node *np);
int genpd_dev_pm_attach(struct device *dev);
#else /* !CONFIG_PM_GENERIC_DOMAINS_OF */
static inline int of_genpd_add_provider_simple(struct device_node *np,
struct generic_pm_domain *genpd)
{
return -ENOTSUPP;
}
static inline int of_genpd_add_provider_onecell(struct device_node *np,
struct genpd_onecell_data *data)
{
return -ENOTSUPP;
}
static inline void of_genpd_del_provider(struct device_node *np) {}
static inline int of_genpd_add_device(struct of_phandle_args *args,
struct device *dev)
{
return -ENODEV;
}
static inline int of_genpd_add_subdomain(struct of_phandle_args *parent,
struct of_phandle_args *new_subdomain)
{
return -ENODEV;
}
static inline int genpd_dev_pm_attach(struct device *dev)
{
return -ENODEV;
}
static inline
struct generic_pm_domain *of_genpd_remove_last(struct device_node *np)
{
return ERR_PTR(-ENOTSUPP);
}
#endif /* CONFIG_PM_GENERIC_DOMAINS_OF */
#ifdef CONFIG_PM
extern int dev_pm_domain_attach(struct device *dev, bool power_on);
extern void dev_pm_domain_detach(struct device *dev, bool power_off);
extern void dev_pm_domain_set(struct device *dev, struct dev_pm_domain *pd);
#else
static inline int dev_pm_domain_attach(struct device *dev, bool power_on)
{
return -ENODEV;
}
static inline void dev_pm_domain_detach(struct device *dev, bool power_off) {}
static inline void dev_pm_domain_set(struct device *dev,
struct dev_pm_domain *pd) {}
#endif
#endif /* _LINUX_PM_DOMAIN_H */