951 строка
19 KiB
C
951 строка
19 KiB
C
|
/*
|
||
|
* Copyright (C) 2001 Sistina Software (UK) Limited.
|
||
|
* Copyright (C) 2004 Red Hat, Inc. All rights reserved.
|
||
|
*
|
||
|
* This file is released under the GPL.
|
||
|
*/
|
||
|
|
||
|
#include "dm.h"
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/namei.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <asm/atomic.h>
|
||
|
|
||
|
#define MAX_DEPTH 16
|
||
|
#define NODE_SIZE L1_CACHE_BYTES
|
||
|
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
|
||
|
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
|
||
|
|
||
|
struct dm_table {
|
||
|
atomic_t holders;
|
||
|
|
||
|
/* btree table */
|
||
|
unsigned int depth;
|
||
|
unsigned int counts[MAX_DEPTH]; /* in nodes */
|
||
|
sector_t *index[MAX_DEPTH];
|
||
|
|
||
|
unsigned int num_targets;
|
||
|
unsigned int num_allocated;
|
||
|
sector_t *highs;
|
||
|
struct dm_target *targets;
|
||
|
|
||
|
/*
|
||
|
* Indicates the rw permissions for the new logical
|
||
|
* device. This should be a combination of FMODE_READ
|
||
|
* and FMODE_WRITE.
|
||
|
*/
|
||
|
int mode;
|
||
|
|
||
|
/* a list of devices used by this table */
|
||
|
struct list_head devices;
|
||
|
|
||
|
/*
|
||
|
* These are optimistic limits taken from all the
|
||
|
* targets, some targets will need smaller limits.
|
||
|
*/
|
||
|
struct io_restrictions limits;
|
||
|
|
||
|
/* events get handed up using this callback */
|
||
|
void (*event_fn)(void *);
|
||
|
void *event_context;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Similar to ceiling(log_size(n))
|
||
|
*/
|
||
|
static unsigned int int_log(unsigned int n, unsigned int base)
|
||
|
{
|
||
|
int result = 0;
|
||
|
|
||
|
while (n > 1) {
|
||
|
n = dm_div_up(n, base);
|
||
|
result++;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns the minimum that is _not_ zero, unless both are zero.
|
||
|
*/
|
||
|
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
|
||
|
|
||
|
/*
|
||
|
* Combine two io_restrictions, always taking the lower value.
|
||
|
*/
|
||
|
static void combine_restrictions_low(struct io_restrictions *lhs,
|
||
|
struct io_restrictions *rhs)
|
||
|
{
|
||
|
lhs->max_sectors =
|
||
|
min_not_zero(lhs->max_sectors, rhs->max_sectors);
|
||
|
|
||
|
lhs->max_phys_segments =
|
||
|
min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
|
||
|
|
||
|
lhs->max_hw_segments =
|
||
|
min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
|
||
|
|
||
|
lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
|
||
|
|
||
|
lhs->max_segment_size =
|
||
|
min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
|
||
|
|
||
|
lhs->seg_boundary_mask =
|
||
|
min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the index of the child node of the n'th node k'th key.
|
||
|
*/
|
||
|
static inline unsigned int get_child(unsigned int n, unsigned int k)
|
||
|
{
|
||
|
return (n * CHILDREN_PER_NODE) + k;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the n'th node of level l from table t.
|
||
|
*/
|
||
|
static inline sector_t *get_node(struct dm_table *t,
|
||
|
unsigned int l, unsigned int n)
|
||
|
{
|
||
|
return t->index[l] + (n * KEYS_PER_NODE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the highest key that you could lookup from the n'th
|
||
|
* node on level l of the btree.
|
||
|
*/
|
||
|
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
|
||
|
{
|
||
|
for (; l < t->depth - 1; l++)
|
||
|
n = get_child(n, CHILDREN_PER_NODE - 1);
|
||
|
|
||
|
if (n >= t->counts[l])
|
||
|
return (sector_t) - 1;
|
||
|
|
||
|
return get_node(t, l, n)[KEYS_PER_NODE - 1];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fills in a level of the btree based on the highs of the level
|
||
|
* below it.
|
||
|
*/
|
||
|
static int setup_btree_index(unsigned int l, struct dm_table *t)
|
||
|
{
|
||
|
unsigned int n, k;
|
||
|
sector_t *node;
|
||
|
|
||
|
for (n = 0U; n < t->counts[l]; n++) {
|
||
|
node = get_node(t, l, n);
|
||
|
|
||
|
for (k = 0U; k < KEYS_PER_NODE; k++)
|
||
|
node[k] = high(t, l + 1, get_child(n, k));
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
|
||
|
{
|
||
|
unsigned long size;
|
||
|
void *addr;
|
||
|
|
||
|
/*
|
||
|
* Check that we're not going to overflow.
|
||
|
*/
|
||
|
if (nmemb > (ULONG_MAX / elem_size))
|
||
|
return NULL;
|
||
|
|
||
|
size = nmemb * elem_size;
|
||
|
addr = vmalloc(size);
|
||
|
if (addr)
|
||
|
memset(addr, 0, size);
|
||
|
|
||
|
return addr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* highs, and targets are managed as dynamic arrays during a
|
||
|
* table load.
|
||
|
*/
|
||
|
static int alloc_targets(struct dm_table *t, unsigned int num)
|
||
|
{
|
||
|
sector_t *n_highs;
|
||
|
struct dm_target *n_targets;
|
||
|
int n = t->num_targets;
|
||
|
|
||
|
/*
|
||
|
* Allocate both the target array and offset array at once.
|
||
|
*/
|
||
|
n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
|
||
|
sizeof(sector_t));
|
||
|
if (!n_highs)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
n_targets = (struct dm_target *) (n_highs + num);
|
||
|
|
||
|
if (n) {
|
||
|
memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
|
||
|
memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
|
||
|
}
|
||
|
|
||
|
memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
|
||
|
vfree(t->highs);
|
||
|
|
||
|
t->num_allocated = num;
|
||
|
t->highs = n_highs;
|
||
|
t->targets = n_targets;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int dm_table_create(struct dm_table **result, int mode, unsigned num_targets)
|
||
|
{
|
||
|
struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
|
||
|
|
||
|
if (!t)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
memset(t, 0, sizeof(*t));
|
||
|
INIT_LIST_HEAD(&t->devices);
|
||
|
atomic_set(&t->holders, 1);
|
||
|
|
||
|
if (!num_targets)
|
||
|
num_targets = KEYS_PER_NODE;
|
||
|
|
||
|
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
|
||
|
|
||
|
if (alloc_targets(t, num_targets)) {
|
||
|
kfree(t);
|
||
|
t = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
t->mode = mode;
|
||
|
*result = t;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void free_devices(struct list_head *devices)
|
||
|
{
|
||
|
struct list_head *tmp, *next;
|
||
|
|
||
|
for (tmp = devices->next; tmp != devices; tmp = next) {
|
||
|
struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
|
||
|
next = tmp->next;
|
||
|
kfree(dd);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void table_destroy(struct dm_table *t)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
/* free the indexes (see dm_table_complete) */
|
||
|
if (t->depth >= 2)
|
||
|
vfree(t->index[t->depth - 2]);
|
||
|
|
||
|
/* free the targets */
|
||
|
for (i = 0; i < t->num_targets; i++) {
|
||
|
struct dm_target *tgt = t->targets + i;
|
||
|
|
||
|
if (tgt->type->dtr)
|
||
|
tgt->type->dtr(tgt);
|
||
|
|
||
|
dm_put_target_type(tgt->type);
|
||
|
}
|
||
|
|
||
|
vfree(t->highs);
|
||
|
|
||
|
/* free the device list */
|
||
|
if (t->devices.next != &t->devices) {
|
||
|
DMWARN("devices still present during destroy: "
|
||
|
"dm_table_remove_device calls missing");
|
||
|
|
||
|
free_devices(&t->devices);
|
||
|
}
|
||
|
|
||
|
kfree(t);
|
||
|
}
|
||
|
|
||
|
void dm_table_get(struct dm_table *t)
|
||
|
{
|
||
|
atomic_inc(&t->holders);
|
||
|
}
|
||
|
|
||
|
void dm_table_put(struct dm_table *t)
|
||
|
{
|
||
|
if (!t)
|
||
|
return;
|
||
|
|
||
|
if (atomic_dec_and_test(&t->holders))
|
||
|
table_destroy(t);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks to see if we need to extend highs or targets.
|
||
|
*/
|
||
|
static inline int check_space(struct dm_table *t)
|
||
|
{
|
||
|
if (t->num_targets >= t->num_allocated)
|
||
|
return alloc_targets(t, t->num_allocated * 2);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert a device path to a dev_t.
|
||
|
*/
|
||
|
static int lookup_device(const char *path, dev_t *dev)
|
||
|
{
|
||
|
int r;
|
||
|
struct nameidata nd;
|
||
|
struct inode *inode;
|
||
|
|
||
|
if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
|
||
|
return r;
|
||
|
|
||
|
inode = nd.dentry->d_inode;
|
||
|
if (!inode) {
|
||
|
r = -ENOENT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!S_ISBLK(inode->i_mode)) {
|
||
|
r = -ENOTBLK;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
*dev = inode->i_rdev;
|
||
|
|
||
|
out:
|
||
|
path_release(&nd);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* See if we've already got a device in the list.
|
||
|
*/
|
||
|
static struct dm_dev *find_device(struct list_head *l, dev_t dev)
|
||
|
{
|
||
|
struct dm_dev *dd;
|
||
|
|
||
|
list_for_each_entry (dd, l, list)
|
||
|
if (dd->bdev->bd_dev == dev)
|
||
|
return dd;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Open a device so we can use it as a map destination.
|
||
|
*/
|
||
|
static int open_dev(struct dm_dev *d, dev_t dev)
|
||
|
{
|
||
|
static char *_claim_ptr = "I belong to device-mapper";
|
||
|
struct block_device *bdev;
|
||
|
|
||
|
int r;
|
||
|
|
||
|
if (d->bdev)
|
||
|
BUG();
|
||
|
|
||
|
bdev = open_by_devnum(dev, d->mode);
|
||
|
if (IS_ERR(bdev))
|
||
|
return PTR_ERR(bdev);
|
||
|
r = bd_claim(bdev, _claim_ptr);
|
||
|
if (r)
|
||
|
blkdev_put(bdev);
|
||
|
else
|
||
|
d->bdev = bdev;
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Close a device that we've been using.
|
||
|
*/
|
||
|
static void close_dev(struct dm_dev *d)
|
||
|
{
|
||
|
if (!d->bdev)
|
||
|
return;
|
||
|
|
||
|
bd_release(d->bdev);
|
||
|
blkdev_put(d->bdev);
|
||
|
d->bdev = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If possible (ie. blk_size[major] is set), this checks an area
|
||
|
* of a destination device is valid.
|
||
|
*/
|
||
|
static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
|
||
|
{
|
||
|
sector_t dev_size;
|
||
|
dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
|
||
|
return ((start < dev_size) && (len <= (dev_size - start)));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This upgrades the mode on an already open dm_dev. Being
|
||
|
* careful to leave things as they were if we fail to reopen the
|
||
|
* device.
|
||
|
*/
|
||
|
static int upgrade_mode(struct dm_dev *dd, int new_mode)
|
||
|
{
|
||
|
int r;
|
||
|
struct dm_dev dd_copy;
|
||
|
dev_t dev = dd->bdev->bd_dev;
|
||
|
|
||
|
dd_copy = *dd;
|
||
|
|
||
|
dd->mode |= new_mode;
|
||
|
dd->bdev = NULL;
|
||
|
r = open_dev(dd, dev);
|
||
|
if (!r)
|
||
|
close_dev(&dd_copy);
|
||
|
else
|
||
|
*dd = dd_copy;
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a device to the list, or just increment the usage count if
|
||
|
* it's already present.
|
||
|
*/
|
||
|
static int __table_get_device(struct dm_table *t, struct dm_target *ti,
|
||
|
const char *path, sector_t start, sector_t len,
|
||
|
int mode, struct dm_dev **result)
|
||
|
{
|
||
|
int r;
|
||
|
dev_t dev;
|
||
|
struct dm_dev *dd;
|
||
|
unsigned int major, minor;
|
||
|
|
||
|
if (!t)
|
||
|
BUG();
|
||
|
|
||
|
if (sscanf(path, "%u:%u", &major, &minor) == 2) {
|
||
|
/* Extract the major/minor numbers */
|
||
|
dev = MKDEV(major, minor);
|
||
|
if (MAJOR(dev) != major || MINOR(dev) != minor)
|
||
|
return -EOVERFLOW;
|
||
|
} else {
|
||
|
/* convert the path to a device */
|
||
|
if ((r = lookup_device(path, &dev)))
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
dd = find_device(&t->devices, dev);
|
||
|
if (!dd) {
|
||
|
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
|
||
|
if (!dd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dd->mode = mode;
|
||
|
dd->bdev = NULL;
|
||
|
|
||
|
if ((r = open_dev(dd, dev))) {
|
||
|
kfree(dd);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
format_dev_t(dd->name, dev);
|
||
|
|
||
|
atomic_set(&dd->count, 0);
|
||
|
list_add(&dd->list, &t->devices);
|
||
|
|
||
|
} else if (dd->mode != (mode | dd->mode)) {
|
||
|
r = upgrade_mode(dd, mode);
|
||
|
if (r)
|
||
|
return r;
|
||
|
}
|
||
|
atomic_inc(&dd->count);
|
||
|
|
||
|
if (!check_device_area(dd, start, len)) {
|
||
|
DMWARN("device %s too small for target", path);
|
||
|
dm_put_device(ti, dd);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
*result = dd;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
|
||
|
sector_t len, int mode, struct dm_dev **result)
|
||
|
{
|
||
|
int r = __table_get_device(ti->table, ti, path,
|
||
|
start, len, mode, result);
|
||
|
if (!r) {
|
||
|
request_queue_t *q = bdev_get_queue((*result)->bdev);
|
||
|
struct io_restrictions *rs = &ti->limits;
|
||
|
|
||
|
/*
|
||
|
* Combine the device limits low.
|
||
|
*
|
||
|
* FIXME: if we move an io_restriction struct
|
||
|
* into q this would just be a call to
|
||
|
* combine_restrictions_low()
|
||
|
*/
|
||
|
rs->max_sectors =
|
||
|
min_not_zero(rs->max_sectors, q->max_sectors);
|
||
|
|
||
|
/* FIXME: Device-Mapper on top of RAID-0 breaks because DM
|
||
|
* currently doesn't honor MD's merge_bvec_fn routine.
|
||
|
* In this case, we'll force DM to use PAGE_SIZE or
|
||
|
* smaller I/O, just to be safe. A better fix is in the
|
||
|
* works, but add this for the time being so it will at
|
||
|
* least operate correctly.
|
||
|
*/
|
||
|
if (q->merge_bvec_fn)
|
||
|
rs->max_sectors =
|
||
|
min_not_zero(rs->max_sectors,
|
||
|
(unsigned short)(PAGE_SIZE >> 9));
|
||
|
|
||
|
rs->max_phys_segments =
|
||
|
min_not_zero(rs->max_phys_segments,
|
||
|
q->max_phys_segments);
|
||
|
|
||
|
rs->max_hw_segments =
|
||
|
min_not_zero(rs->max_hw_segments, q->max_hw_segments);
|
||
|
|
||
|
rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
|
||
|
|
||
|
rs->max_segment_size =
|
||
|
min_not_zero(rs->max_segment_size, q->max_segment_size);
|
||
|
|
||
|
rs->seg_boundary_mask =
|
||
|
min_not_zero(rs->seg_boundary_mask,
|
||
|
q->seg_boundary_mask);
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Decrement a devices use count and remove it if necessary.
|
||
|
*/
|
||
|
void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
|
||
|
{
|
||
|
if (atomic_dec_and_test(&dd->count)) {
|
||
|
close_dev(dd);
|
||
|
list_del(&dd->list);
|
||
|
kfree(dd);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks to see if the target joins onto the end of the table.
|
||
|
*/
|
||
|
static int adjoin(struct dm_table *table, struct dm_target *ti)
|
||
|
{
|
||
|
struct dm_target *prev;
|
||
|
|
||
|
if (!table->num_targets)
|
||
|
return !ti->begin;
|
||
|
|
||
|
prev = &table->targets[table->num_targets - 1];
|
||
|
return (ti->begin == (prev->begin + prev->len));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Used to dynamically allocate the arg array.
|
||
|
*/
|
||
|
static char **realloc_argv(unsigned *array_size, char **old_argv)
|
||
|
{
|
||
|
char **argv;
|
||
|
unsigned new_size;
|
||
|
|
||
|
new_size = *array_size ? *array_size * 2 : 64;
|
||
|
argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
|
||
|
if (argv) {
|
||
|
memcpy(argv, old_argv, *array_size * sizeof(*argv));
|
||
|
*array_size = new_size;
|
||
|
}
|
||
|
|
||
|
kfree(old_argv);
|
||
|
return argv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Destructively splits up the argument list to pass to ctr.
|
||
|
*/
|
||
|
int dm_split_args(int *argc, char ***argvp, char *input)
|
||
|
{
|
||
|
char *start, *end = input, *out, **argv = NULL;
|
||
|
unsigned array_size = 0;
|
||
|
|
||
|
*argc = 0;
|
||
|
argv = realloc_argv(&array_size, argv);
|
||
|
if (!argv)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
while (1) {
|
||
|
start = end;
|
||
|
|
||
|
/* Skip whitespace */
|
||
|
while (*start && isspace(*start))
|
||
|
start++;
|
||
|
|
||
|
if (!*start)
|
||
|
break; /* success, we hit the end */
|
||
|
|
||
|
/* 'out' is used to remove any back-quotes */
|
||
|
end = out = start;
|
||
|
while (*end) {
|
||
|
/* Everything apart from '\0' can be quoted */
|
||
|
if (*end == '\\' && *(end + 1)) {
|
||
|
*out++ = *(end + 1);
|
||
|
end += 2;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (isspace(*end))
|
||
|
break; /* end of token */
|
||
|
|
||
|
*out++ = *end++;
|
||
|
}
|
||
|
|
||
|
/* have we already filled the array ? */
|
||
|
if ((*argc + 1) > array_size) {
|
||
|
argv = realloc_argv(&array_size, argv);
|
||
|
if (!argv)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* we know this is whitespace */
|
||
|
if (*end)
|
||
|
end++;
|
||
|
|
||
|
/* terminate the string and put it in the array */
|
||
|
*out = '\0';
|
||
|
argv[*argc] = start;
|
||
|
(*argc)++;
|
||
|
}
|
||
|
|
||
|
*argvp = argv;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void check_for_valid_limits(struct io_restrictions *rs)
|
||
|
{
|
||
|
if (!rs->max_sectors)
|
||
|
rs->max_sectors = MAX_SECTORS;
|
||
|
if (!rs->max_phys_segments)
|
||
|
rs->max_phys_segments = MAX_PHYS_SEGMENTS;
|
||
|
if (!rs->max_hw_segments)
|
||
|
rs->max_hw_segments = MAX_HW_SEGMENTS;
|
||
|
if (!rs->hardsect_size)
|
||
|
rs->hardsect_size = 1 << SECTOR_SHIFT;
|
||
|
if (!rs->max_segment_size)
|
||
|
rs->max_segment_size = MAX_SEGMENT_SIZE;
|
||
|
if (!rs->seg_boundary_mask)
|
||
|
rs->seg_boundary_mask = -1;
|
||
|
}
|
||
|
|
||
|
int dm_table_add_target(struct dm_table *t, const char *type,
|
||
|
sector_t start, sector_t len, char *params)
|
||
|
{
|
||
|
int r = -EINVAL, argc;
|
||
|
char **argv;
|
||
|
struct dm_target *tgt;
|
||
|
|
||
|
if ((r = check_space(t)))
|
||
|
return r;
|
||
|
|
||
|
tgt = t->targets + t->num_targets;
|
||
|
memset(tgt, 0, sizeof(*tgt));
|
||
|
|
||
|
if (!len) {
|
||
|
tgt->error = "zero-length target";
|
||
|
DMERR("%s", tgt->error);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
tgt->type = dm_get_target_type(type);
|
||
|
if (!tgt->type) {
|
||
|
tgt->error = "unknown target type";
|
||
|
DMERR("%s", tgt->error);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
tgt->table = t;
|
||
|
tgt->begin = start;
|
||
|
tgt->len = len;
|
||
|
tgt->error = "Unknown error";
|
||
|
|
||
|
/*
|
||
|
* Does this target adjoin the previous one ?
|
||
|
*/
|
||
|
if (!adjoin(t, tgt)) {
|
||
|
tgt->error = "Gap in table";
|
||
|
r = -EINVAL;
|
||
|
goto bad;
|
||
|
}
|
||
|
|
||
|
r = dm_split_args(&argc, &argv, params);
|
||
|
if (r) {
|
||
|
tgt->error = "couldn't split parameters (insufficient memory)";
|
||
|
goto bad;
|
||
|
}
|
||
|
|
||
|
r = tgt->type->ctr(tgt, argc, argv);
|
||
|
kfree(argv);
|
||
|
if (r)
|
||
|
goto bad;
|
||
|
|
||
|
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
|
||
|
|
||
|
/* FIXME: the plan is to combine high here and then have
|
||
|
* the merge fn apply the target level restrictions. */
|
||
|
combine_restrictions_low(&t->limits, &tgt->limits);
|
||
|
return 0;
|
||
|
|
||
|
bad:
|
||
|
DMERR("%s", tgt->error);
|
||
|
dm_put_target_type(tgt->type);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int setup_indexes(struct dm_table *t)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned int total = 0;
|
||
|
sector_t *indexes;
|
||
|
|
||
|
/* allocate the space for *all* the indexes */
|
||
|
for (i = t->depth - 2; i >= 0; i--) {
|
||
|
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
|
||
|
total += t->counts[i];
|
||
|
}
|
||
|
|
||
|
indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
|
||
|
if (!indexes)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* set up internal nodes, bottom-up */
|
||
|
for (i = t->depth - 2, total = 0; i >= 0; i--) {
|
||
|
t->index[i] = indexes;
|
||
|
indexes += (KEYS_PER_NODE * t->counts[i]);
|
||
|
setup_btree_index(i, t);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Builds the btree to index the map.
|
||
|
*/
|
||
|
int dm_table_complete(struct dm_table *t)
|
||
|
{
|
||
|
int r = 0;
|
||
|
unsigned int leaf_nodes;
|
||
|
|
||
|
check_for_valid_limits(&t->limits);
|
||
|
|
||
|
/* how many indexes will the btree have ? */
|
||
|
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
|
||
|
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
|
||
|
|
||
|
/* leaf layer has already been set up */
|
||
|
t->counts[t->depth - 1] = leaf_nodes;
|
||
|
t->index[t->depth - 1] = t->highs;
|
||
|
|
||
|
if (t->depth >= 2)
|
||
|
r = setup_indexes(t);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static DECLARE_MUTEX(_event_lock);
|
||
|
void dm_table_event_callback(struct dm_table *t,
|
||
|
void (*fn)(void *), void *context)
|
||
|
{
|
||
|
down(&_event_lock);
|
||
|
t->event_fn = fn;
|
||
|
t->event_context = context;
|
||
|
up(&_event_lock);
|
||
|
}
|
||
|
|
||
|
void dm_table_event(struct dm_table *t)
|
||
|
{
|
||
|
/*
|
||
|
* You can no longer call dm_table_event() from interrupt
|
||
|
* context, use a bottom half instead.
|
||
|
*/
|
||
|
BUG_ON(in_interrupt());
|
||
|
|
||
|
down(&_event_lock);
|
||
|
if (t->event_fn)
|
||
|
t->event_fn(t->event_context);
|
||
|
up(&_event_lock);
|
||
|
}
|
||
|
|
||
|
sector_t dm_table_get_size(struct dm_table *t)
|
||
|
{
|
||
|
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
|
||
|
}
|
||
|
|
||
|
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
|
||
|
{
|
||
|
if (index > t->num_targets)
|
||
|
return NULL;
|
||
|
|
||
|
return t->targets + index;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Search the btree for the correct target.
|
||
|
*/
|
||
|
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
|
||
|
{
|
||
|
unsigned int l, n = 0, k = 0;
|
||
|
sector_t *node;
|
||
|
|
||
|
for (l = 0; l < t->depth; l++) {
|
||
|
n = get_child(n, k);
|
||
|
node = get_node(t, l, n);
|
||
|
|
||
|
for (k = 0; k < KEYS_PER_NODE; k++)
|
||
|
if (node[k] >= sector)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return &t->targets[(KEYS_PER_NODE * n) + k];
|
||
|
}
|
||
|
|
||
|
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
|
||
|
{
|
||
|
/*
|
||
|
* Make sure we obey the optimistic sub devices
|
||
|
* restrictions.
|
||
|
*/
|
||
|
blk_queue_max_sectors(q, t->limits.max_sectors);
|
||
|
q->max_phys_segments = t->limits.max_phys_segments;
|
||
|
q->max_hw_segments = t->limits.max_hw_segments;
|
||
|
q->hardsect_size = t->limits.hardsect_size;
|
||
|
q->max_segment_size = t->limits.max_segment_size;
|
||
|
q->seg_boundary_mask = t->limits.seg_boundary_mask;
|
||
|
}
|
||
|
|
||
|
unsigned int dm_table_get_num_targets(struct dm_table *t)
|
||
|
{
|
||
|
return t->num_targets;
|
||
|
}
|
||
|
|
||
|
struct list_head *dm_table_get_devices(struct dm_table *t)
|
||
|
{
|
||
|
return &t->devices;
|
||
|
}
|
||
|
|
||
|
int dm_table_get_mode(struct dm_table *t)
|
||
|
{
|
||
|
return t->mode;
|
||
|
}
|
||
|
|
||
|
static void suspend_targets(struct dm_table *t, unsigned postsuspend)
|
||
|
{
|
||
|
int i = t->num_targets;
|
||
|
struct dm_target *ti = t->targets;
|
||
|
|
||
|
while (i--) {
|
||
|
if (postsuspend) {
|
||
|
if (ti->type->postsuspend)
|
||
|
ti->type->postsuspend(ti);
|
||
|
} else if (ti->type->presuspend)
|
||
|
ti->type->presuspend(ti);
|
||
|
|
||
|
ti++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dm_table_presuspend_targets(struct dm_table *t)
|
||
|
{
|
||
|
return suspend_targets(t, 0);
|
||
|
}
|
||
|
|
||
|
void dm_table_postsuspend_targets(struct dm_table *t)
|
||
|
{
|
||
|
return suspend_targets(t, 1);
|
||
|
}
|
||
|
|
||
|
void dm_table_resume_targets(struct dm_table *t)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < t->num_targets; i++) {
|
||
|
struct dm_target *ti = t->targets + i;
|
||
|
|
||
|
if (ti->type->resume)
|
||
|
ti->type->resume(ti);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int dm_table_any_congested(struct dm_table *t, int bdi_bits)
|
||
|
{
|
||
|
struct list_head *d, *devices;
|
||
|
int r = 0;
|
||
|
|
||
|
devices = dm_table_get_devices(t);
|
||
|
for (d = devices->next; d != devices; d = d->next) {
|
||
|
struct dm_dev *dd = list_entry(d, struct dm_dev, list);
|
||
|
request_queue_t *q = bdev_get_queue(dd->bdev);
|
||
|
r |= bdi_congested(&q->backing_dev_info, bdi_bits);
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
void dm_table_unplug_all(struct dm_table *t)
|
||
|
{
|
||
|
struct list_head *d, *devices = dm_table_get_devices(t);
|
||
|
|
||
|
for (d = devices->next; d != devices; d = d->next) {
|
||
|
struct dm_dev *dd = list_entry(d, struct dm_dev, list);
|
||
|
request_queue_t *q = bdev_get_queue(dd->bdev);
|
||
|
|
||
|
if (q->unplug_fn)
|
||
|
q->unplug_fn(q);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int dm_table_flush_all(struct dm_table *t)
|
||
|
{
|
||
|
struct list_head *d, *devices = dm_table_get_devices(t);
|
||
|
int ret = 0;
|
||
|
|
||
|
for (d = devices->next; d != devices; d = d->next) {
|
||
|
struct dm_dev *dd = list_entry(d, struct dm_dev, list);
|
||
|
request_queue_t *q = bdev_get_queue(dd->bdev);
|
||
|
int err;
|
||
|
|
||
|
if (!q->issue_flush_fn)
|
||
|
err = -EOPNOTSUPP;
|
||
|
else
|
||
|
err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
|
||
|
|
||
|
if (!ret)
|
||
|
ret = err;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(dm_vcalloc);
|
||
|
EXPORT_SYMBOL(dm_get_device);
|
||
|
EXPORT_SYMBOL(dm_put_device);
|
||
|
EXPORT_SYMBOL(dm_table_event);
|
||
|
EXPORT_SYMBOL(dm_table_get_mode);
|
||
|
EXPORT_SYMBOL(dm_table_put);
|
||
|
EXPORT_SYMBOL(dm_table_get);
|
||
|
EXPORT_SYMBOL(dm_table_unplug_all);
|
||
|
EXPORT_SYMBOL(dm_table_flush_all);
|