WSL2-Linux-Kernel/drivers/gpu/drm/radeon/r520.c

307 строки
8.3 KiB
C
Исходник Обычный вид История

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include "drmP.h"
#include "radeon.h"
#include "radeon_asic.h"
#include "atom.h"
#include "r520d.h"
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
/* This files gather functions specifics to: r520,rv530,rv560,rv570,r580 */
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
static int r520_mc_wait_for_idle(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
{
unsigned i;
uint32_t tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32_MC(R520_MC_STATUS);
if (tmp & R520_MC_STATUS_IDLE) {
return 0;
}
DRM_UDELAY(1);
}
return -1;
}
static void r520_gpu_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
{
unsigned pipe_select_current, gb_pipe_select, tmp;
rv515_vga_render_disable(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
/*
* DST_PIPE_CONFIG 0x170C
* GB_TILE_CONFIG 0x4018
* GB_FIFO_SIZE 0x4024
* GB_PIPE_SELECT 0x402C
* GB_PIPE_SELECT2 0x4124
* Z_PIPE_SHIFT 0
* Z_PIPE_MASK 0x000000003
* GB_FIFO_SIZE2 0x4128
* SC_SFIFO_SIZE_SHIFT 0
* SC_SFIFO_SIZE_MASK 0x000000003
* SC_MFIFO_SIZE_SHIFT 2
* SC_MFIFO_SIZE_MASK 0x00000000C
* FG_SFIFO_SIZE_SHIFT 4
* FG_SFIFO_SIZE_MASK 0x000000030
* ZB_MFIFO_SIZE_SHIFT 6
* ZB_MFIFO_SIZE_MASK 0x0000000C0
* GA_ENHANCE 0x4274
* SU_REG_DEST 0x42C8
*/
/* workaround for RV530 */
if (rdev->family == CHIP_RV530) {
WREG32(0x4128, 0xFF);
}
r420_pipes_init(rdev);
gb_pipe_select = RREG32(0x402C);
tmp = RREG32(0x170C);
pipe_select_current = (tmp >> 2) & 3;
tmp = (1 << pipe_select_current) |
(((gb_pipe_select >> 8) & 0xF) << 4);
WREG32_PLL(0x000D, tmp);
if (r520_mc_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait MC idle while "
"programming pipes. Bad things might happen.\n");
}
}
static void r520_vram_get_type(struct radeon_device *rdev)
{
uint32_t tmp;
rdev->mc.vram_width = 128;
rdev->mc.vram_is_ddr = true;
tmp = RREG32_MC(R520_MC_CNTL0);
switch ((tmp & R520_MEM_NUM_CHANNELS_MASK) >> R520_MEM_NUM_CHANNELS_SHIFT) {
case 0:
rdev->mc.vram_width = 32;
break;
case 1:
rdev->mc.vram_width = 64;
break;
case 2:
rdev->mc.vram_width = 128;
break;
case 3:
rdev->mc.vram_width = 256;
break;
default:
rdev->mc.vram_width = 128;
break;
}
if (tmp & R520_MC_CHANNEL_SIZE)
rdev->mc.vram_width *= 2;
}
void r520_mc_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
{
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
r520_vram_get_type(rdev);
r100_vram_init_sizes(rdev);
radeon_vram_location(rdev, &rdev->mc, 0);
rdev->mc.gtt_base_align = 0;
if (!(rdev->flags & RADEON_IS_AGP))
radeon_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
}
void r520_mc_program(struct radeon_device *rdev)
{
struct rv515_mc_save save;
/* Stops all mc clients */
rv515_mc_stop(rdev, &save);
/* Wait for mc idle */
if (r520_mc_wait_for_idle(rdev))
dev_warn(rdev->dev, "Wait MC idle timeout before updating MC.\n");
/* Write VRAM size in case we are limiting it */
WREG32(R_0000F8_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
/* Program MC, should be a 32bits limited address space */
WREG32_MC(R_000004_MC_FB_LOCATION,
S_000004_MC_FB_START(rdev->mc.vram_start >> 16) |
S_000004_MC_FB_TOP(rdev->mc.vram_end >> 16));
WREG32(R_000134_HDP_FB_LOCATION,
S_000134_HDP_FB_START(rdev->mc.vram_start >> 16));
if (rdev->flags & RADEON_IS_AGP) {
WREG32_MC(R_000005_MC_AGP_LOCATION,
S_000005_MC_AGP_START(rdev->mc.gtt_start >> 16) |
S_000005_MC_AGP_TOP(rdev->mc.gtt_end >> 16));
WREG32_MC(R_000006_AGP_BASE, lower_32_bits(rdev->mc.agp_base));
WREG32_MC(R_000007_AGP_BASE_2,
S_000007_AGP_BASE_ADDR_2(upper_32_bits(rdev->mc.agp_base)));
} else {
WREG32_MC(R_000005_MC_AGP_LOCATION, 0xFFFFFFFF);
WREG32_MC(R_000006_AGP_BASE, 0);
WREG32_MC(R_000007_AGP_BASE_2, 0);
}
rv515_mc_resume(rdev, &save);
}
static int r520_startup(struct radeon_device *rdev)
{
int r;
r520_mc_program(rdev);
/* Resume clock */
rv515_clock_startup(rdev);
/* Initialize GPU configuration (# pipes, ...) */
r520_gpu_init(rdev);
/* Initialize GART (initialize after TTM so we can allocate
* memory through TTM but finalize after TTM) */
if (rdev->flags & RADEON_IS_PCIE) {
r = rv370_pcie_gart_enable(rdev);
if (r)
return r;
}
/* Enable IRQ */
rs600_irq_set(rdev);
rdev->config.r300.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL);
/* 1M ring buffer */
r = r100_cp_init(rdev, 1024 * 1024);
if (r) {
dev_err(rdev->dev, "failled initializing CP (%d).\n", r);
return r;
}
r = r100_wb_init(rdev);
if (r)
dev_err(rdev->dev, "failled initializing WB (%d).\n", r);
r = r100_ib_init(rdev);
if (r) {
dev_err(rdev->dev, "failled initializing IB (%d).\n", r);
return r;
}
return 0;
}
int r520_resume(struct radeon_device *rdev)
{
/* Make sur GART are not working */
if (rdev->flags & RADEON_IS_PCIE)
rv370_pcie_gart_disable(rdev);
/* Resume clock before doing reset */
rv515_clock_startup(rdev);
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* post */
atom_asic_init(rdev->mode_info.atom_context);
/* Resume clock after posting */
rv515_clock_startup(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
return r520_startup(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 16:42:42 +04:00
}
int r520_init(struct radeon_device *rdev)
{
int r;
/* Initialize scratch registers */
radeon_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* restore some register to sane defaults */
r100_restore_sanity(rdev);
/* TODO: disable VGA need to use VGA request */
/* BIOS*/
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
if (rdev->is_atom_bios) {
r = radeon_atombios_init(rdev);
if (r)
return r;
} else {
dev_err(rdev->dev, "Expecting atombios for RV515 GPU\n");
return -EINVAL;
}
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev,
"GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* check if cards are posted or not */
if (radeon_boot_test_post_card(rdev) == false)
return -EINVAL;
if (!radeon_card_posted(rdev) && rdev->bios) {
DRM_INFO("GPU not posted. posting now...\n");
atom_asic_init(rdev->mode_info.atom_context);
}
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* initialize AGP */
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r) {
radeon_agp_disable(rdev);
}
}
/* initialize memory controller */
r520_mc_init(rdev);
rv515_debugfs(rdev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
r = radeon_irq_kms_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
r = rv370_pcie_gart_init(rdev);
if (r)
return r;
rv515_set_safe_registers(rdev);
rdev->accel_working = true;
r = r520_startup(rdev);
if (r) {
/* Somethings want wront with the accel init stop accel */
dev_err(rdev->dev, "Disabling GPU acceleration\n");
r100_cp_fini(rdev);
r100_wb_fini(rdev);
r100_ib_fini(rdev);
radeon_irq_kms_fini(rdev);
rv370_pcie_gart_fini(rdev);
radeon_agp_fini(rdev);
rdev->accel_working = false;
}
return 0;
}