WSL2-Linux-Kernel/fs/afs/volume.c

367 строки
8.8 KiB
C
Исходник Обычный вид История

/* AFS volume management
*
* Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include "internal.h"
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
unsigned __read_mostly afs_volume_gc_delay = 10;
unsigned __read_mostly afs_volume_record_life = 60 * 60;
static const char *const afs_voltypes[] = { "R/W", "R/O", "BAK" };
/*
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
* Allocate a volume record and load it up from a vldb record.
*/
static struct afs_volume *afs_alloc_volume(struct afs_mount_params *params,
struct afs_vldb_entry *vldb,
unsigned long type_mask)
{
struct afs_server_list *slist;
struct afs_volume *volume;
int ret = -ENOMEM, nr_servers = 0, i;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
for (i = 0; i < vldb->nr_servers; i++)
if (vldb->fs_mask[i] & type_mask)
nr_servers++;
volume = kzalloc(sizeof(struct afs_volume), GFP_KERNEL);
if (!volume)
goto error_0;
volume->vid = vldb->vid[params->type];
volume->update_at = ktime_get_real_seconds() + afs_volume_record_life;
volume->cell = afs_get_cell(params->cell);
volume->type = params->type;
volume->type_force = params->force;
volume->name_len = vldb->name_len;
atomic_set(&volume->usage, 1);
INIT_LIST_HEAD(&volume->proc_link);
rwlock_init(&volume->servers_lock);
memcpy(volume->name, vldb->name, vldb->name_len + 1);
slist = afs_alloc_server_list(params->cell, params->key, vldb, type_mask);
if (IS_ERR(slist)) {
ret = PTR_ERR(slist);
goto error_1;
}
refcount_set(&slist->usage, 1);
volume->servers = slist;
return volume;
error_1:
afs_put_cell(params->net, volume->cell);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
kfree(volume);
error_0:
return ERR_PTR(ret);
}
/*
* Look up a VLDB record for a volume.
*/
static struct afs_vldb_entry *afs_vl_lookup_vldb(struct afs_cell *cell,
struct key *key,
const char *volname,
size_t volnamesz)
{
struct afs_addr_cursor ac;
struct afs_vldb_entry *vldb;
int ret;
ret = afs_set_vl_cursor(&ac, cell);
if (ret < 0)
return ERR_PTR(ret);
while (afs_iterate_addresses(&ac)) {
if (!test_bit(ac.index, &ac.alist->probed)) {
ret = afs_vl_get_capabilities(cell->net, &ac, key);
switch (ret) {
case VL_SERVICE:
clear_bit(ac.index, &ac.alist->yfs);
set_bit(ac.index, &ac.alist->probed);
ac.addr->srx_service = ret;
break;
case YFS_VL_SERVICE:
set_bit(ac.index, &ac.alist->yfs);
set_bit(ac.index, &ac.alist->probed);
ac.addr->srx_service = ret;
break;
}
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
vldb = afs_vl_get_entry_by_name_u(cell->net, &ac, key,
volname, volnamesz);
switch (ac.error) {
case 0:
afs_end_cursor(&ac);
return vldb;
case -ECONNABORTED:
ac.error = afs_abort_to_error(ac.abort_code);
goto error;
case -ENOMEM:
case -ENONET:
goto error;
case -ENETUNREACH:
case -EHOSTUNREACH:
case -ECONNREFUSED:
break;
default:
ac.error = -EIO;
goto error;
}
}
error:
return ERR_PTR(afs_end_cursor(&ac));
}
/*
* Look up a volume in the VL server and create a candidate volume record for
* it.
*
* The volume name can be one of the following:
* "%[cell:]volume[.]" R/W volume
* "#[cell:]volume[.]" R/O or R/W volume (rwparent=0),
* or R/W (rwparent=1) volume
* "%[cell:]volume.readonly" R/O volume
* "#[cell:]volume.readonly" R/O volume
* "%[cell:]volume.backup" Backup volume
* "#[cell:]volume.backup" Backup volume
*
* The cell name is optional, and defaults to the current cell.
*
* See "The Rules of Mount Point Traversal" in Chapter 5 of the AFS SysAdmin
* Guide
* - Rule 1: Explicit type suffix forces access of that type or nothing
* (no suffix, then use Rule 2 & 3)
* - Rule 2: If parent volume is R/O, then mount R/O volume by preference, R/W
* if not available
* - Rule 3: If parent volume is R/W, then only mount R/W volume unless
* explicitly told otherwise
*/
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
struct afs_volume *afs_create_volume(struct afs_mount_params *params)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
struct afs_vldb_entry *vldb;
struct afs_volume *volume;
unsigned long type_mask = 1UL << params->type;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
vldb = afs_vl_lookup_vldb(params->cell, params->key,
params->volname, params->volnamesz);
if (IS_ERR(vldb))
return ERR_CAST(vldb);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
if (test_bit(AFS_VLDB_QUERY_ERROR, &vldb->flags)) {
volume = ERR_PTR(vldb->error);
goto error;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/* Make the final decision on the type we want */
volume = ERR_PTR(-ENOMEDIUM);
if (params->force) {
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
if (!(vldb->flags & type_mask))
goto error;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
} else if (test_bit(AFS_VLDB_HAS_RO, &vldb->flags)) {
params->type = AFSVL_ROVOL;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
} else if (test_bit(AFS_VLDB_HAS_RW, &vldb->flags)) {
params->type = AFSVL_RWVOL;
} else {
goto error;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
type_mask = 1UL << params->type;
volume = afs_alloc_volume(params, vldb, type_mask);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
error:
kfree(vldb);
return volume;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/*
* Destroy a volume record
*/
static void afs_destroy_volume(struct afs_net *net, struct afs_volume *volume)
{
_enter("%p", volume);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
#ifdef CONFIG_AFS_FSCACHE
ASSERTCMP(volume->cache, ==, NULL);
#endif
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
afs_put_serverlist(net, volume->servers);
afs_put_cell(net, volume->cell);
kfree(volume);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
_leave(" [destroyed]");
}
/*
* Drop a reference on a volume record.
*/
void afs_put_volume(struct afs_cell *cell, struct afs_volume *volume)
{
if (volume) {
_enter("%s", volume->name);
if (atomic_dec_and_test(&volume->usage))
afs_destroy_volume(cell->net, volume);
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/*
* Activate a volume.
*/
void afs_activate_volume(struct afs_volume *volume)
{
#ifdef CONFIG_AFS_FSCACHE
volume->cache = fscache_acquire_cookie(volume->cell->cache,
&afs_volume_cache_index_def,
FS-Cache: Provide the ability to enable/disable cookies Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-21 03:09:31 +04:00
volume, true);
#endif
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
write_lock(&volume->cell->proc_lock);
list_add_tail(&volume->proc_link, &volume->cell->proc_volumes);
write_unlock(&volume->cell->proc_lock);
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/*
* Deactivate a volume.
*/
void afs_deactivate_volume(struct afs_volume *volume)
{
_enter("%s", volume->name);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
write_lock(&volume->cell->proc_lock);
list_del_init(&volume->proc_link);
write_unlock(&volume->cell->proc_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
#ifdef CONFIG_AFS_FSCACHE
fscache_relinquish_cookie(volume->cache,
test_bit(AFS_VOLUME_DELETED, &volume->flags));
volume->cache = NULL;
#endif
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
_leave("");
}
/*
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
* Query the VL service to update the volume status.
*/
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
static int afs_update_volume_status(struct afs_volume *volume, struct key *key)
{
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
struct afs_server_list *new, *old, *discard;
struct afs_vldb_entry *vldb;
char idbuf[16];
int ret, idsz;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
_enter("");
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/* We look up an ID by passing it as a decimal string in the
* operation's name parameter.
*/
idsz = sprintf(idbuf, "%u", volume->vid);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
vldb = afs_vl_lookup_vldb(volume->cell, key, idbuf, idsz);
if (IS_ERR(vldb)) {
ret = PTR_ERR(vldb);
goto error;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/* See if the volume got renamed. */
if (vldb->name_len != volume->name_len ||
memcmp(vldb->name, volume->name, vldb->name_len) != 0) {
/* TODO: Use RCU'd string. */
memcpy(volume->name, vldb->name, AFS_MAXVOLNAME);
volume->name_len = vldb->name_len;
}
/* See if the volume's server list got updated. */
new = afs_alloc_server_list(volume->cell, key,
vldb, (1 << volume->type));
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
if (IS_ERR(new)) {
ret = PTR_ERR(new);
goto error_vldb;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
write_lock(&volume->servers_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
discard = new;
old = volume->servers;
if (afs_annotate_server_list(new, old)) {
new->seq = volume->servers_seq + 1;
volume->servers = new;
smp_wmb();
volume->servers_seq++;
discard = old;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
volume->update_at = ktime_get_real_seconds() + afs_volume_record_life;
clear_bit(AFS_VOLUME_NEEDS_UPDATE, &volume->flags);
write_unlock(&volume->servers_lock);
ret = 0;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
afs_put_serverlist(volume->cell->net, discard);
error_vldb:
kfree(vldb);
error:
_leave(" = %d", ret);
return ret;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
/*
* Make sure the volume record is up to date.
*/
int afs_check_volume_status(struct afs_volume *volume, struct key *key)
{
time64_t now = ktime_get_real_seconds();
int ret, retries = 0;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
_enter("");
if (volume->update_at <= now)
set_bit(AFS_VOLUME_NEEDS_UPDATE, &volume->flags);
retry:
if (!test_bit(AFS_VOLUME_NEEDS_UPDATE, &volume->flags) &&
!test_bit(AFS_VOLUME_WAIT, &volume->flags)) {
_leave(" = 0");
return 0;
afs: Overhaul the callback handling Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:49 +03:00
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
if (!test_and_set_bit_lock(AFS_VOLUME_UPDATING, &volume->flags)) {
ret = afs_update_volume_status(volume, key);
clear_bit_unlock(AFS_VOLUME_WAIT, &volume->flags);
clear_bit_unlock(AFS_VOLUME_UPDATING, &volume->flags);
wake_up_bit(&volume->flags, AFS_VOLUME_WAIT);
_leave(" = %d", ret);
return ret;
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 18:27:50 +03:00
if (!test_bit(AFS_VOLUME_WAIT, &volume->flags)) {
_leave(" = 0 [no wait]");
return 0;
}
ret = wait_on_bit(&volume->flags, AFS_VOLUME_WAIT, TASK_INTERRUPTIBLE);
if (ret == -ERESTARTSYS) {
_leave(" = %d", ret);
return ret;
}
retries++;
if (retries == 4) {
_leave(" = -ESTALE");
return -ESTALE;
}
goto retry;
}