WSL2-Linux-Kernel/arch/sparc64/kernel/binfmt_aout32.c

420 строки
12 KiB
C
Исходник Обычный вид История

/*
* linux/fs/binfmt_aout.c
*
* Copyright (C) 1991, 1992, 1996 Linus Torvalds
*
* Hacked a bit by DaveM to make it work with 32-bit SunOS
* binaries on the sparc64 port.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/slab.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <asm/a.out-core.h>
static int load_aout32_binary(struct linux_binprm *, struct pt_regs * regs);
static int load_aout32_library(struct file*);
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 10:26:34 +04:00
static int aout32_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
static struct linux_binfmt aout32_format = {
.module = THIS_MODULE,
.load_binary = load_aout32_binary,
.load_shlib = load_aout32_library,
.core_dump = aout32_core_dump,
.min_coredump = PAGE_SIZE,
};
static void set_brk(unsigned long start, unsigned long end)
{
start = PAGE_ALIGN(start);
end = PAGE_ALIGN(end);
if (end <= start)
return;
down_write(&current->mm->mmap_sem);
do_brk(start, end - start);
up_write(&current->mm->mmap_sem);
}
/*
* These are the only things you should do on a core-file: use only these
* macros to write out all the necessary info.
*/
static int dump_write(struct file *file, const void *addr, int nr)
{
return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
}
#define DUMP_WRITE(addr, nr) \
if (!dump_write(file, (void *)(addr), (nr))) \
goto end_coredump;
#define DUMP_SEEK(offset) \
if (file->f_op->llseek) { \
if (file->f_op->llseek(file,(offset),0) != (offset)) \
goto end_coredump; \
} else file->f_pos = (offset)
/*
* Routine writes a core dump image in the current directory.
* Currently only a stub-function.
*
* Note that setuid/setgid files won't make a core-dump if the uid/gid
* changed due to the set[u|g]id. It's enforced by the "current->mm->dumpable"
* field, which also makes sure the core-dumps won't be recursive if the
* dumping of the process results in another error..
*/
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 10:26:34 +04:00
static int aout32_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
{
mm_segment_t fs;
int has_dumped = 0;
unsigned long dump_start, dump_size;
struct user dump;
# define START_DATA(u) (u.u_tsize)
# define START_STACK(u) ((regs->u_regs[UREG_FP]) & ~(PAGE_SIZE - 1))
fs = get_fs();
set_fs(KERNEL_DS);
has_dumped = 1;
current->flags |= PF_DUMPCORE;
strncpy(dump.u_comm, current->comm, sizeof(dump.u_comm));
dump.signal = signr;
aout_dump_thread(regs, &dump);
/* If the size of the dump file exceeds the rlimit, then see what would happen
if we wrote the stack, but not the data area. */
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 10:26:34 +04:00
if (dump.u_dsize + dump.u_ssize > limit)
dump.u_dsize = 0;
/* Make sure we have enough room to write the stack and data areas. */
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 10:26:34 +04:00
if (dump.u_ssize > limit)
dump.u_ssize = 0;
/* make sure we actually have a data and stack area to dump */
set_fs(USER_DS);
if (!access_ok(VERIFY_READ, (void __user *) START_DATA(dump), dump.u_dsize))
dump.u_dsize = 0;
if (!access_ok(VERIFY_READ, (void __user *) START_STACK(dump), dump.u_ssize))
dump.u_ssize = 0;
set_fs(KERNEL_DS);
/* struct user */
DUMP_WRITE(&dump,sizeof(dump));
/* now we start writing out the user space info */
set_fs(USER_DS);
/* Dump the data area */
if (dump.u_dsize != 0) {
dump_start = START_DATA(dump);
dump_size = dump.u_dsize;
DUMP_WRITE(dump_start,dump_size);
}
/* Now prepare to dump the stack area */
if (dump.u_ssize != 0) {
dump_start = START_STACK(dump);
dump_size = dump.u_ssize;
DUMP_WRITE(dump_start,dump_size);
}
/* Finally dump the task struct. Not be used by gdb, but could be useful */
set_fs(KERNEL_DS);
DUMP_WRITE(current,sizeof(*current));
end_coredump:
set_fs(fs);
return has_dumped;
}
/*
* create_aout32_tables() parses the env- and arg-strings in new user
* memory and creates the pointer tables from them, and puts their
* addresses on the "stack", returning the new stack pointer value.
*/
static u32 __user *create_aout32_tables(char __user *p, struct linux_binprm *bprm)
{
u32 __user *argv;
u32 __user *envp;
u32 __user *sp;
int argc = bprm->argc;
int envc = bprm->envc;
sp = (u32 __user *)((-(unsigned long)sizeof(char *))&(unsigned long)p);
/* This imposes the proper stack alignment for a new process. */
sp = (u32 __user *) (((unsigned long) sp) & ~7);
if ((envc+argc+3)&1)
--sp;
sp -= envc+1;
envp = sp;
sp -= argc+1;
argv = sp;
put_user(argc,--sp);
current->mm->arg_start = (unsigned long) p;
while (argc-->0) {
char c;
put_user(((u32)(unsigned long)(p)),argv++);
do {
get_user(c,p++);
} while (c);
}
put_user(0,argv);
current->mm->arg_end = current->mm->env_start = (unsigned long) p;
while (envc-->0) {
char c;
put_user(((u32)(unsigned long)(p)),envp++);
do {
get_user(c,p++);
} while (c);
}
put_user(0,envp);
current->mm->env_end = (unsigned long) p;
return sp;
}
/*
* These are the functions used to load a.out style executables and shared
* libraries. There is no binary dependent code anywhere else.
*/
static int load_aout32_binary(struct linux_binprm * bprm, struct pt_regs * regs)
{
struct exec ex;
unsigned long error;
unsigned long fd_offset;
unsigned long rlim;
unsigned long orig_thr_flags;
int retval;
ex = *((struct exec *) bprm->buf); /* exec-header */
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != OMAGIC &&
N_MAGIC(ex) != QMAGIC && N_MAGIC(ex) != NMAGIC) ||
N_TRSIZE(ex) || N_DRSIZE(ex) ||
bprm->file->f_path.dentry->d_inode->i_size < ex.a_text+ex.a_data+N_SYMSIZE(ex)+N_TXTOFF(ex)) {
return -ENOEXEC;
}
fd_offset = N_TXTOFF(ex);
/* Check initial limits. This avoids letting people circumvent
* size limits imposed on them by creating programs with large
* arrays in the data or bss.
*/
rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
if (rlim >= RLIM_INFINITY)
rlim = ~0;
if (ex.a_data + ex.a_bss > rlim)
return -ENOMEM;
/* Flush all traces of the currently running executable */
retval = flush_old_exec(bprm);
if (retval)
return retval;
/* OK, This is the point of no return */
set_personality(PER_SUNOS);
current->mm->end_code = ex.a_text +
(current->mm->start_code = N_TXTADDR(ex));
current->mm->end_data = ex.a_data +
(current->mm->start_data = N_DATADDR(ex));
current->mm->brk = ex.a_bss +
(current->mm->start_brk = N_BSSADDR(ex));
current->mm->free_area_cache = current->mm->mmap_base;
current->mm->cached_hole_size = 0;
current->mm->mmap = NULL;
compute_creds(bprm);
current->flags &= ~PF_FORKNOEXEC;
if (N_MAGIC(ex) == NMAGIC) {
loff_t pos = fd_offset;
/* Fuck me plenty... */
down_write(&current->mm->mmap_sem);
error = do_brk(N_TXTADDR(ex), ex.a_text);
up_write(&current->mm->mmap_sem);
bprm->file->f_op->read(bprm->file, (char __user *)N_TXTADDR(ex),
ex.a_text, &pos);
down_write(&current->mm->mmap_sem);
error = do_brk(N_DATADDR(ex), ex.a_data);
up_write(&current->mm->mmap_sem);
bprm->file->f_op->read(bprm->file, (char __user *)N_DATADDR(ex),
ex.a_data, &pos);
goto beyond_if;
}
if (N_MAGIC(ex) == OMAGIC) {
loff_t pos = fd_offset;
down_write(&current->mm->mmap_sem);
do_brk(N_TXTADDR(ex) & PAGE_MASK,
ex.a_text+ex.a_data + PAGE_SIZE - 1);
up_write(&current->mm->mmap_sem);
bprm->file->f_op->read(bprm->file, (char __user *)N_TXTADDR(ex),
ex.a_text+ex.a_data, &pos);
} else {
static unsigned long error_time;
if ((ex.a_text & 0xfff || ex.a_data & 0xfff) &&
(N_MAGIC(ex) != NMAGIC) && (jiffies-error_time) > 5*HZ)
{
printk(KERN_NOTICE "executable not page aligned\n");
error_time = jiffies;
}
if (!bprm->file->f_op->mmap) {
loff_t pos = fd_offset;
down_write(&current->mm->mmap_sem);
do_brk(0, ex.a_text+ex.a_data);
up_write(&current->mm->mmap_sem);
bprm->file->f_op->read(bprm->file,
(char __user *)N_TXTADDR(ex),
ex.a_text+ex.a_data, &pos);
goto beyond_if;
}
down_write(&current->mm->mmap_sem);
error = do_mmap(bprm->file, N_TXTADDR(ex), ex.a_text,
PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,
fd_offset);
up_write(&current->mm->mmap_sem);
if (error != N_TXTADDR(ex)) {
send_sig(SIGKILL, current, 0);
return error;
}
down_write(&current->mm->mmap_sem);
error = do_mmap(bprm->file, N_DATADDR(ex), ex.a_data,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,
fd_offset + ex.a_text);
up_write(&current->mm->mmap_sem);
if (error != N_DATADDR(ex)) {
send_sig(SIGKILL, current, 0);
return error;
}
}
beyond_if:
set_binfmt(&aout32_format);
set_brk(current->mm->start_brk, current->mm->brk);
/* Make sure STACK_TOP returns the right thing. */
orig_thr_flags = current_thread_info()->flags;
current_thread_info()->flags |= _TIF_32BIT;
retval = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
if (retval < 0) {
current_thread_info()->flags = orig_thr_flags;
/* Someone check-me: is this error path enough? */
send_sig(SIGKILL, current, 0);
return retval;
}
current->mm->start_stack =
(unsigned long) create_aout32_tables((char __user *)bprm->p, bprm);
tsb_context_switch(current->mm);
start_thread32(regs, ex.a_entry, current->mm->start_stack);
if (current->ptrace & PT_PTRACED)
send_sig(SIGTRAP, current, 0);
return 0;
}
/* N.B. Move to .h file and use code in fs/binfmt_aout.c? */
static int load_aout32_library(struct file *file)
{
struct inode * inode;
unsigned long bss, start_addr, len;
unsigned long error;
int retval;
struct exec ex;
inode = file->f_path.dentry->d_inode;
retval = -ENOEXEC;
error = kernel_read(file, 0, (char *) &ex, sizeof(ex));
if (error != sizeof(ex))
goto out;
/* We come in here for the regular a.out style of shared libraries */
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != QMAGIC) || N_TRSIZE(ex) ||
N_DRSIZE(ex) || ((ex.a_entry & 0xfff) && N_MAGIC(ex) == ZMAGIC) ||
inode->i_size < ex.a_text+ex.a_data+N_SYMSIZE(ex)+N_TXTOFF(ex)) {
goto out;
}
if (N_MAGIC(ex) == ZMAGIC && N_TXTOFF(ex) &&
(N_TXTOFF(ex) < inode->i_sb->s_blocksize)) {
printk("N_TXTOFF < BLOCK_SIZE. Please convert library\n");
goto out;
}
if (N_FLAGS(ex))
goto out;
/* For QMAGIC, the starting address is 0x20 into the page. We mask
this off to get the starting address for the page */
start_addr = ex.a_entry & 0xfffff000;
/* Now use mmap to map the library into memory. */
down_write(&current->mm->mmap_sem);
error = do_mmap(file, start_addr, ex.a_text + ex.a_data,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
N_TXTOFF(ex));
up_write(&current->mm->mmap_sem);
retval = error;
if (error != start_addr)
goto out;
len = PAGE_ALIGN(ex.a_text + ex.a_data);
bss = ex.a_text + ex.a_data + ex.a_bss;
if (bss > len) {
down_write(&current->mm->mmap_sem);
error = do_brk(start_addr + len, bss - len);
up_write(&current->mm->mmap_sem);
retval = error;
if (error != start_addr + len)
goto out;
}
retval = 0;
out:
return retval;
}
static int __init init_aout32_binfmt(void)
{
return register_binfmt(&aout32_format);
}
static void __exit exit_aout32_binfmt(void)
{
unregister_binfmt(&aout32_format);
}
module_init(init_aout32_binfmt);
module_exit(exit_aout32_binfmt);