2005-04-17 02:20:36 +04:00
|
|
|
The text below describes the locking rules for VFS-related methods.
|
|
|
|
It is (believed to be) up-to-date. *Please*, if you change anything in
|
|
|
|
prototypes or locking protocols - update this file. And update the relevant
|
|
|
|
instances in the tree, don't leave that to maintainers of filesystems/devices/
|
|
|
|
etc. At the very least, put the list of dubious cases in the end of this file.
|
|
|
|
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
|
|
|
|
be able to use diff(1).
|
|
|
|
Thing currently missing here: socket operations. Alexey?
|
|
|
|
|
|
|
|
--------------------------- dentry_operations --------------------------
|
|
|
|
prototypes:
|
2012-06-11 00:03:43 +04:00
|
|
|
int (*d_revalidate)(struct dentry *, unsigned int);
|
2013-02-20 20:19:05 +04:00
|
|
|
int (*d_weak_revalidate)(struct dentry *, unsigned int);
|
2013-05-22 02:22:44 +04:00
|
|
|
int (*d_hash)(const struct dentry *, struct qstr *);
|
|
|
|
int (*d_compare)(const struct dentry *, const struct dentry *,
|
2011-01-07 09:49:27 +03:00
|
|
|
unsigned int, const char *, const struct qstr *);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*d_delete)(struct dentry *);
|
|
|
|
void (*d_release)(struct dentry *);
|
|
|
|
void (*d_iput)(struct dentry *, struct inode *);
|
2007-05-08 11:26:18 +04:00
|
|
|
char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
|
Add a dentry op to handle automounting rather than abusing follow_link()
Add a dentry op (d_automount) to handle automounting directories rather than
abusing the follow_link() inode operation. The operation is keyed off a new
dentry flag (DCACHE_NEED_AUTOMOUNT).
This also makes it easier to add an AT_ flag to suppress terminal segment
automount during pathwalk and removes the need for the kludge code in the
pathwalk algorithm to handle directories with follow_link() semantics.
The ->d_automount() dentry operation:
struct vfsmount *(*d_automount)(struct path *mountpoint);
takes a pointer to the directory to be mounted upon, which is expected to
provide sufficient data to determine what should be mounted. If successful, it
should return the vfsmount struct it creates (which it should also have added
to the namespace using do_add_mount() or similar). If there's a collision with
another automount attempt, NULL should be returned. If the directory specified
by the parameter should be used directly rather than being mounted upon,
-EISDIR should be returned. In any other case, an error code should be
returned.
The ->d_automount() operation is called with no locks held and may sleep. At
this point the pathwalk algorithm will be in ref-walk mode.
Within fs/namei.c itself, a new pathwalk subroutine (follow_automount()) is
added to handle mountpoints. It will return -EREMOTE if the automount flag was
set, but no d_automount() op was supplied, -ELOOP if we've encountered too many
symlinks or mountpoints, -EISDIR if the walk point should be used without
mounting and 0 if successful. The path will be updated to point to the mounted
filesystem if a successful automount took place.
__follow_mount() is replaced by follow_managed() which is more generic
(especially with the patch that adds ->d_manage()). This handles transits from
directories during pathwalk, including automounting and skipping over
mountpoints (and holding processes with the next patch).
__follow_mount_rcu() will jump out of RCU-walk mode if it encounters an
automount point with nothing mounted on it.
follow_dotdot*() does not handle automounts as you don't want to trigger them
whilst following "..".
I've also extracted the mount/don't-mount logic from autofs4 and included it
here. It makes the mount go ahead anyway if someone calls open() or creat(),
tries to traverse the directory, tries to chdir/chroot/etc. into the directory,
or sticks a '/' on the end of the pathname. If they do a stat(), however,
they'll only trigger the automount if they didn't also say O_NOFOLLOW.
I've also added an inode flag (S_AUTOMOUNT) so that filesystems can mark their
inodes as automount points. This flag is automatically propagated to the
dentry as DCACHE_NEED_AUTOMOUNT by __d_instantiate(). This saves NFS and could
save AFS a private flag bit apiece, but is not strictly necessary. It would be
preferable to do the propagation in d_set_d_op(), but that doesn't normally
have access to the inode.
[AV: fixed breakage in case if __follow_mount_rcu() fails and nameidata_drop_rcu()
succeeds in RCU case of do_lookup(); we need to fall through to non-RCU case after
that, rather than just returning with ungrabbed *path]
Signed-off-by: David Howells <dhowells@redhat.com>
Was-Acked-by: Ian Kent <raven@themaw.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-01-14 21:45:21 +03:00
|
|
|
struct vfsmount *(*d_automount)(struct path *path);
|
Add a dentry op to allow processes to be held during pathwalk transit
Add a dentry op (d_manage) to permit a filesystem to hold a process and make it
sleep when it tries to transit away from one of that filesystem's directories
during a pathwalk. The operation is keyed off a new dentry flag
(DCACHE_MANAGE_TRANSIT).
The filesystem is allowed to be selective about which processes it holds and
which it permits to continue on or prohibits from transiting from each flagged
directory. This will allow autofs to hold up client processes whilst letting
its userspace daemon through to maintain the directory or the stuff behind it
or mounted upon it.
The ->d_manage() dentry operation:
int (*d_manage)(struct path *path, bool mounting_here);
takes a pointer to the directory about to be transited away from and a flag
indicating whether the transit is undertaken by do_add_mount() or
do_move_mount() skipping through a pile of filesystems mounted on a mountpoint.
It should return 0 if successful and to let the process continue on its way;
-EISDIR to prohibit the caller from skipping to overmounted filesystems or
automounting, and to use this directory; or some other error code to return to
the user.
->d_manage() is called with namespace_sem writelocked if mounting_here is true
and no other locks held, so it may sleep. However, if mounting_here is true,
it may not initiate or wait for a mount or unmount upon the parameter
directory, even if the act is actually performed by userspace.
Within fs/namei.c, follow_managed() is extended to check with d_manage() first
on each managed directory, before transiting away from it or attempting to
automount upon it.
follow_down() is renamed follow_down_one() and should only be used where the
filesystem deliberately intends to avoid management steps (e.g. autofs).
A new follow_down() is added that incorporates the loop done by all other
callers of follow_down() (do_add/move_mount(), autofs and NFSD; whilst AFS, NFS
and CIFS do use it, their use is removed by converting them to use
d_automount()). The new follow_down() calls d_manage() as appropriate. It
also takes an extra parameter to indicate if it is being called from mount code
(with namespace_sem writelocked) which it passes to d_manage(). follow_down()
ignores automount points so that it can be used to mount on them.
__follow_mount_rcu() is made to abort rcu-walk mode if it hits a directory with
DCACHE_MANAGE_TRANSIT set on the basis that we're probably going to have to
sleep. It would be possible to enter d_manage() in rcu-walk mode too, and have
that determine whether to abort or not itself. That would allow the autofs
daemon to continue on in rcu-walk mode.
Note that DCACHE_MANAGE_TRANSIT on a directory should be cleared when it isn't
required as every tranist from that directory will cause d_manage() to be
invoked. It can always be set again when necessary.
==========================
WHAT THIS MEANS FOR AUTOFS
==========================
Autofs currently uses the lookup() inode op and the d_revalidate() dentry op to
trigger the automounting of indirect mounts, and both of these can be called
with i_mutex held.
autofs knows that the i_mutex will be held by the caller in lookup(), and so
can drop it before invoking the daemon - but this isn't so for d_revalidate(),
since the lock is only held on _some_ of the code paths that call it. This
means that autofs can't risk dropping i_mutex from its d_revalidate() function
before it calls the daemon.
The bug could manifest itself as, for example, a process that's trying to
validate an automount dentry that gets made to wait because that dentry is
expired and needs cleaning up:
mkdir S ffffffff8014e05a 0 32580 24956
Call Trace:
[<ffffffff885371fd>] :autofs4:autofs4_wait+0x674/0x897
[<ffffffff80127f7d>] avc_has_perm+0x46/0x58
[<ffffffff8009fdcf>] autoremove_wake_function+0x0/0x2e
[<ffffffff88537be6>] :autofs4:autofs4_expire_wait+0x41/0x6b
[<ffffffff88535cfc>] :autofs4:autofs4_revalidate+0x91/0x149
[<ffffffff80036d96>] __lookup_hash+0xa0/0x12f
[<ffffffff80057a2f>] lookup_create+0x46/0x80
[<ffffffff800e6e31>] sys_mkdirat+0x56/0xe4
versus the automount daemon which wants to remove that dentry, but can't
because the normal process is holding the i_mutex lock:
automount D ffffffff8014e05a 0 32581 1 32561
Call Trace:
[<ffffffff80063c3f>] __mutex_lock_slowpath+0x60/0x9b
[<ffffffff8000ccf1>] do_path_lookup+0x2ca/0x2f1
[<ffffffff80063c89>] .text.lock.mutex+0xf/0x14
[<ffffffff800e6d55>] do_rmdir+0x77/0xde
[<ffffffff8005d229>] tracesys+0x71/0xe0
[<ffffffff8005d28d>] tracesys+0xd5/0xe0
which means that the system is deadlocked.
This patch allows autofs to hold up normal processes whilst the daemon goes
ahead and does things to the dentry tree behind the automouter point without
risking a deadlock as almost no locks are held in d_manage() and none in
d_automount().
Signed-off-by: David Howells <dhowells@redhat.com>
Was-Acked-by: Ian Kent <raven@themaw.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-01-14 21:45:26 +03:00
|
|
|
int (*d_manage)(struct dentry *, bool);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2011-01-07 09:49:57 +03:00
|
|
|
rename_lock ->d_lock may block rcu-walk
|
|
|
|
d_revalidate: no no yes (ref-walk) maybe
|
2013-02-20 20:19:05 +04:00
|
|
|
d_weak_revalidate:no no yes no
|
2011-01-07 09:49:57 +03:00
|
|
|
d_hash no no no maybe
|
|
|
|
d_compare: yes no no maybe
|
|
|
|
d_delete: no yes no no
|
|
|
|
d_release: no no yes no
|
2011-10-28 21:02:42 +04:00
|
|
|
d_prune: no yes no no
|
2011-01-07 09:49:57 +03:00
|
|
|
d_iput: no no yes no
|
|
|
|
d_dname: no no no no
|
Add a dentry op to handle automounting rather than abusing follow_link()
Add a dentry op (d_automount) to handle automounting directories rather than
abusing the follow_link() inode operation. The operation is keyed off a new
dentry flag (DCACHE_NEED_AUTOMOUNT).
This also makes it easier to add an AT_ flag to suppress terminal segment
automount during pathwalk and removes the need for the kludge code in the
pathwalk algorithm to handle directories with follow_link() semantics.
The ->d_automount() dentry operation:
struct vfsmount *(*d_automount)(struct path *mountpoint);
takes a pointer to the directory to be mounted upon, which is expected to
provide sufficient data to determine what should be mounted. If successful, it
should return the vfsmount struct it creates (which it should also have added
to the namespace using do_add_mount() or similar). If there's a collision with
another automount attempt, NULL should be returned. If the directory specified
by the parameter should be used directly rather than being mounted upon,
-EISDIR should be returned. In any other case, an error code should be
returned.
The ->d_automount() operation is called with no locks held and may sleep. At
this point the pathwalk algorithm will be in ref-walk mode.
Within fs/namei.c itself, a new pathwalk subroutine (follow_automount()) is
added to handle mountpoints. It will return -EREMOTE if the automount flag was
set, but no d_automount() op was supplied, -ELOOP if we've encountered too many
symlinks or mountpoints, -EISDIR if the walk point should be used without
mounting and 0 if successful. The path will be updated to point to the mounted
filesystem if a successful automount took place.
__follow_mount() is replaced by follow_managed() which is more generic
(especially with the patch that adds ->d_manage()). This handles transits from
directories during pathwalk, including automounting and skipping over
mountpoints (and holding processes with the next patch).
__follow_mount_rcu() will jump out of RCU-walk mode if it encounters an
automount point with nothing mounted on it.
follow_dotdot*() does not handle automounts as you don't want to trigger them
whilst following "..".
I've also extracted the mount/don't-mount logic from autofs4 and included it
here. It makes the mount go ahead anyway if someone calls open() or creat(),
tries to traverse the directory, tries to chdir/chroot/etc. into the directory,
or sticks a '/' on the end of the pathname. If they do a stat(), however,
they'll only trigger the automount if they didn't also say O_NOFOLLOW.
I've also added an inode flag (S_AUTOMOUNT) so that filesystems can mark their
inodes as automount points. This flag is automatically propagated to the
dentry as DCACHE_NEED_AUTOMOUNT by __d_instantiate(). This saves NFS and could
save AFS a private flag bit apiece, but is not strictly necessary. It would be
preferable to do the propagation in d_set_d_op(), but that doesn't normally
have access to the inode.
[AV: fixed breakage in case if __follow_mount_rcu() fails and nameidata_drop_rcu()
succeeds in RCU case of do_lookup(); we need to fall through to non-RCU case after
that, rather than just returning with ungrabbed *path]
Signed-off-by: David Howells <dhowells@redhat.com>
Was-Acked-by: Ian Kent <raven@themaw.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-01-14 21:45:21 +03:00
|
|
|
d_automount: no no yes no
|
2011-01-14 21:46:51 +03:00
|
|
|
d_manage: no no yes (ref-walk) maybe
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
--------------------------- inode_operations ---------------------------
|
|
|
|
prototypes:
|
2012-06-11 02:05:36 +04:00
|
|
|
int (*create) (struct inode *,struct dentry *,umode_t, bool);
|
2012-06-11 01:13:09 +04:00
|
|
|
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*link) (struct dentry *,struct inode *,struct dentry *);
|
|
|
|
int (*unlink) (struct inode *,struct dentry *);
|
|
|
|
int (*symlink) (struct inode *,struct dentry *,const char *);
|
2011-07-26 09:41:39 +04:00
|
|
|
int (*mkdir) (struct inode *,struct dentry *,umode_t);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*rmdir) (struct inode *,struct dentry *);
|
2011-07-26 09:52:52 +04:00
|
|
|
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*rename) (struct inode *, struct dentry *,
|
|
|
|
struct inode *, struct dentry *);
|
2014-04-01 19:08:42 +04:00
|
|
|
int (*rename2) (struct inode *, struct dentry *,
|
|
|
|
struct inode *, struct dentry *, unsigned int);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*readlink) (struct dentry *, char __user *,int);
|
2015-05-02 20:37:52 +03:00
|
|
|
const char *(*follow_link) (struct dentry *, void **);
|
2015-05-07 18:14:26 +03:00
|
|
|
void (*put_link) (struct inode *, void *);
|
2005-04-17 02:20:36 +04:00
|
|
|
void (*truncate) (struct inode *);
|
2011-01-07 09:49:58 +03:00
|
|
|
int (*permission) (struct inode *, int, unsigned int);
|
2011-07-23 19:37:31 +04:00
|
|
|
int (*get_acl)(struct inode *, int);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*setattr) (struct dentry *, struct iattr *);
|
|
|
|
int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
|
|
|
|
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
|
|
|
|
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
|
|
|
|
ssize_t (*listxattr) (struct dentry *, char *, size_t);
|
|
|
|
int (*removexattr) (struct dentry *, const char *);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len);
|
2012-03-26 17:59:21 +04:00
|
|
|
void (*update_time)(struct inode *, struct timespec *, int);
|
2012-06-22 12:39:14 +04:00
|
|
|
int (*atomic_open)(struct inode *, struct dentry *,
|
2012-06-22 12:40:19 +04:00
|
|
|
struct file *, unsigned open_flag,
|
2012-06-10 13:01:45 +04:00
|
|
|
umode_t create_mode, int *opened);
|
2013-07-03 16:19:23 +04:00
|
|
|
int (*tmpfile) (struct inode *, struct dentry *, umode_t);
|
2014-10-24 02:14:35 +04:00
|
|
|
int (*dentry_open)(struct dentry *, struct file *, const struct cred *);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2010-12-16 14:04:54 +03:00
|
|
|
all may block
|
2007-05-09 09:53:16 +04:00
|
|
|
i_mutex(inode)
|
2005-04-17 02:20:36 +04:00
|
|
|
lookup: yes
|
|
|
|
create: yes
|
|
|
|
link: yes (both)
|
|
|
|
mknod: yes
|
|
|
|
symlink: yes
|
|
|
|
mkdir: yes
|
|
|
|
unlink: yes (both)
|
|
|
|
rmdir: yes (both) (see below)
|
|
|
|
rename: yes (all) (see below)
|
2014-04-01 19:08:42 +04:00
|
|
|
rename2: yes (all) (see below)
|
2005-04-17 02:20:36 +04:00
|
|
|
readlink: no
|
|
|
|
follow_link: no
|
2010-12-16 14:04:54 +03:00
|
|
|
put_link: no
|
2005-04-17 02:20:36 +04:00
|
|
|
setattr: yes
|
2011-01-07 09:49:58 +03:00
|
|
|
permission: no (may not block if called in rcu-walk mode)
|
2011-07-23 19:37:31 +04:00
|
|
|
get_acl: no
|
2005-04-17 02:20:36 +04:00
|
|
|
getattr: no
|
|
|
|
setxattr: yes
|
|
|
|
getxattr: no
|
|
|
|
listxattr: no
|
|
|
|
removexattr: yes
|
2010-12-16 14:04:54 +03:00
|
|
|
fiemap: no
|
2012-03-26 17:59:21 +04:00
|
|
|
update_time: no
|
2012-06-05 17:10:17 +04:00
|
|
|
atomic_open: yes
|
2013-07-03 16:19:23 +04:00
|
|
|
tmpfile: no
|
2014-10-24 02:14:35 +04:00
|
|
|
dentry_open: no
|
2012-03-26 17:59:21 +04:00
|
|
|
|
2007-05-09 09:53:16 +04:00
|
|
|
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
|
2005-04-17 02:20:36 +04:00
|
|
|
victim.
|
2014-04-01 19:08:42 +04:00
|
|
|
cross-directory ->rename() and rename2() has (per-superblock)
|
|
|
|
->s_vfs_rename_sem.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
See Documentation/filesystems/directory-locking for more detailed discussion
|
|
|
|
of the locking scheme for directory operations.
|
|
|
|
|
|
|
|
--------------------------- super_operations ---------------------------
|
|
|
|
prototypes:
|
|
|
|
struct inode *(*alloc_inode)(struct super_block *sb);
|
|
|
|
void (*destroy_inode)(struct inode *);
|
2011-05-27 14:53:02 +04:00
|
|
|
void (*dirty_inode) (struct inode *, int flags);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*write_inode) (struct inode *, struct writeback_control *wbc);
|
2010-06-08 08:37:12 +04:00
|
|
|
int (*drop_inode) (struct inode *);
|
|
|
|
void (*evict_inode) (struct inode *);
|
2005-04-17 02:20:36 +04:00
|
|
|
void (*put_super) (struct super_block *);
|
|
|
|
int (*sync_fs)(struct super_block *sb, int wait);
|
2009-01-10 03:40:58 +03:00
|
|
|
int (*freeze_fs) (struct super_block *);
|
|
|
|
int (*unfreeze_fs) (struct super_block *);
|
2006-06-23 13:02:58 +04:00
|
|
|
int (*statfs) (struct dentry *, struct kstatfs *);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*remount_fs) (struct super_block *, int *, char *);
|
|
|
|
void (*umount_begin) (struct super_block *);
|
2011-12-09 06:32:45 +04:00
|
|
|
int (*show_options)(struct seq_file *, struct dentry *);
|
2005-04-17 02:20:36 +04:00
|
|
|
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
|
|
|
|
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2010-06-08 08:37:12 +04:00
|
|
|
All may block [not true, see below]
|
2009-06-19 22:22:37 +04:00
|
|
|
s_umount
|
|
|
|
alloc_inode:
|
|
|
|
destroy_inode:
|
2011-05-27 14:53:02 +04:00
|
|
|
dirty_inode:
|
2009-06-19 22:22:37 +04:00
|
|
|
write_inode:
|
2011-03-22 14:23:39 +03:00
|
|
|
drop_inode: !!!inode->i_lock!!!
|
2010-06-08 08:37:12 +04:00
|
|
|
evict_inode:
|
2009-06-19 22:22:37 +04:00
|
|
|
put_super: write
|
|
|
|
sync_fs: read
|
2012-06-12 18:20:48 +04:00
|
|
|
freeze_fs: write
|
|
|
|
unfreeze_fs: write
|
2010-06-08 08:37:12 +04:00
|
|
|
statfs: maybe(read) (see below)
|
|
|
|
remount_fs: write
|
2009-06-19 22:22:37 +04:00
|
|
|
umount_begin: no
|
|
|
|
show_options: no (namespace_sem)
|
|
|
|
quota_read: no (see below)
|
|
|
|
quota_write: no (see below)
|
2010-12-16 14:04:54 +03:00
|
|
|
bdev_try_to_free_page: no (see below)
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2010-06-08 08:37:12 +04:00
|
|
|
->statfs() has s_umount (shared) when called by ustat(2) (native or
|
|
|
|
compat), but that's an accident of bad API; s_umount is used to pin
|
|
|
|
the superblock down when we only have dev_t given us by userland to
|
|
|
|
identify the superblock. Everything else (statfs(), fstatfs(), etc.)
|
|
|
|
doesn't hold it when calling ->statfs() - superblock is pinned down
|
|
|
|
by resolving the pathname passed to syscall.
|
2005-04-17 02:20:36 +04:00
|
|
|
->quota_read() and ->quota_write() functions are both guaranteed to
|
|
|
|
be the only ones operating on the quota file by the quota code (via
|
|
|
|
dqio_sem) (unless an admin really wants to screw up something and
|
|
|
|
writes to quota files with quotas on). For other details about locking
|
|
|
|
see also dquot_operations section.
|
2010-12-16 14:04:54 +03:00
|
|
|
->bdev_try_to_free_page is called from the ->releasepage handler of
|
|
|
|
the block device inode. See there for more details.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
--------------------------- file_system_type ---------------------------
|
|
|
|
prototypes:
|
2010-12-16 14:04:54 +03:00
|
|
|
struct dentry *(*mount) (struct file_system_type *, int,
|
|
|
|
const char *, void *);
|
2005-04-17 02:20:36 +04:00
|
|
|
void (*kill_sb) (struct super_block *);
|
|
|
|
locking rules:
|
2010-12-16 14:04:54 +03:00
|
|
|
may block
|
|
|
|
mount yes
|
|
|
|
kill_sb yes
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2011-03-16 16:07:58 +03:00
|
|
|
->mount() returns ERR_PTR or the root dentry; its superblock should be locked
|
|
|
|
on return.
|
2005-04-17 02:20:36 +04:00
|
|
|
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
|
|
|
|
unlocks and drops the reference.
|
|
|
|
|
|
|
|
--------------------------- address_space_operations --------------------------
|
|
|
|
prototypes:
|
|
|
|
int (*writepage)(struct page *page, struct writeback_control *wbc);
|
|
|
|
int (*readpage)(struct file *, struct page *);
|
|
|
|
int (*sync_page)(struct page *);
|
|
|
|
int (*writepages)(struct address_space *, struct writeback_control *);
|
|
|
|
int (*set_page_dirty)(struct page *page);
|
|
|
|
int (*readpages)(struct file *filp, struct address_space *mapping,
|
|
|
|
struct list_head *pages, unsigned nr_pages);
|
2008-10-30 00:00:55 +03:00
|
|
|
int (*write_begin)(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
|
|
struct page **pagep, void **fsdata);
|
|
|
|
int (*write_end)(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
|
|
struct page *page, void *fsdata);
|
2005-04-17 02:20:36 +04:00
|
|
|
sector_t (*bmap)(struct address_space *, sector_t);
|
2013-05-22 07:17:23 +04:00
|
|
|
void (*invalidatepage) (struct page *, unsigned int, unsigned int);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*releasepage) (struct page *, int);
|
2010-12-01 21:35:19 +03:00
|
|
|
void (*freepage)(struct page *);
|
2015-03-16 14:33:53 +03:00
|
|
|
int (*direct_IO)(struct kiocb *, struct iov_iter *iter, loff_t offset);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*migratepage)(struct address_space *, struct page *, struct page *);
|
|
|
|
int (*launder_page)(struct page *);
|
2014-02-03 06:16:54 +04:00
|
|
|
int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*error_remove_page)(struct address_space *, struct page *);
|
2012-08-01 03:44:55 +04:00
|
|
|
int (*swap_activate)(struct file *);
|
|
|
|
int (*swap_deactivate)(struct file *);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2010-12-01 21:35:19 +03:00
|
|
|
All except set_page_dirty and freepage may block
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2010-12-16 14:04:54 +03:00
|
|
|
PageLocked(page) i_mutex
|
|
|
|
writepage: yes, unlocks (see below)
|
|
|
|
readpage: yes, unlocks
|
|
|
|
sync_page: maybe
|
|
|
|
writepages:
|
|
|
|
set_page_dirty no
|
|
|
|
readpages:
|
|
|
|
write_begin: locks the page yes
|
|
|
|
write_end: yes, unlocks yes
|
|
|
|
bmap:
|
|
|
|
invalidatepage: yes
|
|
|
|
releasepage: yes
|
|
|
|
freepage: yes
|
|
|
|
direct_IO:
|
|
|
|
migratepage: yes (both)
|
|
|
|
launder_page: yes
|
|
|
|
is_partially_uptodate: yes
|
|
|
|
error_remove_page: yes
|
2012-08-01 03:44:55 +04:00
|
|
|
swap_activate: no
|
|
|
|
swap_deactivate: no
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2008-10-30 00:00:55 +03:00
|
|
|
->write_begin(), ->write_end(), ->sync_page() and ->readpage()
|
2005-04-17 02:20:36 +04:00
|
|
|
may be called from the request handler (/dev/loop).
|
|
|
|
|
|
|
|
->readpage() unlocks the page, either synchronously or via I/O
|
|
|
|
completion.
|
|
|
|
|
|
|
|
->readpages() populates the pagecache with the passed pages and starts
|
|
|
|
I/O against them. They come unlocked upon I/O completion.
|
|
|
|
|
|
|
|
->writepage() is used for two purposes: for "memory cleansing" and for
|
|
|
|
"sync". These are quite different operations and the behaviour may differ
|
|
|
|
depending upon the mode.
|
|
|
|
|
|
|
|
If writepage is called for sync (wbc->sync_mode != WBC_SYNC_NONE) then
|
|
|
|
it *must* start I/O against the page, even if that would involve
|
|
|
|
blocking on in-progress I/O.
|
|
|
|
|
|
|
|
If writepage is called for memory cleansing (sync_mode ==
|
|
|
|
WBC_SYNC_NONE) then its role is to get as much writeout underway as
|
|
|
|
possible. So writepage should try to avoid blocking against
|
|
|
|
currently-in-progress I/O.
|
|
|
|
|
|
|
|
If the filesystem is not called for "sync" and it determines that it
|
|
|
|
would need to block against in-progress I/O to be able to start new I/O
|
|
|
|
against the page the filesystem should redirty the page with
|
|
|
|
redirty_page_for_writepage(), then unlock the page and return zero.
|
|
|
|
This may also be done to avoid internal deadlocks, but rarely.
|
|
|
|
|
2007-10-20 01:10:43 +04:00
|
|
|
If the filesystem is called for sync then it must wait on any
|
2005-04-17 02:20:36 +04:00
|
|
|
in-progress I/O and then start new I/O.
|
|
|
|
|
2005-05-01 19:58:37 +04:00
|
|
|
The filesystem should unlock the page synchronously, before returning to the
|
|
|
|
caller, unless ->writepage() returns special WRITEPAGE_ACTIVATE
|
|
|
|
value. WRITEPAGE_ACTIVATE means that page cannot really be written out
|
|
|
|
currently, and VM should stop calling ->writepage() on this page for some
|
|
|
|
time. VM does this by moving page to the head of the active list, hence the
|
|
|
|
name.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
Unless the filesystem is going to redirty_page_for_writepage(), unlock the page
|
|
|
|
and return zero, writepage *must* run set_page_writeback() against the page,
|
|
|
|
followed by unlocking it. Once set_page_writeback() has been run against the
|
|
|
|
page, write I/O can be submitted and the write I/O completion handler must run
|
|
|
|
end_page_writeback() once the I/O is complete. If no I/O is submitted, the
|
|
|
|
filesystem must run end_page_writeback() against the page before returning from
|
|
|
|
writepage.
|
|
|
|
|
|
|
|
That is: after 2.5.12, pages which are under writeout are *not* locked. Note,
|
|
|
|
if the filesystem needs the page to be locked during writeout, that is ok, too,
|
|
|
|
the page is allowed to be unlocked at any point in time between the calls to
|
|
|
|
set_page_writeback() and end_page_writeback().
|
|
|
|
|
|
|
|
Note, failure to run either redirty_page_for_writepage() or the combination of
|
|
|
|
set_page_writeback()/end_page_writeback() on a page submitted to writepage
|
|
|
|
will leave the page itself marked clean but it will be tagged as dirty in the
|
|
|
|
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
|
|
|
|
in the filesystem like having dirty inodes at umount and losing written data.
|
|
|
|
|
|
|
|
->sync_page() locking rules are not well-defined - usually it is called
|
|
|
|
with lock on page, but that is not guaranteed. Considering the currently
|
|
|
|
existing instances of this method ->sync_page() itself doesn't look
|
|
|
|
well-defined...
|
|
|
|
|
|
|
|
->writepages() is used for periodic writeback and for syscall-initiated
|
|
|
|
sync operations. The address_space should start I/O against at least
|
|
|
|
*nr_to_write pages. *nr_to_write must be decremented for each page which is
|
|
|
|
written. The address_space implementation may write more (or less) pages
|
|
|
|
than *nr_to_write asks for, but it should try to be reasonably close. If
|
|
|
|
nr_to_write is NULL, all dirty pages must be written.
|
|
|
|
|
|
|
|
writepages should _only_ write pages which are present on
|
|
|
|
mapping->io_pages.
|
|
|
|
|
|
|
|
->set_page_dirty() is called from various places in the kernel
|
|
|
|
when the target page is marked as needing writeback. It may be called
|
|
|
|
under spinlock (it cannot block) and is sometimes called with the page
|
|
|
|
not locked.
|
|
|
|
|
|
|
|
->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
|
2010-12-16 14:04:54 +03:00
|
|
|
filesystems and by the swapper. The latter will eventually go away. Please,
|
|
|
|
keep it that way and don't breed new callers.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
->invalidatepage() is called when the filesystem must attempt to drop
|
2013-05-22 07:17:23 +04:00
|
|
|
some or all of the buffers from the page when it is being truncated. It
|
|
|
|
returns zero on success. If ->invalidatepage is zero, the kernel uses
|
2005-04-17 02:20:36 +04:00
|
|
|
block_invalidatepage() instead.
|
|
|
|
|
|
|
|
->releasepage() is called when the kernel is about to try to drop the
|
|
|
|
buffers from the page in preparation for freeing it. It returns zero to
|
|
|
|
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
|
|
|
|
the kernel assumes that the fs has no private interest in the buffers.
|
|
|
|
|
2010-12-01 21:35:19 +03:00
|
|
|
->freepage() is called when the kernel is done dropping the page
|
|
|
|
from the page cache.
|
|
|
|
|
2007-01-11 10:15:39 +03:00
|
|
|
->launder_page() may be called prior to releasing a page if
|
|
|
|
it is still found to be dirty. It returns zero if the page was successfully
|
|
|
|
cleaned, or an error value if not. Note that in order to prevent the page
|
|
|
|
getting mapped back in and redirtied, it needs to be kept locked
|
|
|
|
across the entire operation.
|
|
|
|
|
2012-08-01 03:44:55 +04:00
|
|
|
->swap_activate will be called with a non-zero argument on
|
|
|
|
files backing (non block device backed) swapfiles. A return value
|
|
|
|
of zero indicates success, in which case this file can be used for
|
|
|
|
backing swapspace. The swapspace operations will be proxied to the
|
|
|
|
address space operations.
|
|
|
|
|
|
|
|
->swap_deactivate() will be called in the sys_swapoff()
|
|
|
|
path after ->swap_activate() returned success.
|
|
|
|
|
2005-04-17 02:20:36 +04:00
|
|
|
----------------------- file_lock_operations ------------------------------
|
|
|
|
prototypes:
|
|
|
|
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
|
|
|
|
void (*fl_release_private)(struct file_lock *);
|
|
|
|
|
|
|
|
|
|
|
|
locking rules:
|
2013-06-21 16:58:15 +04:00
|
|
|
inode->i_lock may block
|
2010-12-16 14:04:54 +03:00
|
|
|
fl_copy_lock: yes no
|
2014-08-12 18:38:07 +04:00
|
|
|
fl_release_private: maybe maybe[1]
|
|
|
|
|
|
|
|
[1]: ->fl_release_private for flock or POSIX locks is currently allowed
|
|
|
|
to block. Leases however can still be freed while the i_lock is held and
|
|
|
|
so fl_release_private called on a lease should not block.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
----------------------- lock_manager_operations ---------------------------
|
|
|
|
prototypes:
|
2011-07-21 04:21:59 +04:00
|
|
|
int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
|
2013-06-21 16:58:19 +04:00
|
|
|
unsigned long (*lm_owner_key)(struct file_lock *);
|
2011-07-21 04:21:59 +04:00
|
|
|
void (*lm_notify)(struct file_lock *); /* unblock callback */
|
|
|
|
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
|
|
|
|
void (*lm_break)(struct file_lock *); /* break_lease callback */
|
|
|
|
int (*lm_change)(struct file_lock **, int);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2013-06-21 16:58:15 +04:00
|
|
|
|
2013-06-21 16:58:20 +04:00
|
|
|
inode->i_lock blocked_lock_lock may block
|
|
|
|
lm_compare_owner: yes[1] maybe no
|
|
|
|
lm_owner_key yes[1] yes no
|
|
|
|
lm_notify: yes yes no
|
|
|
|
lm_grant: no no no
|
|
|
|
lm_break: yes no no
|
|
|
|
lm_change yes no no
|
2013-06-21 16:58:15 +04:00
|
|
|
|
2013-06-21 16:58:19 +04:00
|
|
|
[1]: ->lm_compare_owner and ->lm_owner_key are generally called with
|
|
|
|
*an* inode->i_lock held. It may not be the i_lock of the inode
|
|
|
|
associated with either file_lock argument! This is the case with deadlock
|
|
|
|
detection, since the code has to chase down the owners of locks that may
|
|
|
|
be entirely unrelated to the one on which the lock is being acquired.
|
2013-06-21 16:58:20 +04:00
|
|
|
For deadlock detection however, the blocked_lock_lock is also held. The
|
2013-06-21 16:58:19 +04:00
|
|
|
fact that these locks are held ensures that the file_locks do not
|
|
|
|
disappear out from under you while doing the comparison or generating an
|
|
|
|
owner key.
|
2010-12-16 14:04:54 +03:00
|
|
|
|
2005-04-17 02:20:36 +04:00
|
|
|
--------------------------- buffer_head -----------------------------------
|
|
|
|
prototypes:
|
|
|
|
void (*b_end_io)(struct buffer_head *bh, int uptodate);
|
|
|
|
|
|
|
|
locking rules:
|
|
|
|
called from interrupts. In other words, extreme care is needed here.
|
|
|
|
bh is locked, but that's all warranties we have here. Currently only RAID1,
|
|
|
|
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
|
|
|
|
call this method upon the IO completion.
|
|
|
|
|
|
|
|
--------------------------- block_device_operations -----------------------
|
|
|
|
prototypes:
|
2010-10-06 12:46:53 +04:00
|
|
|
int (*open) (struct block_device *, fmode_t);
|
|
|
|
int (*release) (struct gendisk *, fmode_t);
|
|
|
|
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
|
|
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
|
|
|
|
int (*direct_access) (struct block_device *, sector_t, void **, unsigned long *);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*media_changed) (struct gendisk *);
|
2010-10-06 12:46:53 +04:00
|
|
|
void (*unlock_native_capacity) (struct gendisk *);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*revalidate_disk) (struct gendisk *);
|
2010-10-06 12:46:53 +04:00
|
|
|
int (*getgeo)(struct block_device *, struct hd_geometry *);
|
|
|
|
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2010-12-16 14:04:54 +03:00
|
|
|
bd_mutex
|
|
|
|
open: yes
|
|
|
|
release: yes
|
|
|
|
ioctl: no
|
|
|
|
compat_ioctl: no
|
|
|
|
direct_access: no
|
|
|
|
media_changed: no
|
|
|
|
unlock_native_capacity: no
|
|
|
|
revalidate_disk: no
|
|
|
|
getgeo: no
|
|
|
|
swap_slot_free_notify: no (see below)
|
2010-10-06 12:46:53 +04:00
|
|
|
|
|
|
|
media_changed, unlock_native_capacity and revalidate_disk are called only from
|
|
|
|
check_disk_change().
|
|
|
|
|
|
|
|
swap_slot_free_notify is called with swap_lock and sometimes the page lock
|
|
|
|
held.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
|
|
|
|
--------------------------- file_operations -------------------------------
|
|
|
|
prototypes:
|
|
|
|
loff_t (*llseek) (struct file *, loff_t, int);
|
|
|
|
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
|
|
|
|
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
|
2014-02-12 03:37:41 +04:00
|
|
|
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
|
|
|
|
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
|
2013-05-23 05:44:23 +04:00
|
|
|
int (*iterate) (struct file *, struct dir_context *);
|
2005-04-17 02:20:36 +04:00
|
|
|
unsigned int (*poll) (struct file *, struct poll_table_struct *);
|
|
|
|
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
|
|
|
|
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
|
|
|
|
int (*mmap) (struct file *, struct vm_area_struct *);
|
|
|
|
int (*open) (struct inode *, struct file *);
|
|
|
|
int (*flush) (struct file *);
|
|
|
|
int (*release) (struct inode *, struct file *);
|
2011-07-17 04:44:56 +04:00
|
|
|
int (*fsync) (struct file *, loff_t start, loff_t end, int datasync);
|
2005-04-17 02:20:36 +04:00
|
|
|
int (*aio_fsync) (struct kiocb *, int datasync);
|
|
|
|
int (*fasync) (int, struct file *, int);
|
|
|
|
int (*lock) (struct file *, int, struct file_lock *);
|
|
|
|
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
|
|
|
|
loff_t *);
|
|
|
|
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
|
|
|
|
loff_t *);
|
|
|
|
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t,
|
|
|
|
void __user *);
|
|
|
|
ssize_t (*sendpage) (struct file *, struct page *, int, size_t,
|
|
|
|
loff_t *, int);
|
|
|
|
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
|
|
|
|
unsigned long, unsigned long, unsigned long);
|
|
|
|
int (*check_flags)(int);
|
2010-12-16 14:04:54 +03:00
|
|
|
int (*flock) (struct file *, int, struct file_lock *);
|
|
|
|
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,
|
|
|
|
size_t, unsigned int);
|
|
|
|
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
|
|
|
|
size_t, unsigned int);
|
2014-08-22 18:40:25 +04:00
|
|
|
int (*setlease)(struct file *, long, struct file_lock **, void **);
|
2011-01-14 15:07:43 +03:00
|
|
|
long (*fallocate)(struct file *, int, loff_t, loff_t);
|
2005-04-17 02:20:36 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
locking rules:
|
2014-09-01 15:12:07 +04:00
|
|
|
All may block.
|
2010-12-16 14:04:54 +03:00
|
|
|
|
2005-04-17 02:20:36 +04:00
|
|
|
->llseek() locking has moved from llseek to the individual llseek
|
|
|
|
implementations. If your fs is not using generic_file_llseek, you
|
|
|
|
need to acquire and release the appropriate locks in your ->llseek().
|
|
|
|
For many filesystems, it is probably safe to acquire the inode
|
2010-05-27 01:44:54 +04:00
|
|
|
mutex or just to use i_size_read() instead.
|
|
|
|
Note: this does not protect the file->f_pos against concurrent modifications
|
|
|
|
since this is something the userspace has to take care about.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2010-12-16 14:04:54 +03:00
|
|
|
->fasync() is responsible for maintaining the FASYNC bit in filp->f_flags.
|
|
|
|
Most instances call fasync_helper(), which does that maintenance, so it's
|
|
|
|
not normally something one needs to worry about. Return values > 0 will be
|
|
|
|
mapped to zero in the VFS layer.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
->readdir() and ->ioctl() on directories must be changed. Ideally we would
|
|
|
|
move ->readdir() to inode_operations and use a separate method for directory
|
|
|
|
->ioctl() or kill the latter completely. One of the problems is that for
|
|
|
|
anything that resembles union-mount we won't have a struct file for all
|
|
|
|
components. And there are other reasons why the current interface is a mess...
|
|
|
|
|
|
|
|
->read on directories probably must go away - we should just enforce -EISDIR
|
|
|
|
in sys_read() and friends.
|
|
|
|
|
2014-08-23 02:50:48 +04:00
|
|
|
->setlease operations should call generic_setlease() before or after setting
|
|
|
|
the lease within the individual filesystem to record the result of the
|
|
|
|
operation
|
|
|
|
|
2005-04-17 02:20:36 +04:00
|
|
|
--------------------------- dquot_operations -------------------------------
|
|
|
|
prototypes:
|
|
|
|
int (*write_dquot) (struct dquot *);
|
|
|
|
int (*acquire_dquot) (struct dquot *);
|
|
|
|
int (*release_dquot) (struct dquot *);
|
|
|
|
int (*mark_dirty) (struct dquot *);
|
|
|
|
int (*write_info) (struct super_block *, int);
|
|
|
|
|
|
|
|
These operations are intended to be more or less wrapping functions that ensure
|
|
|
|
a proper locking wrt the filesystem and call the generic quota operations.
|
|
|
|
|
|
|
|
What filesystem should expect from the generic quota functions:
|
|
|
|
|
|
|
|
FS recursion Held locks when called
|
|
|
|
write_dquot: yes dqonoff_sem or dqptr_sem
|
|
|
|
acquire_dquot: yes dqonoff_sem or dqptr_sem
|
|
|
|
release_dquot: yes dqonoff_sem or dqptr_sem
|
|
|
|
mark_dirty: no -
|
|
|
|
write_info: yes dqonoff_sem
|
|
|
|
|
|
|
|
FS recursion means calling ->quota_read() and ->quota_write() from superblock
|
|
|
|
operations.
|
|
|
|
|
|
|
|
More details about quota locking can be found in fs/dquot.c.
|
|
|
|
|
|
|
|
--------------------------- vm_operations_struct -----------------------------
|
|
|
|
prototypes:
|
|
|
|
void (*open)(struct vm_area_struct*);
|
|
|
|
void (*close)(struct vm_area_struct*);
|
2007-07-19 12:47:03 +04:00
|
|
|
int (*fault)(struct vm_area_struct*, struct vm_fault *);
|
2009-04-01 02:23:21 +04:00
|
|
|
int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);
|
2015-04-16 02:15:11 +03:00
|
|
|
int (*pfn_mkwrite)(struct vm_area_struct *, struct vm_fault *);
|
2008-07-24 08:27:05 +04:00
|
|
|
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
|
2005-04-17 02:20:36 +04:00
|
|
|
|
|
|
|
locking rules:
|
2010-12-16 14:04:54 +03:00
|
|
|
mmap_sem PageLocked(page)
|
|
|
|
open: yes
|
|
|
|
close: yes
|
|
|
|
fault: yes can return with page locked
|
mm: introduce vm_ops->map_pages()
Here's new version of faultaround patchset. It took a while to tune it
and collect performance data.
First patch adds new callback ->map_pages to vm_operations_struct.
->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from
"pgoff" till "max_pgoff". ->map_pages() is called with page table
locked and must not block. If it's not possible to reach a page without
blocking, filesystem should skip it. Filesystem should use do_set_pte()
to setup page table entry. Pointer to entry associated with offset
"pgoff" is passed in "pte" field in vm_fault structure. Pointers to
entries for other offsets should be calculated relative to "pte".
Currently VM use ->map_pages only on read page fault path. We try to
map FAULT_AROUND_PAGES a time. FAULT_AROUND_PAGES is 16 for now.
Performance data for different FAULT_AROUND_ORDER is below.
TODO:
- implement ->map_pages() for shmem/tmpfs;
- modify get_user_pages() to be able to use ->map_pages() and implement
mmap(MAP_POPULATE|MAP_NONBLOCK) on top.
=========================================================================
Tested on 4-socket machine (120 threads) with 128GiB of RAM.
Few real-world workloads. The sweet spot for FAULT_AROUND_ORDER here is
somewhere between 3 and 5. Let's say 4 :)
Linux build (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 283,301,572 247,151,987 212,215,789 204,772,882 199,568,944 194,703,779 193,381,485
time, seconds 151.227629483 153.920996480 151.356125472 150.863792049 150.879207877 151.150764954 151.450962358
Linux rebuild (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 5,396,854 4,148,444 2,855,286 2,577,282 2,361,957 2,169,573 2,112,643
time, seconds 27.404543757 27.559725591 27.030057426 26.855045126 26.678618635 26.974523490 26.761320095
Git test suite (make -j60 test)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 129,591,823 99,200,751 66,106,718 57,606,410 51,510,808 45,776,813 44,085,515
time, seconds 66.087215026 64.784546905 64.401156567 65.282708668 66.034016829 66.793780811 67.237810413
Two synthetic tests: access every word in file in sequential/random order.
It doesn't improve much after FAULT_AROUND_ORDER == 4.
Sequential access 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 4,195,437 2,098,275 525,068 262,251 131,170 32,856 8,282
time, seconds 7.250461742 6.461711074 5.493859139 5.488488147 5.707213983 5.898510832 5.109232856
8 threads
minor-faults 33,557,540 16,892,728 4,515,848 2,366,999 1,423,382 442,732 142,339
time, seconds 16.649304881 9.312555263 6.612490639 6.394316732 6.669827501 6.75078944 6.371900528
32 threads
minor-faults 134,228,222 67,526,810 17,725,386 9,716,537 4,763,731 1,668,921 537,200
time, seconds 49.164430543 29.712060103 12.938649729 10.175151004 11.840094583 9.594081325 9.928461797
60 threads
minor-faults 251,687,988 126,146,952 32,919,406 18,208,804 10,458,947 2,733,907 928,217
time, seconds 86.260656897 49.626551828 22.335007632 17.608243696 16.523119035 16.339489186 16.326390902
120 threads
minor-faults 503,352,863 252,939,677 67,039,168 35,191,827 19,170,091 4,688,357 1,471,862
time, seconds 124.589206333 79.757867787 39.508707872 32.167281632 29.972989292 28.729834575 28.042251622
Random access 1GiB file
1 thread
minor-faults 262,636 132,743 34,369 17,299 8,527 3,451 1,222
time, seconds 15.351890914 16.613802482 16.569227308 15.179220992 16.557356122 16.578247824 15.365266994
8 threads
minor-faults 2,098,948 1,061,871 273,690 154,501 87,110 25,663 7,384
time, seconds 15.040026343 15.096933500 14.474757288 14.289129964 14.411537468 14.296316837 14.395635804
32 threads
minor-faults 8,390,734 4,231,023 1,054,432 528,847 269,242 97,746 26,881
time, seconds 20.430433109 21.585235358 22.115062928 14.872878951 14.880856305 14.883370649 14.821261690
60 threads
minor-faults 15,733,258 7,892,809 1,973,393 988,266 594,789 164,994 51,691
time, seconds 26.577302548 25.692397770 18.728863715 20.153026398 21.619101933 17.745086260 17.613215273
120 threads
minor-faults 31,471,111 15,816,616 3,959,209 1,978,685 1,008,299 264,635 96,010
time, seconds 41.835322703 40.459786095 36.085306105 35.313894834 35.814445675 36.552633793 34.289210594
Touch only one page in page table in 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 8,372 8,324 8,270 8,260 8,249 8,239 8,237
time, seconds 0.039892712 0.045369149 0.051846126 0.063681685 0.079095975 0.17652406 0.541213386
8 threads
minor-faults 65,731 65,681 65,628 65,620 65,608 65,599 65,596
time, seconds 0.124159196 0.488600638 0.156854426 0.191901957 0.242631486 0.543569456 1.677303984
32 threads
minor-faults 262,388 262,341 262,285 262,276 262,266 262,257 263,183
time, seconds 0.452421421 0.488600638 0.565020946 0.648229739 0.789850823 1.651584361 5.000361559
60 threads
minor-faults 491,822 491,792 491,723 491,711 491,701 491,691 491,825
time, seconds 0.763288616 0.869620515 0.980727360 1.161732354 1.466915814 3.04041448 9.308612938
120 threads
minor-faults 983,466 983,655 983,366 983,372 983,363 984,083 984,164
time, seconds 1.595846553 1.667902182 2.008959376 2.425380942 2.941368804 5.977807890 18.401846125
This patch (of 2):
Introduce new vm_ops callback ->map_pages() and uses it for mapping easy
accessible pages around fault address.
On read page fault, if filesystem provides ->map_pages(), we try to map up
to FAULT_AROUND_PAGES pages around page fault address in hope to reduce
number of minor page faults.
We call ->map_pages first and use ->fault() as fallback if page by the
offset is not ready to be mapped (cold page cache or something).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 02:37:18 +04:00
|
|
|
map_pages: yes
|
2010-12-16 14:04:54 +03:00
|
|
|
page_mkwrite: yes can return with page locked
|
2015-04-16 02:15:11 +03:00
|
|
|
pfn_mkwrite: yes
|
2010-12-16 14:04:54 +03:00
|
|
|
access: yes
|
2007-07-19 12:47:01 +04:00
|
|
|
|
mm: close page_mkwrite races
Change page_mkwrite to allow implementations to return with the page
locked, and also change it's callers (in page fault paths) to hold the
lock until the page is marked dirty. This allows the filesystem to have
full control of page dirtying events coming from the VM.
Rather than simply hold the page locked over the page_mkwrite call, we
call page_mkwrite with the page unlocked and allow callers to return with
it locked, so filesystems can avoid LOR conditions with page lock.
The problem with the current scheme is this: a filesystem that wants to
associate some metadata with a page as long as the page is dirty, will
perform this manipulation in its ->page_mkwrite. It currently then must
return with the page unlocked and may not hold any other locks (according
to existing page_mkwrite convention).
In this window, the VM could write out the page, clearing page-dirty. The
filesystem has no good way to detect that a dirty pte is about to be
attached, so it will happily write out the page, at which point, the
filesystem may manipulate the metadata to reflect that the page is no
longer dirty.
It is not always possible to perform the required metadata manipulation in
->set_page_dirty, because that function cannot block or fail. The
filesystem may need to allocate some data structure, for example.
And the VM cannot mark the pte dirty before page_mkwrite, because
page_mkwrite is allowed to fail, so we must not allow any window where the
page could be written to if page_mkwrite does fail.
This solution of holding the page locked over the 3 critical operations
(page_mkwrite, setting the pte dirty, and finally setting the page dirty)
closes out races nicely, preventing page cleaning for writeout being
initiated in that window. This provides the filesystem with a strong
synchronisation against the VM here.
- Sage needs this race closed for ceph filesystem.
- Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913).
- I need it for fsblock.
- I suspect other filesystems may need it too (eg. btrfs).
- I have converted buffer.c to the new locking. Even simple block allocation
under dirty pages might be susceptible to i_size changing under partial page
at the end of file (we also have a buffer.c-side problem here, but it cannot
be fixed properly without this patch).
- Other filesystems (eg. NFS, maybe btrfs) will need to change their
page_mkwrite functions themselves.
[ This also moves page_mkwrite another step closer to fault, which should
eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a
filesystem calldown and page lock/unlock cycle in __do_fault. ]
[akpm@linux-foundation.org: fix derefs of NULL ->mapping]
Cc: Sage Weil <sage@newdream.net>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-01 02:08:16 +04:00
|
|
|
->fault() is called when a previously not present pte is about
|
|
|
|
to be faulted in. The filesystem must find and return the page associated
|
|
|
|
with the passed in "pgoff" in the vm_fault structure. If it is possible that
|
|
|
|
the page may be truncated and/or invalidated, then the filesystem must lock
|
|
|
|
the page, then ensure it is not already truncated (the page lock will block
|
|
|
|
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
|
|
|
|
locked. The VM will unlock the page.
|
|
|
|
|
mm: introduce vm_ops->map_pages()
Here's new version of faultaround patchset. It took a while to tune it
and collect performance data.
First patch adds new callback ->map_pages to vm_operations_struct.
->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from
"pgoff" till "max_pgoff". ->map_pages() is called with page table
locked and must not block. If it's not possible to reach a page without
blocking, filesystem should skip it. Filesystem should use do_set_pte()
to setup page table entry. Pointer to entry associated with offset
"pgoff" is passed in "pte" field in vm_fault structure. Pointers to
entries for other offsets should be calculated relative to "pte".
Currently VM use ->map_pages only on read page fault path. We try to
map FAULT_AROUND_PAGES a time. FAULT_AROUND_PAGES is 16 for now.
Performance data for different FAULT_AROUND_ORDER is below.
TODO:
- implement ->map_pages() for shmem/tmpfs;
- modify get_user_pages() to be able to use ->map_pages() and implement
mmap(MAP_POPULATE|MAP_NONBLOCK) on top.
=========================================================================
Tested on 4-socket machine (120 threads) with 128GiB of RAM.
Few real-world workloads. The sweet spot for FAULT_AROUND_ORDER here is
somewhere between 3 and 5. Let's say 4 :)
Linux build (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 283,301,572 247,151,987 212,215,789 204,772,882 199,568,944 194,703,779 193,381,485
time, seconds 151.227629483 153.920996480 151.356125472 150.863792049 150.879207877 151.150764954 151.450962358
Linux rebuild (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 5,396,854 4,148,444 2,855,286 2,577,282 2,361,957 2,169,573 2,112,643
time, seconds 27.404543757 27.559725591 27.030057426 26.855045126 26.678618635 26.974523490 26.761320095
Git test suite (make -j60 test)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 129,591,823 99,200,751 66,106,718 57,606,410 51,510,808 45,776,813 44,085,515
time, seconds 66.087215026 64.784546905 64.401156567 65.282708668 66.034016829 66.793780811 67.237810413
Two synthetic tests: access every word in file in sequential/random order.
It doesn't improve much after FAULT_AROUND_ORDER == 4.
Sequential access 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 4,195,437 2,098,275 525,068 262,251 131,170 32,856 8,282
time, seconds 7.250461742 6.461711074 5.493859139 5.488488147 5.707213983 5.898510832 5.109232856
8 threads
minor-faults 33,557,540 16,892,728 4,515,848 2,366,999 1,423,382 442,732 142,339
time, seconds 16.649304881 9.312555263 6.612490639 6.394316732 6.669827501 6.75078944 6.371900528
32 threads
minor-faults 134,228,222 67,526,810 17,725,386 9,716,537 4,763,731 1,668,921 537,200
time, seconds 49.164430543 29.712060103 12.938649729 10.175151004 11.840094583 9.594081325 9.928461797
60 threads
minor-faults 251,687,988 126,146,952 32,919,406 18,208,804 10,458,947 2,733,907 928,217
time, seconds 86.260656897 49.626551828 22.335007632 17.608243696 16.523119035 16.339489186 16.326390902
120 threads
minor-faults 503,352,863 252,939,677 67,039,168 35,191,827 19,170,091 4,688,357 1,471,862
time, seconds 124.589206333 79.757867787 39.508707872 32.167281632 29.972989292 28.729834575 28.042251622
Random access 1GiB file
1 thread
minor-faults 262,636 132,743 34,369 17,299 8,527 3,451 1,222
time, seconds 15.351890914 16.613802482 16.569227308 15.179220992 16.557356122 16.578247824 15.365266994
8 threads
minor-faults 2,098,948 1,061,871 273,690 154,501 87,110 25,663 7,384
time, seconds 15.040026343 15.096933500 14.474757288 14.289129964 14.411537468 14.296316837 14.395635804
32 threads
minor-faults 8,390,734 4,231,023 1,054,432 528,847 269,242 97,746 26,881
time, seconds 20.430433109 21.585235358 22.115062928 14.872878951 14.880856305 14.883370649 14.821261690
60 threads
minor-faults 15,733,258 7,892,809 1,973,393 988,266 594,789 164,994 51,691
time, seconds 26.577302548 25.692397770 18.728863715 20.153026398 21.619101933 17.745086260 17.613215273
120 threads
minor-faults 31,471,111 15,816,616 3,959,209 1,978,685 1,008,299 264,635 96,010
time, seconds 41.835322703 40.459786095 36.085306105 35.313894834 35.814445675 36.552633793 34.289210594
Touch only one page in page table in 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 8,372 8,324 8,270 8,260 8,249 8,239 8,237
time, seconds 0.039892712 0.045369149 0.051846126 0.063681685 0.079095975 0.17652406 0.541213386
8 threads
minor-faults 65,731 65,681 65,628 65,620 65,608 65,599 65,596
time, seconds 0.124159196 0.488600638 0.156854426 0.191901957 0.242631486 0.543569456 1.677303984
32 threads
minor-faults 262,388 262,341 262,285 262,276 262,266 262,257 263,183
time, seconds 0.452421421 0.488600638 0.565020946 0.648229739 0.789850823 1.651584361 5.000361559
60 threads
minor-faults 491,822 491,792 491,723 491,711 491,701 491,691 491,825
time, seconds 0.763288616 0.869620515 0.980727360 1.161732354 1.466915814 3.04041448 9.308612938
120 threads
minor-faults 983,466 983,655 983,366 983,372 983,363 984,083 984,164
time, seconds 1.595846553 1.667902182 2.008959376 2.425380942 2.941368804 5.977807890 18.401846125
This patch (of 2):
Introduce new vm_ops callback ->map_pages() and uses it for mapping easy
accessible pages around fault address.
On read page fault, if filesystem provides ->map_pages(), we try to map up
to FAULT_AROUND_PAGES pages around page fault address in hope to reduce
number of minor page faults.
We call ->map_pages first and use ->fault() as fallback if page by the
offset is not ready to be mapped (cold page cache or something).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 02:37:18 +04:00
|
|
|
->map_pages() is called when VM asks to map easy accessible pages.
|
|
|
|
Filesystem should find and map pages associated with offsets from "pgoff"
|
|
|
|
till "max_pgoff". ->map_pages() is called with page table locked and must
|
|
|
|
not block. If it's not possible to reach a page without blocking,
|
|
|
|
filesystem should skip it. Filesystem should use do_set_pte() to setup
|
|
|
|
page table entry. Pointer to entry associated with offset "pgoff" is
|
|
|
|
passed in "pte" field in vm_fault structure. Pointers to entries for other
|
|
|
|
offsets should be calculated relative to "pte".
|
|
|
|
|
mm: close page_mkwrite races
Change page_mkwrite to allow implementations to return with the page
locked, and also change it's callers (in page fault paths) to hold the
lock until the page is marked dirty. This allows the filesystem to have
full control of page dirtying events coming from the VM.
Rather than simply hold the page locked over the page_mkwrite call, we
call page_mkwrite with the page unlocked and allow callers to return with
it locked, so filesystems can avoid LOR conditions with page lock.
The problem with the current scheme is this: a filesystem that wants to
associate some metadata with a page as long as the page is dirty, will
perform this manipulation in its ->page_mkwrite. It currently then must
return with the page unlocked and may not hold any other locks (according
to existing page_mkwrite convention).
In this window, the VM could write out the page, clearing page-dirty. The
filesystem has no good way to detect that a dirty pte is about to be
attached, so it will happily write out the page, at which point, the
filesystem may manipulate the metadata to reflect that the page is no
longer dirty.
It is not always possible to perform the required metadata manipulation in
->set_page_dirty, because that function cannot block or fail. The
filesystem may need to allocate some data structure, for example.
And the VM cannot mark the pte dirty before page_mkwrite, because
page_mkwrite is allowed to fail, so we must not allow any window where the
page could be written to if page_mkwrite does fail.
This solution of holding the page locked over the 3 critical operations
(page_mkwrite, setting the pte dirty, and finally setting the page dirty)
closes out races nicely, preventing page cleaning for writeout being
initiated in that window. This provides the filesystem with a strong
synchronisation against the VM here.
- Sage needs this race closed for ceph filesystem.
- Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913).
- I need it for fsblock.
- I suspect other filesystems may need it too (eg. btrfs).
- I have converted buffer.c to the new locking. Even simple block allocation
under dirty pages might be susceptible to i_size changing under partial page
at the end of file (we also have a buffer.c-side problem here, but it cannot
be fixed properly without this patch).
- Other filesystems (eg. NFS, maybe btrfs) will need to change their
page_mkwrite functions themselves.
[ This also moves page_mkwrite another step closer to fault, which should
eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a
filesystem calldown and page lock/unlock cycle in __do_fault. ]
[akpm@linux-foundation.org: fix derefs of NULL ->mapping]
Cc: Sage Weil <sage@newdream.net>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-01 02:08:16 +04:00
|
|
|
->page_mkwrite() is called when a previously read-only pte is
|
|
|
|
about to become writeable. The filesystem again must ensure that there are
|
|
|
|
no truncate/invalidate races, and then return with the page locked. If
|
|
|
|
the page has been truncated, the filesystem should not look up a new page
|
|
|
|
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
|
|
|
|
will cause the VM to retry the fault.
|
2005-04-17 02:20:36 +04:00
|
|
|
|
2015-04-16 02:15:11 +03:00
|
|
|
->pfn_mkwrite() is the same as page_mkwrite but when the pte is
|
|
|
|
VM_PFNMAP or VM_MIXEDMAP with a page-less entry. Expected return is
|
|
|
|
VM_FAULT_NOPAGE. Or one of the VM_FAULT_ERROR types. The default behavior
|
|
|
|
after this call is to make the pte read-write, unless pfn_mkwrite returns
|
|
|
|
an error.
|
|
|
|
|
2008-07-24 08:27:05 +04:00
|
|
|
->access() is called when get_user_pages() fails in
|
2013-12-05 23:34:05 +04:00
|
|
|
access_process_vm(), typically used to debug a process through
|
2008-07-24 08:27:05 +04:00
|
|
|
/proc/pid/mem or ptrace. This function is needed only for
|
|
|
|
VM_IO | VM_PFNMAP VMAs.
|
|
|
|
|
2005-04-17 02:20:36 +04:00
|
|
|
================================================================================
|
|
|
|
Dubious stuff
|
|
|
|
|
|
|
|
(if you break something or notice that it is broken and do not fix it yourself
|
|
|
|
- at least put it here)
|