WSL2-Linux-Kernel/drivers/hwtracing/coresight/coresight-tmc-etr.c

1764 строки
48 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2016 Linaro Limited. All rights reserved.
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/atomic.h>
#include <linux/coresight.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
2018-07-11 22:40:20 +03:00
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "coresight-catu.h"
#include "coresight-etm-perf.h"
#include "coresight-priv.h"
#include "coresight-tmc.h"
struct etr_flat_buf {
struct device *dev;
dma_addr_t daddr;
void *vaddr;
size_t size;
};
/*
* etr_perf_buffer - Perf buffer used for ETR
* @drvdata - The ETR drvdaga this buffer has been allocated for.
* @etr_buf - Actual buffer used by the ETR
* @pid - The PID this etr_perf_buffer belongs to.
* @snaphost - Perf session mode
* @head - handle->head at the beginning of the session.
* @nr_pages - Number of pages in the ring buffer.
* @pages - Array of Pages in the ring buffer.
*/
struct etr_perf_buffer {
struct tmc_drvdata *drvdata;
struct etr_buf *etr_buf;
pid_t pid;
bool snapshot;
unsigned long head;
int nr_pages;
void **pages;
};
/* Convert the perf index to an offset within the ETR buffer */
#define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
/* Lower limit for ETR hardware buffer */
#define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
/*
* The TMC ETR SG has a page size of 4K. The SG table contains pointers
* to 4KB buffers. However, the OS may use a PAGE_SIZE different from
* 4K (i.e, 16KB or 64KB). This implies that a single OS page could
* contain more than one SG buffer and tables.
*
* A table entry has the following format:
*
* ---Bit31------------Bit4-------Bit1-----Bit0--
* | Address[39:12] | SBZ | Entry Type |
* ----------------------------------------------
*
* Address: Bits [39:12] of a physical page address. Bits [11:0] are
* always zero.
*
* Entry type:
* b00 - Reserved.
* b01 - Last entry in the tables, points to 4K page buffer.
* b10 - Normal entry, points to 4K page buffer.
* b11 - Link. The address points to the base of next table.
*/
typedef u32 sgte_t;
#define ETR_SG_PAGE_SHIFT 12
#define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
#define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
#define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_ET_MASK 0x3
#define ETR_SG_ET_LAST 0x1
#define ETR_SG_ET_NORMAL 0x2
#define ETR_SG_ET_LINK 0x3
#define ETR_SG_ADDR_SHIFT 4
#define ETR_SG_ENTRY(addr, type) \
(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
(type & ETR_SG_ET_MASK))
#define ETR_SG_ADDR(entry) \
(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
#define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
/*
* struct etr_sg_table : ETR SG Table
* @sg_table: Generic SG Table holding the data/table pages.
* @hwaddr: hwaddress used by the TMC, which is the base
* address of the table.
*/
struct etr_sg_table {
struct tmc_sg_table *sg_table;
dma_addr_t hwaddr;
};
/*
* tmc_etr_sg_table_entries: Total number of table entries required to map
* @nr_pages system pages.
*
* We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
* Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
* with the last entry pointing to another page of table entries.
* If we spill over to a new page for mapping 1 entry, we could as
* well replace the link entry of the previous page with the last entry.
*/
static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)
{
unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
/*
* If we spill over to a new page for 1 entry, we could as well
* make it the LAST entry in the previous page, skipping the Link
* address.
*/
if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
nr_sglinks--;
return nr_sgpages + nr_sglinks;
}
2018-07-11 22:40:20 +03:00
/*
* tmc_pages_get_offset: Go through all the pages in the tmc_pages
* and map the device address @addr to an offset within the virtual
* contiguous buffer.
*/
static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
{
int i;
dma_addr_t page_start;
for (i = 0; i < tmc_pages->nr_pages; i++) {
page_start = tmc_pages->daddrs[i];
if (addr >= page_start && addr < (page_start + PAGE_SIZE))
return i * PAGE_SIZE + (addr - page_start);
}
return -EINVAL;
}
/*
* tmc_pages_free : Unmap and free the pages used by tmc_pages.
* If the pages were not allocated in tmc_pages_alloc(), we would
* simply drop the refcount.
*/
static void tmc_pages_free(struct tmc_pages *tmc_pages,
struct device *dev, enum dma_data_direction dir)
{
int i;
struct device *real_dev = dev->parent;
2018-07-11 22:40:20 +03:00
for (i = 0; i < tmc_pages->nr_pages; i++) {
if (tmc_pages->daddrs && tmc_pages->daddrs[i])
dma_unmap_page(real_dev, tmc_pages->daddrs[i],
2018-07-11 22:40:20 +03:00
PAGE_SIZE, dir);
if (tmc_pages->pages && tmc_pages->pages[i])
__free_page(tmc_pages->pages[i]);
}
kfree(tmc_pages->pages);
kfree(tmc_pages->daddrs);
tmc_pages->pages = NULL;
tmc_pages->daddrs = NULL;
tmc_pages->nr_pages = 0;
}
/*
* tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
* If @pages is not NULL, the list of page virtual addresses are
* used as the data pages. The pages are then dma_map'ed for @dev
* with dma_direction @dir.
*
* Returns 0 upon success, else the error number.
*/
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
struct device *dev, int node,
enum dma_data_direction dir, void **pages)
{
int i, nr_pages;
dma_addr_t paddr;
struct page *page;
struct device *real_dev = dev->parent;
2018-07-11 22:40:20 +03:00
nr_pages = tmc_pages->nr_pages;
tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
GFP_KERNEL);
if (!tmc_pages->daddrs)
return -ENOMEM;
tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
GFP_KERNEL);
if (!tmc_pages->pages) {
kfree(tmc_pages->daddrs);
tmc_pages->daddrs = NULL;
return -ENOMEM;
}
for (i = 0; i < nr_pages; i++) {
if (pages && pages[i]) {
page = virt_to_page(pages[i]);
/* Hold a refcount on the page */
get_page(page);
} else {
page = alloc_pages_node(node,
GFP_KERNEL | __GFP_ZERO, 0);
if (!page)
goto err;
2018-07-11 22:40:20 +03:00
}
paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
if (dma_mapping_error(real_dev, paddr))
2018-07-11 22:40:20 +03:00
goto err;
tmc_pages->daddrs[i] = paddr;
tmc_pages->pages[i] = page;
}
return 0;
err:
tmc_pages_free(tmc_pages, dev, dir);
return -ENOMEM;
}
static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
{
return tmc_pages_get_offset(&sg_table->data_pages, addr);
}
static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
{
if (sg_table->table_vaddr)
vunmap(sg_table->table_vaddr);
tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
}
static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
{
if (sg_table->data_vaddr)
vunmap(sg_table->data_vaddr);
tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
}
void tmc_free_sg_table(struct tmc_sg_table *sg_table)
{
tmc_free_table_pages(sg_table);
tmc_free_data_pages(sg_table);
}
EXPORT_SYMBOL_GPL(tmc_free_sg_table);
2018-07-11 22:40:20 +03:00
/*
* Alloc pages for the table. Since this will be used by the device,
* allocate the pages closer to the device (i.e, dev_to_node(dev)
* rather than the CPU node).
*/
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
{
int rc;
struct tmc_pages *table_pages = &sg_table->table_pages;
rc = tmc_pages_alloc(table_pages, sg_table->dev,
dev_to_node(sg_table->dev),
DMA_TO_DEVICE, NULL);
if (rc)
return rc;
sg_table->table_vaddr = vmap(table_pages->pages,
table_pages->nr_pages,
VM_MAP,
PAGE_KERNEL);
if (!sg_table->table_vaddr)
rc = -ENOMEM;
else
sg_table->table_daddr = table_pages->daddrs[0];
return rc;
}
static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
{
int rc;
/* Allocate data pages on the node requested by the caller */
rc = tmc_pages_alloc(&sg_table->data_pages,
sg_table->dev, sg_table->node,
DMA_FROM_DEVICE, pages);
if (!rc) {
sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
sg_table->data_pages.nr_pages,
VM_MAP,
PAGE_KERNEL);
if (!sg_table->data_vaddr)
rc = -ENOMEM;
}
return rc;
}
/*
* tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
* and data buffers. TMC writes to the data buffers and reads from the SG
* Table pages.
*
* @dev - Coresight device to which page should be DMA mapped.
2018-07-11 22:40:20 +03:00
* @node - Numa node for mem allocations
* @nr_tpages - Number of pages for the table entries.
* @nr_dpages - Number of pages for Data buffer.
* @pages - Optional list of virtual address of pages.
*/
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
int node,
int nr_tpages,
int nr_dpages,
void **pages)
{
long rc;
struct tmc_sg_table *sg_table;
sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
if (!sg_table)
return ERR_PTR(-ENOMEM);
sg_table->data_pages.nr_pages = nr_dpages;
sg_table->table_pages.nr_pages = nr_tpages;
sg_table->node = node;
sg_table->dev = dev;
rc = tmc_alloc_data_pages(sg_table, pages);
if (!rc)
rc = tmc_alloc_table_pages(sg_table);
if (rc) {
tmc_free_sg_table(sg_table);
kfree(sg_table);
return ERR_PTR(rc);
}
return sg_table;
}
EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
2018-07-11 22:40:20 +03:00
/*
* tmc_sg_table_sync_data_range: Sync the data buffer written
* by the device from @offset upto a @size bytes.
*/
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
u64 offset, u64 size)
{
int i, index, start;
int npages = DIV_ROUND_UP(size, PAGE_SIZE);
struct device *real_dev = table->dev->parent;
2018-07-11 22:40:20 +03:00
struct tmc_pages *data = &table->data_pages;
start = offset >> PAGE_SHIFT;
for (i = start; i < (start + npages); i++) {
index = i % data->nr_pages;
dma_sync_single_for_cpu(real_dev, data->daddrs[index],
2018-07-11 22:40:20 +03:00
PAGE_SIZE, DMA_FROM_DEVICE);
}
}
EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
2018-07-11 22:40:20 +03:00
/* tmc_sg_sync_table: Sync the page table */
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
{
int i;
struct device *real_dev = sg_table->dev->parent;
2018-07-11 22:40:20 +03:00
struct tmc_pages *table_pages = &sg_table->table_pages;
for (i = 0; i < table_pages->nr_pages; i++)
dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
2018-07-11 22:40:20 +03:00
PAGE_SIZE, DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
2018-07-11 22:40:20 +03:00
/*
* tmc_sg_table_get_data: Get the buffer pointer for data @offset
* in the SG buffer. The @bufpp is updated to point to the buffer.
* Returns :
* the length of linear data available at @offset.
* or
* <= 0 if no data is available.
*/
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
u64 offset, size_t len, char **bufpp)
{
size_t size;
int pg_idx = offset >> PAGE_SHIFT;
int pg_offset = offset & (PAGE_SIZE - 1);
struct tmc_pages *data_pages = &sg_table->data_pages;
size = tmc_sg_table_buf_size(sg_table);
if (offset >= size)
return -EINVAL;
/* Make sure we don't go beyond the end */
len = (len < (size - offset)) ? len : size - offset;
/* Respect the page boundaries */
len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
if (len > 0)
*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
return len;
}
EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
2018-07-11 22:40:20 +03:00
#ifdef ETR_SG_DEBUG
/* Map a dma address to virtual address */
static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
dma_addr_t addr, bool table)
{
long offset;
unsigned long base;
struct tmc_pages *tmc_pages;
if (table) {
tmc_pages = &sg_table->table_pages;
base = (unsigned long)sg_table->table_vaddr;
} else {
tmc_pages = &sg_table->data_pages;
base = (unsigned long)sg_table->data_vaddr;
}
offset = tmc_pages_get_offset(tmc_pages, addr);
if (offset < 0)
return 0;
return base + offset;
}
/* Dump the given sg_table */
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
{
sgte_t *ptr;
int i = 0;
dma_addr_t addr;
struct tmc_sg_table *sg_table = etr_table->sg_table;
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
etr_table->hwaddr, true);
while (ptr) {
addr = ETR_SG_ADDR(*ptr);
switch (ETR_SG_ET(*ptr)) {
case ETR_SG_ET_NORMAL:
dev_dbg(sg_table->dev,
"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
ptr++;
break;
case ETR_SG_ET_LINK:
dev_dbg(sg_table->dev,
"%05d: *** %p\t:{L} 0x%llx ***\n",
i, ptr, addr);
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
addr, true);
break;
case ETR_SG_ET_LAST:
dev_dbg(sg_table->dev,
"%05d: ### %p\t:[L] 0x%llx ###\n",
i, ptr, addr);
return;
default:
dev_dbg(sg_table->dev,
"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
i, ptr, addr);
return;
}
i++;
}
dev_dbg(sg_table->dev, "******* End of Table *****\n");
}
#else
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
#endif
/*
* Populate the SG Table page table entries from table/data
* pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
* So does a Table page. So we keep track of indices of the tables
* in each system page and move the pointers accordingly.
*/
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
{
dma_addr_t paddr;
int i, type, nr_entries;
int tpidx = 0; /* index to the current system table_page */
int sgtidx = 0; /* index to the sg_table within the current syspage */
int sgtentry = 0; /* the entry within the sg_table */
int dpidx = 0; /* index to the current system data_page */
int spidx = 0; /* index to the SG page within the current data page */
sgte_t *ptr; /* pointer to the table entry to fill */
struct tmc_sg_table *sg_table = etr_table->sg_table;
dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
/*
* Use the contiguous virtual address of the table to update entries.
*/
ptr = sg_table->table_vaddr;
/*
* Fill all the entries, except the last entry to avoid special
* checks within the loop.
*/
for (i = 0; i < nr_entries - 1; i++) {
if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
/*
* Last entry in a sg_table page is a link address to
* the next table page. If this sg_table is the last
* one in the system page, it links to the first
* sg_table in the next system page. Otherwise, it
* links to the next sg_table page within the system
* page.
*/
if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
paddr = table_daddrs[tpidx + 1];
} else {
paddr = table_daddrs[tpidx] +
(ETR_SG_PAGE_SIZE * (sgtidx + 1));
}
type = ETR_SG_ET_LINK;
} else {
/*
* Update the indices to the data_pages to point to the
* next sg_page in the data buffer.
*/
type = ETR_SG_ET_NORMAL;
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
dpidx++;
}
*ptr++ = ETR_SG_ENTRY(paddr, type);
/*
* Move to the next table pointer, moving the table page index
* if necessary
*/
if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
tpidx++;
}
}
/* Set up the last entry, which is always a data pointer */
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
}
/*
* tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
* populate the table.
*
* @dev - Device pointer for the TMC
* @node - NUMA node where the memory should be allocated
* @size - Total size of the data buffer
* @pages - Optional list of page virtual address
*/
static struct etr_sg_table *
tmc_init_etr_sg_table(struct device *dev, int node,
unsigned long size, void **pages)
{
int nr_entries, nr_tpages;
int nr_dpages = size >> PAGE_SHIFT;
struct tmc_sg_table *sg_table;
struct etr_sg_table *etr_table;
etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
if (!etr_table)
return ERR_PTR(-ENOMEM);
nr_entries = tmc_etr_sg_table_entries(nr_dpages);
nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
if (IS_ERR(sg_table)) {
kfree(etr_table);
return ERR_CAST(sg_table);
}
etr_table->sg_table = sg_table;
/* TMC should use table base address for DBA */
etr_table->hwaddr = sg_table->table_daddr;
tmc_etr_sg_table_populate(etr_table);
/* Sync the table pages for the HW */
tmc_sg_table_sync_table(sg_table);
tmc_etr_sg_table_dump(etr_table);
return etr_table;
}
/*
* tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
*/
static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
struct etr_flat_buf *flat_buf;
struct device *real_dev = drvdata->csdev->dev.parent;
/* We cannot reuse existing pages for flat buf */
if (pages)
return -EINVAL;
flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
if (!flat_buf)
return -ENOMEM;
flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
&flat_buf->daddr, GFP_KERNEL);
if (!flat_buf->vaddr) {
kfree(flat_buf);
return -ENOMEM;
}
flat_buf->size = etr_buf->size;
flat_buf->dev = &drvdata->csdev->dev;
etr_buf->hwaddr = flat_buf->daddr;
etr_buf->mode = ETR_MODE_FLAT;
etr_buf->private = flat_buf;
return 0;
}
static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
{
struct etr_flat_buf *flat_buf = etr_buf->private;
if (flat_buf && flat_buf->daddr) {
struct device *real_dev = flat_buf->dev->parent;
dma_free_coherent(real_dev, flat_buf->size,
flat_buf->vaddr, flat_buf->daddr);
}
kfree(flat_buf);
}
static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
/*
* Adjust the buffer to point to the beginning of the trace data
* and update the available trace data.
*/
etr_buf->offset = rrp - etr_buf->hwaddr;
if (etr_buf->full)
etr_buf->len = etr_buf->size;
else
etr_buf->len = rwp - rrp;
}
static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
u64 offset, size_t len, char **bufpp)
{
struct etr_flat_buf *flat_buf = etr_buf->private;
*bufpp = (char *)flat_buf->vaddr + offset;
/*
* tmc_etr_buf_get_data already adjusts the length to handle
* buffer wrapping around.
*/
return len;
}
static const struct etr_buf_operations etr_flat_buf_ops = {
.alloc = tmc_etr_alloc_flat_buf,
.free = tmc_etr_free_flat_buf,
.sync = tmc_etr_sync_flat_buf,
.get_data = tmc_etr_get_data_flat_buf,
};
/*
* tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
* appropriately.
*/
static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
struct etr_sg_table *etr_table;
struct device *dev = &drvdata->csdev->dev;
etr_table = tmc_init_etr_sg_table(dev, node,
etr_buf->size, pages);
if (IS_ERR(etr_table))
return -ENOMEM;
etr_buf->hwaddr = etr_table->hwaddr;
etr_buf->mode = ETR_MODE_ETR_SG;
etr_buf->private = etr_table;
return 0;
}
static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
{
struct etr_sg_table *etr_table = etr_buf->private;
if (etr_table) {
tmc_free_sg_table(etr_table->sg_table);
kfree(etr_table);
}
}
static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
size_t len, char **bufpp)
{
struct etr_sg_table *etr_table = etr_buf->private;
return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
}
static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
long r_offset, w_offset;
struct etr_sg_table *etr_table = etr_buf->private;
struct tmc_sg_table *table = etr_table->sg_table;
/* Convert hw address to offset in the buffer */
r_offset = tmc_sg_get_data_page_offset(table, rrp);
if (r_offset < 0) {
dev_warn(table->dev,
"Unable to map RRP %llx to offset\n", rrp);
etr_buf->len = 0;
return;
}
w_offset = tmc_sg_get_data_page_offset(table, rwp);
if (w_offset < 0) {
dev_warn(table->dev,
"Unable to map RWP %llx to offset\n", rwp);
etr_buf->len = 0;
return;
}
etr_buf->offset = r_offset;
if (etr_buf->full)
etr_buf->len = etr_buf->size;
else
etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
w_offset - r_offset;
tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
}
static const struct etr_buf_operations etr_sg_buf_ops = {
.alloc = tmc_etr_alloc_sg_buf,
.free = tmc_etr_free_sg_buf,
.sync = tmc_etr_sync_sg_buf,
.get_data = tmc_etr_get_data_sg_buf,
};
/*
* TMC ETR could be connected to a CATU device, which can provide address
* translation service. This is represented by the Output port of the TMC
* (ETR) connected to the input port of the CATU.
*
* Returns : coresight_device ptr for the CATU device if a CATU is found.
* : NULL otherwise.
*/
struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
{
int i;
struct coresight_device *tmp, *etr = drvdata->csdev;
if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
return NULL;
for (i = 0; i < etr->pdata->nr_outport; i++) {
tmp = etr->pdata->conns[i].child_dev;
if (tmp && coresight_is_catu_device(tmp))
return tmp;
}
return NULL;
}
EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf)
{
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
if (catu && helper_ops(catu)->enable)
return helper_ops(catu)->enable(catu, etr_buf);
return 0;
}
static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
{
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
if (catu && helper_ops(catu)->disable)
helper_ops(catu)->disable(catu, drvdata->etr_buf);
}
static const struct etr_buf_operations *etr_buf_ops[] = {
[ETR_MODE_FLAT] = &etr_flat_buf_ops,
[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
[ETR_MODE_CATU] = NULL,
};
void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
{
etr_buf_ops[ETR_MODE_CATU] = catu;
}
EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
void tmc_etr_remove_catu_ops(void)
{
etr_buf_ops[ETR_MODE_CATU] = NULL;
}
EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
static inline int tmc_etr_mode_alloc_buf(int mode,
struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf, int node,
void **pages)
{
int rc = -EINVAL;
switch (mode) {
case ETR_MODE_FLAT:
case ETR_MODE_ETR_SG:
case ETR_MODE_CATU:
if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
node, pages);
if (!rc)
etr_buf->ops = etr_buf_ops[mode];
return rc;
default:
return -EINVAL;
}
}
/*
* tmc_alloc_etr_buf: Allocate a buffer use by ETR.
* @drvdata : ETR device details.
* @size : size of the requested buffer.
* @flags : Required properties for the buffer.
* @node : Node for memory allocations.
* @pages : An optional list of pages.
*/
static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
ssize_t size, int flags,
int node, void **pages)
{
int rc = -ENOMEM;
bool has_etr_sg, has_iommu;
bool has_sg, has_catu;
struct etr_buf *etr_buf;
struct device *dev = &drvdata->csdev->dev;
has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
has_iommu = iommu_get_domain_for_dev(dev->parent);
has_catu = !!tmc_etr_get_catu_device(drvdata);
has_sg = has_catu || has_etr_sg;
etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
if (!etr_buf)
return ERR_PTR(-ENOMEM);
etr_buf->size = size;
/*
* If we have to use an existing list of pages, we cannot reliably
* use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
* we use the contiguous DMA memory if at least one of the following
* conditions is true:
* a) The ETR cannot use Scatter-Gather.
* b) we have a backing IOMMU
* c) The requested memory size is smaller (< 1M).
*
* Fallback to available mechanisms.
*
*/
if (!pages &&
(!has_sg || has_iommu || size < SZ_1M))
rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
etr_buf, node, pages);
if (rc && has_etr_sg)
rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
etr_buf, node, pages);
if (rc && has_catu)
rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
etr_buf, node, pages);
if (rc) {
kfree(etr_buf);
return ERR_PTR(rc);
}
refcount_set(&etr_buf->refcount, 1);
dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
(unsigned long)size >> 10, etr_buf->mode);
return etr_buf;
}
static void tmc_free_etr_buf(struct etr_buf *etr_buf)
{
WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
etr_buf->ops->free(etr_buf);
kfree(etr_buf);
}
/*
* tmc_etr_buf_get_data: Get the pointer the trace data at @offset
* with a maximum of @len bytes.
* Returns: The size of the linear data available @pos, with *bufpp
* updated to point to the buffer.
*/
static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
u64 offset, size_t len, char **bufpp)
{
/* Adjust the length to limit this transaction to end of buffer */
len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
}
static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
{
ssize_t len;
char *bufp;
len = tmc_etr_buf_get_data(etr_buf, offset,
CORESIGHT_BARRIER_PKT_SIZE, &bufp);
if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
return -EINVAL;
coresight_insert_barrier_packet(bufp);
return offset + CORESIGHT_BARRIER_PKT_SIZE;
}
/*
* tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
* Makes sure the trace data is synced to the memory for consumption.
* @etr_buf->offset will hold the offset to the beginning of the trace data
* within the buffer, with @etr_buf->len bytes to consume.
*/
static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
{
struct etr_buf *etr_buf = drvdata->etr_buf;
u64 rrp, rwp;
u32 status;
rrp = tmc_read_rrp(drvdata);
rwp = tmc_read_rwp(drvdata);
status = readl_relaxed(drvdata->base + TMC_STS);
/*
* If there were memory errors in the session, truncate the
* buffer.
*/
if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
dev_dbg(&drvdata->csdev->dev,
"tmc memory error detected, truncating buffer\n");
etr_buf->len = 0;
etr_buf->full = false;
return;
}
etr_buf->full = !!(status & TMC_STS_FULL);
WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
etr_buf->ops->sync(etr_buf, rrp, rwp);
}
static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
{
u32 axictl, sts;
struct etr_buf *etr_buf = drvdata->etr_buf;
CS_UNLOCK(drvdata->base);
/* Wait for TMCSReady bit to be set */
tmc_wait_for_tmcready(drvdata);
writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
axictl &= ~TMC_AXICTL_CLEAR_MASK;
axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
axictl |= TMC_AXICTL_AXCACHE_OS;
if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
axictl &= ~TMC_AXICTL_ARCACHE_MASK;
axictl |= TMC_AXICTL_ARCACHE_OS;
}
if (etr_buf->mode == ETR_MODE_ETR_SG)
axictl |= TMC_AXICTL_SCT_GAT_MODE;
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
tmc_write_dba(drvdata, etr_buf->hwaddr);
/*
* If the TMC pointers must be programmed before the session,
* we have to set it properly (i.e, RRP/RWP to base address and
* STS to "not full").
*/
if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
tmc_write_rrp(drvdata, etr_buf->hwaddr);
tmc_write_rwp(drvdata, etr_buf->hwaddr);
sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
writel_relaxed(sts, drvdata->base + TMC_STS);
}
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
TMC_FFCR_TRIGON_TRIGIN,
drvdata->base + TMC_FFCR);
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
tmc_enable_hw(drvdata);
CS_LOCK(drvdata->base);
}
static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
struct etr_buf *etr_buf)
{
int rc;
/* Callers should provide an appropriate buffer for use */
if (WARN_ON(!etr_buf))
return -EINVAL;
if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
return -EINVAL;
if (WARN_ON(drvdata->etr_buf))
return -EBUSY;
/*
* If this ETR is connected to a CATU, enable it before we turn
* this on.
*/
rc = tmc_etr_enable_catu(drvdata, etr_buf);
if (rc)
return rc;
rc = coresight_claim_device(drvdata->csdev);
if (!rc) {
drvdata->etr_buf = etr_buf;
__tmc_etr_enable_hw(drvdata);
}
return rc;
}
/*
* Return the available trace data in the buffer (starts at etr_buf->offset,
* limited by etr_buf->len) from @pos, with a maximum limit of @len,
* also updating the @bufpp on where to find it. Since the trace data
* starts at anywhere in the buffer, depending on the RRP, we adjust the
* @len returned to handle buffer wrapping around.
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
*
* We are protected here by drvdata->reading != 0, which ensures the
* sysfs_buf stays alive.
*/
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
loff_t pos, size_t len, char **bufpp)
{
s64 offset;
ssize_t actual = len;
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
struct etr_buf *etr_buf = drvdata->sysfs_buf;
if (pos + actual > etr_buf->len)
actual = etr_buf->len - pos;
if (actual <= 0)
return actual;
/* Compute the offset from which we read the data */
offset = etr_buf->offset + pos;
if (offset >= etr_buf->size)
offset -= etr_buf->size;
return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
}
static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
{
return tmc_alloc_etr_buf(drvdata, drvdata->size,
0, cpu_to_node(0), NULL);
}
static void
tmc_etr_free_sysfs_buf(struct etr_buf *buf)
{
if (buf)
tmc_free_etr_buf(buf);
}
static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
{
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
struct etr_buf *etr_buf = drvdata->etr_buf;
if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
drvdata->sysfs_buf = NULL;
} else {
tmc_sync_etr_buf(drvdata);
/*
* Insert barrier packets at the beginning, if there was
* an overflow.
*/
if (etr_buf->full)
tmc_etr_buf_insert_barrier_packet(etr_buf,
etr_buf->offset);
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
}
}
static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
/*
* When operating in sysFS mode the content of the buffer needs to be
* read before the TMC is disabled.
*/
if (drvdata->mode == CS_MODE_SYSFS)
tmc_etr_sync_sysfs_buf(drvdata);
tmc_disable_hw(drvdata);
CS_LOCK(drvdata->base);
}
void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
__tmc_etr_disable_hw(drvdata);
/* Disable CATU device if this ETR is connected to one */
tmc_etr_disable_catu(drvdata);
coresight_disclaim_device(drvdata->csdev);
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
/* Reset the ETR buf used by hardware */
drvdata->etr_buf = NULL;
}
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
{
int ret = 0;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
/*
* If we are enabling the ETR from disabled state, we need to make
* sure we have a buffer with the right size. The etr_buf is not reset
* immediately after we stop the tracing in SYSFS mode as we wait for
* the user to collect the data. We may be able to reuse the existing
* buffer, provided the size matches. Any allocation has to be done
* with the lock released.
*/
spin_lock_irqsave(&drvdata->spinlock, flags);
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Allocate memory with the locks released */
free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
if (IS_ERR(new_buf))
return PTR_ERR(new_buf);
/* Let's try again */
spin_lock_irqsave(&drvdata->spinlock, flags);
}
if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
ret = -EBUSY;
goto out;
}
/*
* In sysFS mode we can have multiple writers per sink. Since this
* sink is already enabled no memory is needed and the HW need not be
* touched, even if the buffer size has changed.
*/
if (drvdata->mode == CS_MODE_SYSFS) {
atomic_inc(csdev->refcnt);
goto out;
}
/*
* If we don't have a buffer or it doesn't match the requested size,
* use the buffer allocated above. Otherwise reuse the existing buffer.
*/
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
free_buf = sysfs_buf;
drvdata->sysfs_buf = new_buf;
}
ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
if (!ret) {
drvdata->mode = CS_MODE_SYSFS;
atomic_inc(csdev->refcnt);
}
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free memory outside the spinlock if need be */
if (free_buf)
tmc_etr_free_sysfs_buf(free_buf);
if (!ret)
dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
return ret;
}
/*
* alloc_etr_buf: Allocate ETR buffer for use by perf.
* The size of the hardware buffer is dependent on the size configured
* via sysfs and the perf ring buffer size. We prefer to allocate the
* largest possible size, scaling down the size by half until it
* reaches a minimum limit (1M), beyond which we give up.
*/
static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
coresight: tmc-etr: alloc_perf_buf: Do not call smp_processor_id from preemptible During a perf session we try to allocate buffers on the "node" associated with the CPU the event is bound to. If it is not bound to a CPU, we use the current CPU node, using smp_processor_id(). However this is unsafe in a pre-emptible context and could generate the splats as below : BUG: using smp_processor_id() in preemptible [00000000] code: perf/1743 caller is tmc_alloc_etr_buffer+0x1bc/0x1f0 CPU: 1 PID: 1743 Comm: perf Not tainted 5.1.0-rc6-147786-g116841e #344 Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Feb 1 2019 Call trace: dump_backtrace+0x0/0x150 show_stack+0x14/0x20 dump_stack+0x9c/0xc4 debug_smp_processor_id+0x10c/0x110 tmc_alloc_etr_buffer+0x1bc/0x1f0 etm_setup_aux+0x1c4/0x230 rb_alloc_aux+0x1b8/0x2b8 perf_mmap+0x35c/0x478 mmap_region+0x34c/0x4f0 do_mmap+0x2d8/0x418 vm_mmap_pgoff+0xd0/0xf8 ksys_mmap_pgoff+0x88/0xf8 __arm64_sys_mmap+0x28/0x38 el0_svc_handler+0xd8/0x138 el0_svc+0x8/0xc Use NUMA_NO_NODE hint instead of using the current node for events not bound to CPUs. Fixes: 22f429f19c4135d51e9 ("coresight: etm-perf: Add support for ETR backend") Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: stable <stable@vger.kernel.org> # 4.20+ Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Link: https://lore.kernel.org/r/20190620221237.3536-3-mathieu.poirier@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-21 01:12:34 +03:00
int node;
struct etr_buf *etr_buf;
unsigned long size;
coresight: tmc-etr: alloc_perf_buf: Do not call smp_processor_id from preemptible During a perf session we try to allocate buffers on the "node" associated with the CPU the event is bound to. If it is not bound to a CPU, we use the current CPU node, using smp_processor_id(). However this is unsafe in a pre-emptible context and could generate the splats as below : BUG: using smp_processor_id() in preemptible [00000000] code: perf/1743 caller is tmc_alloc_etr_buffer+0x1bc/0x1f0 CPU: 1 PID: 1743 Comm: perf Not tainted 5.1.0-rc6-147786-g116841e #344 Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Feb 1 2019 Call trace: dump_backtrace+0x0/0x150 show_stack+0x14/0x20 dump_stack+0x9c/0xc4 debug_smp_processor_id+0x10c/0x110 tmc_alloc_etr_buffer+0x1bc/0x1f0 etm_setup_aux+0x1c4/0x230 rb_alloc_aux+0x1b8/0x2b8 perf_mmap+0x35c/0x478 mmap_region+0x34c/0x4f0 do_mmap+0x2d8/0x418 vm_mmap_pgoff+0xd0/0xf8 ksys_mmap_pgoff+0x88/0xf8 __arm64_sys_mmap+0x28/0x38 el0_svc_handler+0xd8/0x138 el0_svc+0x8/0xc Use NUMA_NO_NODE hint instead of using the current node for events not bound to CPUs. Fixes: 22f429f19c4135d51e9 ("coresight: etm-perf: Add support for ETR backend") Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: stable <stable@vger.kernel.org> # 4.20+ Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Link: https://lore.kernel.org/r/20190620221237.3536-3-mathieu.poirier@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-21 01:12:34 +03:00
node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
/*
* Try to match the perf ring buffer size if it is larger
* than the size requested via sysfs.
*/
if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
0, node, NULL);
if (!IS_ERR(etr_buf))
goto done;
}
/*
* Else switch to configured size for this ETR
* and scale down until we hit the minimum limit.
*/
size = drvdata->size;
do {
etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
if (!IS_ERR(etr_buf))
goto done;
size /= 2;
} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
return ERR_PTR(-ENOMEM);
done:
return etr_buf;
}
static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
struct perf_event *event, int nr_pages,
void **pages, bool snapshot)
{
int ret;
pid_t pid = task_pid_nr(event->owner);
struct etr_buf *etr_buf;
retry:
/*
* An etr_perf_buffer is associated with an event and holds a reference
* to the AUX ring buffer that was created for that event. In CPU-wide
* N:1 mode multiple events (one per CPU), each with its own AUX ring
* buffer, share a sink. As such an etr_perf_buffer is created for each
* event but a single etr_buf associated with the ETR is shared between
* them. The last event in a trace session will copy the content of the
* etr_buf to its AUX ring buffer. Ring buffer associated to other
* events are simply not used an freed as events are destoyed. We still
* need to allocate a ring buffer for each event since we don't know
* which event will be last.
*/
/*
* The first thing to do here is check if an etr_buf has already been
* allocated for this session. If so it is shared with this event,
* otherwise it is created.
*/
mutex_lock(&drvdata->idr_mutex);
etr_buf = idr_find(&drvdata->idr, pid);
if (etr_buf) {
refcount_inc(&etr_buf->refcount);
mutex_unlock(&drvdata->idr_mutex);
return etr_buf;
}
/* If we made it here no buffer has been allocated, do so now. */
mutex_unlock(&drvdata->idr_mutex);
etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
if (IS_ERR(etr_buf))
return etr_buf;
/* Now that we have a buffer, add it to the IDR. */
mutex_lock(&drvdata->idr_mutex);
ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
mutex_unlock(&drvdata->idr_mutex);
/* Another event with this session ID has allocated this buffer. */
if (ret == -ENOSPC) {
tmc_free_etr_buf(etr_buf);
goto retry;
}
/* The IDR can't allocate room for a new session, abandon ship. */
if (ret == -ENOMEM) {
tmc_free_etr_buf(etr_buf);
return ERR_PTR(ret);
}
return etr_buf;
}
static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
struct perf_event *event, int nr_pages,
void **pages, bool snapshot)
{
/*
* In per-thread mode the etr_buf isn't shared, so just go ahead
* with memory allocation.
*/
return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
}
static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
if (event->cpu == -1)
return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
pages, snapshot);
return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
pages, snapshot);
}
static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
int nr_pages, void **pages, bool snapshot)
{
coresight: tmc-etr: Do not call smp_processor_id() from preemptible During a perf session we try to allocate buffers on the "node" associated with the CPU the event is bound to. If it's not bound to a CPU, we use the current CPU node, using smp_processor_id(). However this is unsafe in a pre-emptible context and could generate the splats as below : BUG: using smp_processor_id() in preemptible [00000000] code: perf/1743 caller is alloc_etr_buf.isra.6+0x80/0xa0 CPU: 1 PID: 1743 Comm: perf Not tainted 5.1.0-rc6-147786-g116841e #344 Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Feb 1 2019 Call trace: dump_backtrace+0x0/0x150 show_stack+0x14/0x20 dump_stack+0x9c/0xc4 debug_smp_processor_id+0x10c/0x110 alloc_etr_buf.isra.6+0x80/0xa0 tmc_alloc_etr_buffer+0x12c/0x1f0 etm_setup_aux+0x1c4/0x230 rb_alloc_aux+0x1b8/0x2b8 perf_mmap+0x35c/0x478 mmap_region+0x34c/0x4f0 do_mmap+0x2d8/0x418 vm_mmap_pgoff+0xd0/0xf8 ksys_mmap_pgoff+0x88/0xf8 __arm64_sys_mmap+0x28/0x38 el0_svc_handler+0xd8/0x138 el0_svc+0x8/0xc Use NUMA_NO_NODE hint instead of using the current node for events not bound to CPUs. Fixes: 855ab61c16bf70b646 ("coresight: tmc-etr: Refactor function tmc_etr_setup_perf_buf()") Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: stable <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20190620221237.3536-2-mathieu.poirier@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-21 01:12:33 +03:00
int node;
struct etr_buf *etr_buf;
struct etr_perf_buffer *etr_perf;
coresight: tmc-etr: Do not call smp_processor_id() from preemptible During a perf session we try to allocate buffers on the "node" associated with the CPU the event is bound to. If it's not bound to a CPU, we use the current CPU node, using smp_processor_id(). However this is unsafe in a pre-emptible context and could generate the splats as below : BUG: using smp_processor_id() in preemptible [00000000] code: perf/1743 caller is alloc_etr_buf.isra.6+0x80/0xa0 CPU: 1 PID: 1743 Comm: perf Not tainted 5.1.0-rc6-147786-g116841e #344 Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Feb 1 2019 Call trace: dump_backtrace+0x0/0x150 show_stack+0x14/0x20 dump_stack+0x9c/0xc4 debug_smp_processor_id+0x10c/0x110 alloc_etr_buf.isra.6+0x80/0xa0 tmc_alloc_etr_buffer+0x12c/0x1f0 etm_setup_aux+0x1c4/0x230 rb_alloc_aux+0x1b8/0x2b8 perf_mmap+0x35c/0x478 mmap_region+0x34c/0x4f0 do_mmap+0x2d8/0x418 vm_mmap_pgoff+0xd0/0xf8 ksys_mmap_pgoff+0x88/0xf8 __arm64_sys_mmap+0x28/0x38 el0_svc_handler+0xd8/0x138 el0_svc+0x8/0xc Use NUMA_NO_NODE hint instead of using the current node for events not bound to CPUs. Fixes: 855ab61c16bf70b646 ("coresight: tmc-etr: Refactor function tmc_etr_setup_perf_buf()") Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: stable <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20190620221237.3536-2-mathieu.poirier@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-21 01:12:33 +03:00
node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
if (!etr_perf)
return ERR_PTR(-ENOMEM);
etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
if (!IS_ERR(etr_buf))
goto done;
kfree(etr_perf);
return ERR_PTR(-ENOMEM);
done:
/*
* Keep a reference to the ETR this buffer has been allocated for
* in order to have access to the IDR in tmc_free_etr_buffer().
*/
etr_perf->drvdata = drvdata;
etr_perf->etr_buf = etr_buf;
return etr_perf;
}
static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
struct perf_event *event, void **pages,
int nr_pages, bool snapshot)
{
struct etr_perf_buffer *etr_perf;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
nr_pages, pages, snapshot);
if (IS_ERR(etr_perf)) {
dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
return NULL;
}
etr_perf->pid = task_pid_nr(event->owner);
etr_perf->snapshot = snapshot;
etr_perf->nr_pages = nr_pages;
etr_perf->pages = pages;
return etr_perf;
}
static void tmc_free_etr_buffer(void *config)
{
struct etr_perf_buffer *etr_perf = config;
struct tmc_drvdata *drvdata = etr_perf->drvdata;
struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
if (!etr_buf)
goto free_etr_perf_buffer;
mutex_lock(&drvdata->idr_mutex);
/* If we are not the last one to use the buffer, don't touch it. */
if (!refcount_dec_and_test(&etr_buf->refcount)) {
mutex_unlock(&drvdata->idr_mutex);
goto free_etr_perf_buffer;
}
/* We are the last one, remove from the IDR and free the buffer. */
buf = idr_remove(&drvdata->idr, etr_perf->pid);
mutex_unlock(&drvdata->idr_mutex);
/*
* Something went very wrong if the buffer associated with this ID
* is not the same in the IDR. Leak to avoid use after free.
*/
if (buf && WARN_ON(buf != etr_buf))
goto free_etr_perf_buffer;
tmc_free_etr_buf(etr_perf->etr_buf);
free_etr_perf_buffer:
kfree(etr_perf);
}
/*
* tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
* buffer to the perf ring buffer.
*/
static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
unsigned long src_offset,
unsigned long to_copy)
{
long bytes;
long pg_idx, pg_offset;
unsigned long head = etr_perf->head;
char **dst_pages, *src_buf;
struct etr_buf *etr_buf = etr_perf->etr_buf;
head = etr_perf->head;
pg_idx = head >> PAGE_SHIFT;
pg_offset = head & (PAGE_SIZE - 1);
dst_pages = (char **)etr_perf->pages;
while (to_copy > 0) {
/*
* In one iteration, we can copy minimum of :
* 1) what is available in the source buffer,
* 2) what is available in the source buffer, before it
* wraps around.
* 3) what is available in the destination page.
* in one iteration.
*/
if (src_offset >= etr_buf->size)
src_offset -= etr_buf->size;
bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
&src_buf);
if (WARN_ON_ONCE(bytes <= 0))
break;
bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
to_copy -= bytes;
/* Move destination pointers */
pg_offset += bytes;
if (pg_offset == PAGE_SIZE) {
pg_offset = 0;
if (++pg_idx == etr_perf->nr_pages)
pg_idx = 0;
}
/* Move source pointers */
src_offset += bytes;
}
}
/*
* tmc_update_etr_buffer : Update the perf ring buffer with the
* available trace data. We use software double buffering at the moment.
*
* TODO: Add support for reusing the perf ring buffer.
*/
static unsigned long
tmc_update_etr_buffer(struct coresight_device *csdev,
struct perf_output_handle *handle,
void *config)
{
bool lost = false;
unsigned long flags, offset, size = 0;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct etr_perf_buffer *etr_perf = config;
struct etr_buf *etr_buf = etr_perf->etr_buf;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Don't do anything if another tracer is using this sink */
if (atomic_read(csdev->refcnt) != 1) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
if (WARN_ON(drvdata->perf_buf != etr_buf)) {
lost = true;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
goto out;
}
CS_UNLOCK(drvdata->base);
tmc_flush_and_stop(drvdata);
tmc_sync_etr_buf(drvdata);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
lost = etr_buf->full;
offset = etr_buf->offset;
size = etr_buf->len;
/*
* The ETR buffer may be bigger than the space available in the
* perf ring buffer (handle->size). If so advance the offset so that we
* get the latest trace data. In snapshot mode none of that matters
* since we are expected to clobber stale data in favour of the latest
* traces.
*/
if (!etr_perf->snapshot && size > handle->size) {
u32 mask = tmc_get_memwidth_mask(drvdata);
/*
* Make sure the new size is aligned in accordance with the
* requirement explained in function tmc_get_memwidth_mask().
*/
size = handle->size & mask;
offset = etr_buf->offset + etr_buf->len - size;
if (offset >= etr_buf->size)
offset -= etr_buf->size;
lost = true;
}
/* Insert barrier packets at the beginning, if there was an overflow */
if (lost)
tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
tmc_etr_sync_perf_buffer(etr_perf, offset, size);
/*
* In snapshot mode we simply increment the head by the number of byte
* that were written. User space function cs_etm_find_snapshot() will
* figure out how many bytes to get from the AUX buffer based on the
* position of the head.
*/
if (etr_perf->snapshot)
handle->head += size;
out:
/*
* Don't set the TRUNCATED flag in snapshot mode because 1) the
* captured buffer is expected to be truncated and 2) a full buffer
* prevents the event from being re-enabled by the perf core,
* resulting in stale data being send to user space.
*/
if (!etr_perf->snapshot && lost)
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
return size;
}
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
{
int rc = 0;
pid_t pid;
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
struct perf_output_handle *handle = data;
struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
spin_lock_irqsave(&drvdata->spinlock, flags);
/* Don't use this sink if it is already claimed by sysFS */
if (drvdata->mode == CS_MODE_SYSFS) {
rc = -EBUSY;
goto unlock_out;
}
if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
rc = -EINVAL;
goto unlock_out;
}
/* Get a handle on the pid of the process to monitor */
pid = etr_perf->pid;
/* Do not proceed if this device is associated with another session */
if (drvdata->pid != -1 && drvdata->pid != pid) {
rc = -EBUSY;
goto unlock_out;
}
etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
/*
* No HW configuration is needed if the sink is already in
* use for this session.
*/
if (drvdata->pid == pid) {
atomic_inc(csdev->refcnt);
goto unlock_out;
}
rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
if (!rc) {
/* Associate with monitored process. */
drvdata->pid = pid;
drvdata->mode = CS_MODE_PERF;
drvdata->perf_buf = etr_perf->etr_buf;
atomic_inc(csdev->refcnt);
}
unlock_out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return rc;
}
static int tmc_enable_etr_sink(struct coresight_device *csdev,
u32 mode, void *data)
{
switch (mode) {
case CS_MODE_SYSFS:
return tmc_enable_etr_sink_sysfs(csdev);
case CS_MODE_PERF:
return tmc_enable_etr_sink_perf(csdev, data);
}
/* We shouldn't be here */
return -EINVAL;
}
static int tmc_disable_etr_sink(struct coresight_device *csdev)
{
unsigned long flags;
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return -EBUSY;
}
if (atomic_dec_return(csdev->refcnt)) {
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return -EBUSY;
}
/* Complain if we (somehow) got out of sync */
WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
tmc_etr_disable_hw(drvdata);
/* Dissociate from monitored process. */
drvdata->pid = -1;
drvdata->mode = CS_MODE_DISABLED;
/* Reset perf specific data */
drvdata->perf_buf = NULL;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
return 0;
}
static const struct coresight_ops_sink tmc_etr_sink_ops = {
.enable = tmc_enable_etr_sink,
.disable = tmc_disable_etr_sink,
.alloc_buffer = tmc_alloc_etr_buffer,
.update_buffer = tmc_update_etr_buffer,
.free_buffer = tmc_free_etr_buffer,
};
const struct coresight_ops tmc_etr_cs_ops = {
.sink_ops = &tmc_etr_sink_ops,
};
int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
int ret = 0;
unsigned long flags;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
if (drvdata->reading) {
ret = -EBUSY;
goto out;
}
/*
* We can safely allow reads even if the ETR is operating in PERF mode,
* since the sysfs session is captured in mode specific data.
* If drvdata::sysfs_data is NULL the trace data has been read already.
*/
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
if (!drvdata->sysfs_buf) {
ret = -EINVAL;
goto out;
}
/* Disable the TMC if we are trying to read from a running session. */
if (drvdata->mode == CS_MODE_SYSFS)
__tmc_etr_disable_hw(drvdata);
drvdata->reading = true;
out:
spin_unlock_irqrestore(&drvdata->spinlock, flags);
return ret;
}
int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
unsigned long flags;
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
struct etr_buf *sysfs_buf = NULL;
/* config types are set a boot time and never change */
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
return -EINVAL;
spin_lock_irqsave(&drvdata->spinlock, flags);
/* RE-enable the TMC if need be */
if (drvdata->mode == CS_MODE_SYSFS) {
/*
* The trace run will continue with the same allocated trace
* buffer. Since the tracer is still enabled drvdata::buf can't
* be NULL.
*/
__tmc_etr_enable_hw(drvdata);
} else {
/*
* The ETR is not tracing and the buffer was just read.
* As such prepare to free the trace buffer.
*/
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
sysfs_buf = drvdata->sysfs_buf;
drvdata->sysfs_buf = NULL;
}
drvdata->reading = false;
spin_unlock_irqrestore(&drvdata->spinlock, flags);
/* Free allocated memory out side of the spinlock */
coresight: tmc-etr: Handle driver mode specific ETR buffers Since the ETR could be driven either by SYSFS or by perf, it becomes complicated how we deal with the buffers used for each of these modes. The ETR driver cannot simply free the current attached buffer without knowing the provider (i.e, sysfs vs perf). To solve this issue, we provide: 1) the driver-mode specific etr buffer to be retained in the drvdata 2) the etr_buf for a session should be passed on when enabling the hardware, which will be stored in drvdata->etr_buf. This will be replaced (not free'd) as soon as the hardware is disabled, after necessary sync operation. The advantages of this are : 1) The common code path doesn't need to worry about how to dispose an existing buffer, if it is about to start a new session with a different buffer, possibly in a different mode. 2) The driver mode can control its buffers and can get access to the saved session even when the hardware is operating in a different mode. (e.g, we can still access a trace buffer from a sysfs mode even if the etr is now used in perf mode, without disrupting the current session.) Towards this, we introduce a sysfs specific data which will hold the etr_buf used for sysfs mode of operation, controlled solely by the sysfs mode handling code. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:17:51 +03:00
if (sysfs_buf)
tmc_etr_free_sysfs_buf(sysfs_buf);
return 0;
}