WSL2-Linux-Kernel/drivers/crypto/omap-aes.c

965 строки
22 KiB
C
Исходник Обычный вид История

/*
* Cryptographic API.
*
* Support for OMAP AES HW acceleration.
*
* Copyright (c) 2010 Nokia Corporation
* Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <crypto/scatterwalk.h>
#include <crypto/aes.h>
#include <plat/cpu.h>
#include <plat/dma.h>
/* OMAP TRM gives bitfields as start:end, where start is the higher bit
number. For example 7:0 */
#define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
#define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
#define AES_REG_KEY(x) (0x1C - ((x ^ 0x01) * 0x04))
#define AES_REG_IV(x) (0x20 + ((x) * 0x04))
#define AES_REG_CTRL 0x30
#define AES_REG_CTRL_CTR_WIDTH (1 << 7)
#define AES_REG_CTRL_CTR (1 << 6)
#define AES_REG_CTRL_CBC (1 << 5)
#define AES_REG_CTRL_KEY_SIZE (3 << 3)
#define AES_REG_CTRL_DIRECTION (1 << 2)
#define AES_REG_CTRL_INPUT_READY (1 << 1)
#define AES_REG_CTRL_OUTPUT_READY (1 << 0)
#define AES_REG_DATA 0x34
#define AES_REG_DATA_N(x) (0x34 + ((x) * 0x04))
#define AES_REG_REV 0x44
#define AES_REG_REV_MAJOR 0xF0
#define AES_REG_REV_MINOR 0x0F
#define AES_REG_MASK 0x48
#define AES_REG_MASK_SIDLE (1 << 6)
#define AES_REG_MASK_START (1 << 5)
#define AES_REG_MASK_DMA_OUT_EN (1 << 3)
#define AES_REG_MASK_DMA_IN_EN (1 << 2)
#define AES_REG_MASK_SOFTRESET (1 << 1)
#define AES_REG_AUTOIDLE (1 << 0)
#define AES_REG_SYSSTATUS 0x4C
#define AES_REG_SYSSTATUS_RESETDONE (1 << 0)
#define DEFAULT_TIMEOUT (5*HZ)
#define FLAGS_MODE_MASK 0x000f
#define FLAGS_ENCRYPT BIT(0)
#define FLAGS_CBC BIT(1)
#define FLAGS_GIV BIT(2)
#define FLAGS_INIT BIT(4)
#define FLAGS_FAST BIT(5)
#define FLAGS_BUSY BIT(6)
struct omap_aes_ctx {
struct omap_aes_dev *dd;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
unsigned long flags;
};
struct omap_aes_reqctx {
unsigned long mode;
};
#define OMAP_AES_QUEUE_LENGTH 1
#define OMAP_AES_CACHE_SIZE 0
struct omap_aes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct clk *iclk;
struct omap_aes_ctx *ctx;
struct device *dev;
unsigned long flags;
int err;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
struct scatterlist *in_sg;
size_t in_offset;
struct scatterlist *out_sg;
size_t out_offset;
size_t buflen;
void *buf_in;
size_t dma_size;
int dma_in;
int dma_lch_in;
dma_addr_t dma_addr_in;
void *buf_out;
int dma_out;
int dma_lch_out;
dma_addr_t dma_addr_out;
};
/* keep registered devices data here */
static LIST_HEAD(dev_list);
static DEFINE_SPINLOCK(list_lock);
static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
u32 value, u32 mask)
{
u32 val;
val = omap_aes_read(dd, offset);
val &= ~mask;
val |= value;
omap_aes_write(dd, offset, val);
}
static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_aes_write(dd, offset, *value);
}
static int omap_aes_wait(struct omap_aes_dev *dd, u32 offset, u32 bit)
{
unsigned long timeout = jiffies + DEFAULT_TIMEOUT;
while (!(omap_aes_read(dd, offset) & bit)) {
if (time_is_before_jiffies(timeout)) {
dev_err(dd->dev, "omap-aes timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int omap_aes_hw_init(struct omap_aes_dev *dd)
{
/*
* clocks are enabled when request starts and disabled when finished.
* It may be long delays between requests.
* Device might go to off mode to save power.
*/
clk_enable(dd->iclk);
if (!(dd->flags & FLAGS_INIT)) {
/* is it necessary to reset before every operation? */
omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_SOFTRESET,
AES_REG_MASK_SOFTRESET);
/*
* prevent OCP bus error (SRESP) in case an access to the module
* is performed while the module is coming out of soft reset
*/
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
if (omap_aes_wait(dd, AES_REG_SYSSTATUS,
AES_REG_SYSSTATUS_RESETDONE))
return -ETIMEDOUT;
dd->flags |= FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static int omap_aes_write_ctrl(struct omap_aes_dev *dd)
{
unsigned int key32;
int i, err;
u32 val, mask;
err = omap_aes_hw_init(dd);
if (err)
return err;
val = 0;
if (dd->dma_lch_out >= 0)
val |= AES_REG_MASK_DMA_OUT_EN;
if (dd->dma_lch_in >= 0)
val |= AES_REG_MASK_DMA_IN_EN;
mask = AES_REG_MASK_DMA_IN_EN | AES_REG_MASK_DMA_OUT_EN;
omap_aes_write_mask(dd, AES_REG_MASK, val, mask);
key32 = dd->ctx->keylen / sizeof(u32);
/* it seems a key should always be set even if it has not changed */
for (i = 0; i < key32; i++) {
omap_aes_write(dd, AES_REG_KEY(i),
__le32_to_cpu(dd->ctx->key[i]));
}
if ((dd->flags & FLAGS_CBC) && dd->req->info)
omap_aes_write_n(dd, AES_REG_IV(0), dd->req->info, 4);
val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
if (dd->flags & FLAGS_CBC)
val |= AES_REG_CTRL_CBC;
if (dd->flags & FLAGS_ENCRYPT)
val |= AES_REG_CTRL_DIRECTION;
mask = AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION |
AES_REG_CTRL_KEY_SIZE;
omap_aes_write_mask(dd, AES_REG_CTRL, val, mask);
/* IN */
omap_set_dma_dest_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_CONSTANT,
dd->phys_base + AES_REG_DATA, 0, 4);
omap_set_dma_dest_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4);
omap_set_dma_src_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4);
/* OUT */
omap_set_dma_src_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_CONSTANT,
dd->phys_base + AES_REG_DATA, 0, 4);
omap_set_dma_src_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4);
omap_set_dma_dest_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4);
return 0;
}
static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx)
{
struct omap_aes_dev *dd = NULL, *tmp;
spin_lock_bh(&list_lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &dev_list, list) {
/* FIXME: take fist available aes core */
dd = tmp;
break;
}
ctx->dd = dd;
} else {
/* already found before */
dd = ctx->dd;
}
spin_unlock_bh(&list_lock);
return dd;
}
static void omap_aes_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_aes_dev *dd = data;
if (ch_status != OMAP_DMA_BLOCK_IRQ) {
pr_err("omap-aes DMA error status: 0x%hx\n", ch_status);
dd->err = -EIO;
dd->flags &= ~FLAGS_INIT; /* request to re-initialize */
} else if (lch == dd->dma_lch_in) {
return;
}
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int omap_aes_dma_init(struct omap_aes_dev *dd)
{
int err = -ENOMEM;
dd->dma_lch_out = -1;
dd->dma_lch_in = -1;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out) {
dev_err(dd->dev, "unable to alloc pages.\n");
goto err_alloc;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen,
DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_out;
}
err = omap_request_dma(dd->dma_in, "omap-aes-rx",
omap_aes_dma_callback, dd, &dd->dma_lch_in);
if (err) {
dev_err(dd->dev, "Unable to request DMA channel\n");
goto err_dma_in;
}
err = omap_request_dma(dd->dma_out, "omap-aes-tx",
omap_aes_dma_callback, dd, &dd->dma_lch_out);
if (err) {
dev_err(dd->dev, "Unable to request DMA channel\n");
goto err_dma_out;
}
return 0;
err_dma_out:
omap_free_dma(dd->dma_lch_in);
err_dma_in:
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
err_map_in:
free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
err_alloc:
if (err)
pr_err("error: %d\n", err);
return err;
}
static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
{
omap_free_dma(dd->dma_lch_out);
omap_free_dma(dd->dma_lch_in);
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
}
static void sg_copy_buf(void *buf, struct scatterlist *sg,
unsigned int start, unsigned int nbytes, int out)
{
struct scatter_walk walk;
if (!nbytes)
return;
scatterwalk_start(&walk, sg);
scatterwalk_advance(&walk, start);
scatterwalk_copychunks(buf, &walk, nbytes, out);
scatterwalk_done(&walk, out, 0);
}
static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf,
size_t buflen, size_t total, int out)
{
unsigned int count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
/*
* buflen and total are AES_BLOCK_SIZE size aligned,
* so count should be also aligned
*/
sg_copy_buf(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
static int omap_aes_crypt_dma(struct crypto_tfm *tfm, dma_addr_t dma_addr_in,
dma_addr_t dma_addr_out, int length)
{
struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
struct omap_aes_dev *dd = ctx->dd;
int len32;
pr_debug("len: %d\n", length);
dd->dma_size = length;
if (!(dd->flags & FLAGS_FAST))
dma_sync_single_for_device(dd->dev, dma_addr_in, length,
DMA_TO_DEVICE);
len32 = DIV_ROUND_UP(length, sizeof(u32));
/* IN */
omap_set_dma_transfer_params(dd->dma_lch_in, OMAP_DMA_DATA_TYPE_S32,
len32, 1, OMAP_DMA_SYNC_PACKET, dd->dma_in,
OMAP_DMA_DST_SYNC);
omap_set_dma_src_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_POST_INC,
dma_addr_in, 0, 0);
/* OUT */
omap_set_dma_transfer_params(dd->dma_lch_out, OMAP_DMA_DATA_TYPE_S32,
len32, 1, OMAP_DMA_SYNC_PACKET,
dd->dma_out, OMAP_DMA_SRC_SYNC);
omap_set_dma_dest_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_POST_INC,
dma_addr_out, 0, 0);
omap_start_dma(dd->dma_lch_in);
omap_start_dma(dd->dma_lch_out);
/* start DMA or disable idle mode */
omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_START,
AES_REG_MASK_START);
return 0;
}
static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
crypto_ablkcipher_reqtfm(dd->req));
int err, fast = 0, in, out;
size_t count;
dma_addr_t addr_in, addr_out;
pr_debug("total: %d\n", dd->total);
if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) {
/* check for alignment */
in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32));
out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32));
fast = in && out;
}
if (fast) {
count = min(dd->total, sg_dma_len(dd->in_sg));
count = min(count, sg_dma_len(dd->out_sg));
if (count != dd->total) {
pr_err("request length != buffer length\n");
return -EINVAL;
}
pr_debug("fast\n");
err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
return -EINVAL;
}
addr_in = sg_dma_address(dd->in_sg);
addr_out = sg_dma_address(dd->out_sg);
dd->flags |= FLAGS_FAST;
} else {
/* use cache buffers */
count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in,
dd->buflen, dd->total, 0);
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->flags &= ~FLAGS_FAST;
}
dd->total -= count;
err = omap_aes_crypt_dma(tfm, addr_in, addr_out, count);
if (err) {
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
}
return err;
}
static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
{
struct ablkcipher_request *req = dd->req;
pr_debug("err: %d\n", err);
clk_disable(dd->iclk);
dd->flags &= ~FLAGS_BUSY;
req->base.complete(&req->base, err);
}
static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
{
int err = 0;
size_t count;
pr_debug("total: %d\n", dd->total);
omap_aes_write_mask(dd, AES_REG_MASK, 0, AES_REG_MASK_START);
omap_stop_dma(dd->dma_lch_in);
omap_stop_dma(dd->dma_lch_out);
if (dd->flags & FLAGS_FAST) {
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
} else {
dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
/* copy data */
count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out,
dd->buflen, dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
pr_err("not all data converted: %u\n", count);
}
}
return err;
}
static int omap_aes_handle_queue(struct omap_aes_dev *dd,
struct ablkcipher_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct omap_aes_ctx *ctx;
struct omap_aes_reqctx *rctx;
unsigned long flags;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ablkcipher_enqueue_request(&dd->queue, req);
if (dd->flags & FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_offset = 0;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
ctx->dd = dd;
err = omap_aes_write_ctrl(dd);
if (!err)
err = omap_aes_crypt_dma_start(dd);
if (err) {
/* aes_task will not finish it, so do it here */
omap_aes_finish_req(dd, err);
tasklet_schedule(&dd->queue_task);
}
return ret; /* return ret, which is enqueue return value */
}
static void omap_aes_done_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
int err;
pr_debug("enter\n");
err = omap_aes_crypt_dma_stop(dd);
err = dd->err ? : err;
if (dd->total && !err) {
err = omap_aes_crypt_dma_start(dd);
if (!err)
return; /* DMA started. Not fininishing. */
}
omap_aes_finish_req(dd, err);
omap_aes_handle_queue(dd, NULL);
pr_debug("exit\n");
}
static void omap_aes_queue_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
omap_aes_handle_queue(dd, NULL);
}
static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct omap_aes_dev *dd;
pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
!!(mode & FLAGS_ENCRYPT),
!!(mode & FLAGS_CBC));
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
dd = omap_aes_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return omap_aes_handle_queue(dd, req);
}
/* ********************** ALG API ************************************ */
static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
pr_debug("enter, keylen: %d\n", keylen);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT);
}
static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, 0);
}
static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_CBC);
}
static int omap_aes_cra_init(struct crypto_tfm *tfm)
{
pr_debug("enter\n");
tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
return 0;
}
static void omap_aes_cra_exit(struct crypto_tfm *tfm)
{
pr_debug("enter\n");
}
/* ********************** ALGS ************************************ */
static struct crypto_alg algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-omap",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = omap_aes_cra_init,
.cra_exit = omap_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_ecb_encrypt,
.decrypt = omap_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-omap",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = omap_aes_cra_init,
.cra_exit = omap_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_cbc_encrypt,
.decrypt = omap_aes_cbc_decrypt,
}
}
};
static int omap_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct omap_aes_dev *dd;
struct resource *res;
int err = -ENOMEM, i, j;
u32 reg;
dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
goto err_data;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
spin_lock_init(&dd->lock);
crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH);
/* Get the base address */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "invalid resource type\n");
err = -ENODEV;
goto err_res;
}
dd->phys_base = res->start;
/* Get the DMA */
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!res)
dev_info(dev, "no DMA info\n");
else
dd->dma_out = res->start;
/* Get the DMA */
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (!res)
dev_info(dev, "no DMA info\n");
else
dd->dma_in = res->start;
/* Initializing the clock */
dd->iclk = clk_get(dev, "ick");
if (IS_ERR(dd->iclk)) {
dev_err(dev, "clock intialization failed.\n");
err = PTR_ERR(dd->iclk);
goto err_res;
}
dd->io_base = ioremap(dd->phys_base, SZ_4K);
if (!dd->io_base) {
dev_err(dev, "can't ioremap\n");
err = -ENOMEM;
goto err_io;
}
clk_enable(dd->iclk);
reg = omap_aes_read(dd, AES_REG_REV);
dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
(reg & AES_REG_REV_MAJOR) >> 4, reg & AES_REG_REV_MINOR);
clk_disable(dd->iclk);
tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
err = omap_aes_dma_init(dd);
if (err)
goto err_dma;
INIT_LIST_HEAD(&dd->list);
spin_lock(&list_lock);
list_add_tail(&dd->list, &dev_list);
spin_unlock(&list_lock);
for (i = 0; i < ARRAY_SIZE(algs); i++) {
pr_debug("i: %d\n", i);
INIT_LIST_HEAD(&algs[i].cra_list);
err = crypto_register_alg(&algs[i]);
if (err)
goto err_algs;
}
pr_info("probe() done\n");
return 0;
err_algs:
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
omap_aes_dma_cleanup(dd);
err_dma:
tasklet_kill(&dd->done_task);
tasklet_kill(&dd->queue_task);
iounmap(dd->io_base);
err_io:
clk_put(dd->iclk);
err_res:
kfree(dd);
dd = NULL;
err_data:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_aes_remove(struct platform_device *pdev)
{
struct omap_aes_dev *dd = platform_get_drvdata(pdev);
int i;
if (!dd)
return -ENODEV;
spin_lock(&list_lock);
list_del(&dd->list);
spin_unlock(&list_lock);
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_alg(&algs[i]);
tasklet_kill(&dd->done_task);
tasklet_kill(&dd->queue_task);
omap_aes_dma_cleanup(dd);
iounmap(dd->io_base);
clk_put(dd->iclk);
kfree(dd);
dd = NULL;
return 0;
}
static struct platform_driver omap_aes_driver = {
.probe = omap_aes_probe,
.remove = omap_aes_remove,
.driver = {
.name = "omap-aes",
.owner = THIS_MODULE,
},
};
static int __init omap_aes_mod_init(void)
{
pr_info("loading %s driver\n", "omap-aes");
if (!cpu_class_is_omap2() || omap_type() != OMAP2_DEVICE_TYPE_SEC) {
pr_err("Unsupported cpu\n");
return -ENODEV;
}
return platform_driver_register(&omap_aes_driver);
}
static void __exit omap_aes_mod_exit(void)
{
platform_driver_unregister(&omap_aes_driver);
}
module_init(omap_aes_mod_init);
module_exit(omap_aes_mod_exit);
MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Dmitry Kasatkin");