2013-02-15 03:13:55 +04:00
|
|
|
scale=0
|
|
|
|
|
|
|
|
define gcd(a,b) {
|
|
|
|
auto t;
|
|
|
|
while (b) {
|
|
|
|
t = b;
|
|
|
|
b = a % b;
|
|
|
|
a = t;
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Division by reciprocal multiplication. */
|
|
|
|
define fmul(b,n,d) {
|
|
|
|
return (2^b*n+d-1)/d;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Adjustment factor when a ceiling value is used. Use as:
|
|
|
|
(imul * n) + (fmulxx * n + fadjxx) >> xx) */
|
|
|
|
define fadj(b,n,d) {
|
|
|
|
auto v;
|
|
|
|
d = d/gcd(n,d);
|
|
|
|
v = 2^b*(d-1)/d;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the appropriate mul/adj values as well as a shift count,
|
|
|
|
which brings the mul value into the range 2^b-1 <= x < 2^b. Such
|
|
|
|
a shift value will be correct in the signed integer range and off
|
|
|
|
by at most one in the upper half of the unsigned range. */
|
|
|
|
define fmuls(b,n,d) {
|
|
|
|
auto s, m;
|
|
|
|
for (s = 0; 1; s++) {
|
|
|
|
m = fmul(s,n,d);
|
|
|
|
if (m >= 2^(b-1))
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
define timeconst(hz) {
|
2015-07-14 20:24:45 +03:00
|
|
|
print "/* Automatically generated by kernel/time/timeconst.bc */\n"
|
2013-02-15 03:13:55 +04:00
|
|
|
print "/* Time conversion constants for HZ == ", hz, " */\n"
|
|
|
|
print "\n"
|
|
|
|
|
|
|
|
print "#ifndef KERNEL_TIMECONST_H\n"
|
|
|
|
print "#define KERNEL_TIMECONST_H\n\n"
|
|
|
|
|
|
|
|
print "#include <linux/param.h>\n"
|
|
|
|
print "#include <linux/types.h>\n\n"
|
|
|
|
|
|
|
|
print "#if HZ != ", hz, "\n"
|
2015-05-18 15:19:12 +03:00
|
|
|
print "#error \qinclude/generated/timeconst.h has the wrong HZ value!\q\n"
|
2013-02-15 03:13:55 +04:00
|
|
|
print "#endif\n\n"
|
|
|
|
|
|
|
|
if (hz < 2) {
|
|
|
|
print "#error Totally bogus HZ value!\n"
|
|
|
|
} else {
|
|
|
|
s=fmuls(32,1000,hz)
|
|
|
|
obase=16
|
|
|
|
print "#define HZ_TO_MSEC_MUL32\tU64_C(0x", fmul(s,1000,hz), ")\n"
|
|
|
|
print "#define HZ_TO_MSEC_ADJ32\tU64_C(0x", fadj(s,1000,hz), ")\n"
|
|
|
|
obase=10
|
|
|
|
print "#define HZ_TO_MSEC_SHR32\t", s, "\n"
|
|
|
|
|
|
|
|
s=fmuls(32,hz,1000)
|
|
|
|
obase=16
|
|
|
|
print "#define MSEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000), ")\n"
|
|
|
|
print "#define MSEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000), ")\n"
|
|
|
|
obase=10
|
|
|
|
print "#define MSEC_TO_HZ_SHR32\t", s, "\n"
|
|
|
|
|
|
|
|
obase=10
|
|
|
|
cd=gcd(hz,1000)
|
|
|
|
print "#define HZ_TO_MSEC_NUM\t\t", 1000/cd, "\n"
|
|
|
|
print "#define HZ_TO_MSEC_DEN\t\t", hz/cd, "\n"
|
|
|
|
print "#define MSEC_TO_HZ_NUM\t\t", hz/cd, "\n"
|
|
|
|
print "#define MSEC_TO_HZ_DEN\t\t", 1000/cd, "\n"
|
|
|
|
print "\n"
|
|
|
|
|
|
|
|
s=fmuls(32,1000000,hz)
|
|
|
|
obase=16
|
|
|
|
print "#define HZ_TO_USEC_MUL32\tU64_C(0x", fmul(s,1000000,hz), ")\n"
|
|
|
|
print "#define HZ_TO_USEC_ADJ32\tU64_C(0x", fadj(s,1000000,hz), ")\n"
|
|
|
|
obase=10
|
|
|
|
print "#define HZ_TO_USEC_SHR32\t", s, "\n"
|
|
|
|
|
|
|
|
s=fmuls(32,hz,1000000)
|
|
|
|
obase=16
|
|
|
|
print "#define USEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000000), ")\n"
|
|
|
|
print "#define USEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000000), ")\n"
|
|
|
|
obase=10
|
|
|
|
print "#define USEC_TO_HZ_SHR32\t", s, "\n"
|
|
|
|
|
|
|
|
obase=10
|
|
|
|
cd=gcd(hz,1000000)
|
|
|
|
print "#define HZ_TO_USEC_NUM\t\t", 1000000/cd, "\n"
|
|
|
|
print "#define HZ_TO_USEC_DEN\t\t", hz/cd, "\n"
|
|
|
|
print "#define USEC_TO_HZ_NUM\t\t", hz/cd, "\n"
|
|
|
|
print "#define USEC_TO_HZ_DEN\t\t", 1000000/cd, "\n"
|
2017-01-31 06:09:17 +03:00
|
|
|
|
|
|
|
cd=gcd(hz,1000000000)
|
|
|
|
print "#define HZ_TO_NSEC_NUM\t\t", 1000000000/cd, "\n"
|
|
|
|
print "#define HZ_TO_NSEC_DEN\t\t", hz/cd, "\n"
|
|
|
|
print "#define NSEC_TO_HZ_NUM\t\t", hz/cd, "\n"
|
|
|
|
print "#define NSEC_TO_HZ_DEN\t\t", 1000000000/cd, "\n"
|
2013-02-15 03:13:55 +04:00
|
|
|
print "\n"
|
|
|
|
|
|
|
|
print "#endif /* KERNEL_TIMECONST_H */\n"
|
|
|
|
}
|
|
|
|
halt
|
|
|
|
}
|
|
|
|
|
2015-05-18 15:19:12 +03:00
|
|
|
hz = read();
|
2013-02-15 03:13:55 +04:00
|
|
|
timeconst(hz)
|