WSL2-Linux-Kernel/include/linux/binfmts.h

142 строки
4.3 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_BINFMTS_H
#define _LINUX_BINFMTS_H
2012-02-04 13:47:10 +04:00
#include <linux/sched.h>
#include <linux/unistd.h>
#include <asm/exec.h>
#include <uapi/linux/binfmts.h>
struct filename;
#define CORENAME_MAX_SIZE 128
/*
* This structure is used to hold the arguments that are used when loading binaries.
*/
struct linux_binprm {
#ifdef CONFIG_MMU
struct vm_area_struct *vma;
unsigned long vma_pages;
#else
# define MAX_ARG_PAGES 32
struct page *page[MAX_ARG_PAGES];
#endif
struct mm_struct *mm;
unsigned long p; /* current top of mem */
unsigned long argmin; /* rlimit marker for copy_strings() */
unsigned int
/* Should an execfd be passed to userspace? */
have_execfd:1,
exec: Compute file based creds only once Move the computation of creds from prepare_binfmt into begin_new_exec so that the creds need only be computed once. This is just code reorganization no semantic changes of any kind are made. Moving the computation is safe. I have looked through the kernel and verified none of the binfmts look at bprm->cred directly, and that there are no helpers that look at bprm->cred indirectly. Which means that it is not a problem to compute the bprm->cred later in the execution flow as it is not used until it becomes current->cred. A new function bprm_creds_from_file is added to contain the work that needs to be done. bprm_creds_from_file first computes which file bprm->executable or most likely bprm->file that the bprm->creds will be computed from. The funciton bprm_fill_uid is updated to receive the file instead of accessing bprm->file. The now unnecessary work needed to reset the bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid. A small comment to document that bprm_fill_uid now only deals with the work to handle suid and sgid files. The default case is already heandled by prepare_exec_creds. The function security_bprm_repopulate_creds is renamed security_bprm_creds_from_file and now is explicitly passed the file from which to compute the creds. The documentation of the bprm_creds_from_file security hook is updated to explain when the hook is called and what it needs to do. The file is passed from cap_bprm_creds_from_file into get_file_caps so that the caps are computed for the appropriate file. The now unnecessary work in cap_bprm_creds_from_file to reset the ambient capabilites has been removed. A small comment to document that the work of cap_bprm_creds_from_file is to read capabilities from the files secureity attribute and derive capabilities from the fact the user had uid 0 has been added. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-05-30 06:00:54 +03:00
/* Use the creds of a script (see binfmt_misc) */
execfd_creds:1,
binfmt: Introduce secureexec flag The bprm_secureexec hook can be moved earlier. Right now, it is called during create_elf_tables(), via load_binary(), via search_binary_handler(), via exec_binprm(). Nearly all (see exception below) state used by bprm_secureexec is created during the bprm_set_creds hook, called from prepare_binprm(). For all LSMs (except commoncaps described next), only the first execution of bprm_set_creds takes any effect (they all check bprm->called_set_creds which prepare_binprm() sets after the first call to the bprm_set_creds hook). However, all these LSMs also only do anything with bprm_secureexec when they detected a secure state during their first run of bprm_set_creds. Therefore, it is functionally identical to move the detection into bprm_set_creds, since the results from secureexec here only need to be based on the first call to the LSM's bprm_set_creds hook. The single exception is that the commoncaps secureexec hook also examines euid/uid and egid/gid differences which are controlled by bprm_fill_uid(), via prepare_binprm(), which can be called multiple times (e.g. binfmt_script, binfmt_misc), and may clear the euid/egid for the final load (i.e. the script interpreter). However, while commoncaps specifically ignores bprm->cred_prepared, and runs its bprm_set_creds hook each time prepare_binprm() may get called, it needs to base the secureexec decision on the final call to bprm_set_creds. As a result, it will need special handling. To begin this refactoring, this adds the secureexec flag to the bprm struct, and calls the secureexec hook during setup_new_exec(). This is safe since all the cred work is finished (and past the point of no return). This explicit call will be removed in later patches once the hook has been removed. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: John Johansen <john.johansen@canonical.com> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-07-19 01:25:22 +03:00
/*
* Set by bprm_creds_for_exec hook to indicate a
* privilege-gaining exec has happened. Used to set
* AT_SECURE auxv for glibc.
binfmt: Introduce secureexec flag The bprm_secureexec hook can be moved earlier. Right now, it is called during create_elf_tables(), via load_binary(), via search_binary_handler(), via exec_binprm(). Nearly all (see exception below) state used by bprm_secureexec is created during the bprm_set_creds hook, called from prepare_binprm(). For all LSMs (except commoncaps described next), only the first execution of bprm_set_creds takes any effect (they all check bprm->called_set_creds which prepare_binprm() sets after the first call to the bprm_set_creds hook). However, all these LSMs also only do anything with bprm_secureexec when they detected a secure state during their first run of bprm_set_creds. Therefore, it is functionally identical to move the detection into bprm_set_creds, since the results from secureexec here only need to be based on the first call to the LSM's bprm_set_creds hook. The single exception is that the commoncaps secureexec hook also examines euid/uid and egid/gid differences which are controlled by bprm_fill_uid(), via prepare_binprm(), which can be called multiple times (e.g. binfmt_script, binfmt_misc), and may clear the euid/egid for the final load (i.e. the script interpreter). However, while commoncaps specifically ignores bprm->cred_prepared, and runs its bprm_set_creds hook each time prepare_binprm() may get called, it needs to base the secureexec decision on the final call to bprm_set_creds. As a result, it will need special handling. To begin this refactoring, this adds the secureexec flag to the bprm struct, and calls the secureexec hook during setup_new_exec(). This is safe since all the cred work is finished (and past the point of no return). This explicit call will be removed in later patches once the hook has been removed. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: John Johansen <john.johansen@canonical.com> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-07-19 01:25:22 +03:00
*/
exec: Add exec_update_mutex to replace cred_guard_mutex The cred_guard_mutex is problematic as it is held over possibly indefinite waits for userspace. The possible indefinite waits for userspace that I have identified are: The cred_guard_mutex is held in PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The cred_guard_mutex is held over "get_user(futex_offset, ...") in exit_robust_list. The cred_guard_mutex held over copy_strings. The functions get_user and put_user can trigger a page fault which can potentially wait indefinitely in the case of userfaultfd or if userspace implements part of the page fault path. In any of those cases the userspace process that the kernel is waiting for might make a different system call that winds up taking the cred_guard_mutex and result in deadlock. Holding a mutex over any of those possibly indefinite waits for userspace does not appear necessary. Add exec_update_mutex that will just cover updating the process during exec where the permissions and the objects pointed to by the task struct may be out of sync. The plan is to switch the users of cred_guard_mutex to exec_update_mutex one by one. This lets us move forward while still being careful and not introducing any regressions. Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/ Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/ Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/ Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/ Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/ Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.") Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2") Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-03-25 18:03:36 +03:00
secureexec:1,
/*
* Set when errors can no longer be returned to the
* original userspace.
exec: Add exec_update_mutex to replace cred_guard_mutex The cred_guard_mutex is problematic as it is held over possibly indefinite waits for userspace. The possible indefinite waits for userspace that I have identified are: The cred_guard_mutex is held in PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The cred_guard_mutex is held over "get_user(futex_offset, ...") in exit_robust_list. The cred_guard_mutex held over copy_strings. The functions get_user and put_user can trigger a page fault which can potentially wait indefinitely in the case of userfaultfd or if userspace implements part of the page fault path. In any of those cases the userspace process that the kernel is waiting for might make a different system call that winds up taking the cred_guard_mutex and result in deadlock. Holding a mutex over any of those possibly indefinite waits for userspace does not appear necessary. Add exec_update_mutex that will just cover updating the process during exec where the permissions and the objects pointed to by the task struct may be out of sync. The plan is to switch the users of cred_guard_mutex to exec_update_mutex one by one. This lets us move forward while still being careful and not introducing any regressions. Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/ Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/ Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/ Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/ Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/ Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.") Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2") Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-03-25 18:03:36 +03:00
*/
point_of_no_return:1;
#ifdef __alpha__
unsigned int taso:1;
#endif
struct file *executable; /* Executable to pass to the interpreter */
struct file *interpreter;
struct file *file;
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 02:39:24 +03:00
struct cred *cred; /* new credentials */
int unsafe; /* how unsafe this exec is (mask of LSM_UNSAFE_*) */
unsigned int per_clear; /* bits to clear in current->personality */
int argc, envc;
const char *filename; /* Name of binary as seen by procps */
const char *interp; /* Name of the binary really executed. Most
of the time same as filename, but could be
different for binfmt_{misc,script} */
exec: Move initialization of bprm->filename into alloc_bprm Currently it is necessary for the usermode helper code and the code that launches init to use set_fs so that pages coming from the kernel look like they are coming from userspace. To allow that usage of set_fs to be removed cleanly the argument copying from userspace needs to happen earlier. Move the computation of bprm->filename and possible allocation of a name in the case of execveat into alloc_bprm to make that possible. The exectuable name, the arguments, and the environment are copied into the new usermode stack which is stored in bprm until exec passes the point of no return. As the executable name is copied first onto the usermode stack it needs to be known. As there are no dependencies to computing the executable name, compute it early in alloc_bprm. As an implementation detail if the filename needs to be generated because it embeds a file descriptor store that filename in a new field bprm->fdpath, and free it in free_bprm. Previously this was done in an independent variable pathbuf. I have renamed pathbuf fdpath because fdpath is more suggestive of what kind of path is in the variable. I moved fdpath into struct linux_binprm because it is tightly tied to the other variables in struct linux_binprm, and as such is needed to allow the call alloc_binprm to move. Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Link: https://lkml.kernel.org/r/87k0z66x8f.fsf@x220.int.ebiederm.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-07-11 16:16:15 +03:00
const char *fdpath; /* generated filename for execveat */
unsigned interp_flags;
int execfd; /* File descriptor of the executable */
unsigned long loader, exec;
struct rlimit rlim_stack; /* Saved RLIMIT_STACK used during exec. */
exec: move struct linux_binprm::buf struct linux_binprm::buf is the first field and it is exactly 128 bytes in size. It means that on x86_64 all accesses to other fields will go though [r64 + disp32] addressing mode which is 3 bytes bloatier than [r64 + disp8] addressing mode. Given that accesses to other fields outnumber accesses to ->buf, move it down. Space savings (x86_64 defconfig): more on distro configs because LSMs actively dereference "bprm" but do not care about first 128 bytes of the executable itself. add/remove: 0/0 grow/shrink: 0/24 up/down: 0/-492 (-492) Function old new delta selinux_bprm_committing_creds 552 549 -3 finalize_exec 94 91 -3 __audit_log_bprm_fcaps 283 280 -3 __audit_bprm 39 36 -3 perf_trace_sched_process_exec 347 341 -6 install_exec_creds 105 99 -6 cap_bprm_set_creds.cold 60 54 -6 would_dump 137 128 -9 load_script 637 628 -9 bprm_change_interp 61 52 -9 trace_event_raw_event_sched_process_exec 260 250 -10 search_binary_handler 255 240 -15 remove_arg_zero 295 277 -18 free_bprm 119 101 -18 prepare_binprm 379 360 -19 setup_new_exec 336 315 -21 flush_old_exec 1638 1617 -21 copy_strings.isra 746 724 -22 setup_arg_pages 559 530 -29 load_misc_binary 1151 1118 -33 selinux_bprm_set_creds 792 753 -39 load_elf_binary 11111 11072 -39 cap_bprm_set_creds 1496 1454 -42 __do_execve_file.isra 2395 2286 -109 Link: http://lkml.kernel.org/r/20190421165025.GA26843@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-15 01:44:40 +03:00
char buf[BINPRM_BUF_SIZE];
} __randomize_layout;
#define BINPRM_FLAGS_ENFORCE_NONDUMP_BIT 0
#define BINPRM_FLAGS_ENFORCE_NONDUMP (1 << BINPRM_FLAGS_ENFORCE_NONDUMP_BIT)
syscalls: implement execveat() system call This patchset adds execveat(2) for x86, and is derived from Meredydd Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528). The primary aim of adding an execveat syscall is to allow an implementation of fexecve(3) that does not rely on the /proc filesystem, at least for executables (rather than scripts). The current glibc version of fexecve(3) is implemented via /proc, which causes problems in sandboxed or otherwise restricted environments. Given the desire for a /proc-free fexecve() implementation, HPA suggested (https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be an appropriate generalization. Also, having a new syscall means that it can take a flags argument without back-compatibility concerns. The current implementation just defines the AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be added in future -- for example, flags for new namespaces (as suggested at https://lkml.org/lkml/2006/7/11/474). Related history: - https://lkml.org/lkml/2006/12/27/123 is an example of someone realizing that fexecve() is likely to fail in a chroot environment. - http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered documenting the /proc requirement of fexecve(3) in its manpage, to "prevent other people from wasting their time". - https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a problem where a process that did setuid() could not fexecve() because it no longer had access to /proc/self/fd; this has since been fixed. This patch (of 4): Add a new execveat(2) system call. execveat() is to execve() as openat() is to open(): it takes a file descriptor that refers to a directory, and resolves the filename relative to that. In addition, if the filename is empty and AT_EMPTY_PATH is specified, execveat() executes the file to which the file descriptor refers. This replicates the functionality of fexecve(), which is a system call in other UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and so relies on /proc being mounted). The filename fed to the executed program as argv[0] (or the name of the script fed to a script interpreter) will be of the form "/dev/fd/<fd>" (for an empty filename) or "/dev/fd/<fd>/<filename>", effectively reflecting how the executable was found. This does however mean that execution of a script in a /proc-less environment won't work; also, script execution via an O_CLOEXEC file descriptor fails (as the file will not be accessible after exec). Based on patches by Meredydd Luff. Signed-off-by: David Drysdale <drysdale@google.com> Cc: Meredydd Luff <meredydd@senatehouse.org> Cc: Shuah Khan <shuah.kh@samsung.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rich Felker <dalias@aerifal.cx> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 03:57:29 +03:00
/* filename of the binary will be inaccessible after exec */
#define BINPRM_FLAGS_PATH_INACCESSIBLE_BIT 2
#define BINPRM_FLAGS_PATH_INACCESSIBLE (1 << BINPRM_FLAGS_PATH_INACCESSIBLE_BIT)
/* Function parameter for binfmt->coredump */
struct coredump_params {
const kernel_siginfo_t *siginfo;
struct pt_regs *regs;
struct file *file;
unsigned long limit;
unsigned long mm_flags;
loff_t written;
loff_t pos;
};
/*
* This structure defines the functions that are used to load the binary formats that
* linux accepts.
*/
struct linux_binfmt {
struct list_head lh;
struct module *module;
int (*load_binary)(struct linux_binprm *);
int (*load_shlib)(struct file *);
int (*core_dump)(struct coredump_params *cprm);
unsigned long min_coredump; /* minimal dump size */
} __randomize_layout;
extern void __register_binfmt(struct linux_binfmt *fmt, int insert);
/* Registration of default binfmt handlers */
static inline void register_binfmt(struct linux_binfmt *fmt)
{
__register_binfmt(fmt, 0);
}
/* Same as above, but adds a new binfmt at the top of the list */
static inline void insert_binfmt(struct linux_binfmt *fmt)
{
__register_binfmt(fmt, 1);
}
extern void unregister_binfmt(struct linux_binfmt *);
extern int __must_check remove_arg_zero(struct linux_binprm *);
extern int begin_new_exec(struct linux_binprm * bprm);
extern void setup_new_exec(struct linux_binprm * bprm);
extern void finalize_exec(struct linux_binprm *bprm);
extern void would_dump(struct linux_binprm *, struct file *);
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:09:43 +04:00
extern int suid_dumpable;
/* Stack area protections */
#define EXSTACK_DEFAULT 0 /* Whatever the arch defaults to */
#define EXSTACK_DISABLE_X 1 /* Disable executable stacks */
#define EXSTACK_ENABLE_X 2 /* Enable executable stacks */
extern int setup_arg_pages(struct linux_binprm * bprm,
unsigned long stack_top,
int executable_stack);
extern int transfer_args_to_stack(struct linux_binprm *bprm,
unsigned long *sp_location);
extern int bprm_change_interp(const char *interp, struct linux_binprm *bprm);
int copy_string_kernel(const char *arg, struct linux_binprm *bprm);
extern void set_binfmt(struct linux_binfmt *new);
extern ssize_t read_code(struct file *, unsigned long, loff_t, size_t);
int kernel_execve(const char *filename,
const char *const *argv, const char *const *envp);
#endif /* _LINUX_BINFMTS_H */