WSL2-Linux-Kernel/drivers/net/dsa/lantiq_gswip.c

1973 строки
55 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0
/*
* Lantiq / Intel GSWIP switch driver for VRX200 SoCs
*
* Copyright (C) 2010 Lantiq Deutschland
* Copyright (C) 2012 John Crispin <john@phrozen.org>
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
* Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
*
* The VLAN and bridge model the GSWIP hardware uses does not directly
* matches the model DSA uses.
*
* The hardware has 64 possible table entries for bridges with one VLAN
* ID, one flow id and a list of ports for each bridge. All entries which
* match the same flow ID are combined in the mac learning table, they
* act as one global bridge.
* The hardware does not support VLAN filter on the port, but on the
* bridge, this driver converts the DSA model to the hardware.
*
* The CPU gets all the exception frames which do not match any forwarding
* rule and the CPU port is also added to all bridges. This makes it possible
* to handle all the special cases easily in software.
* At the initialization the driver allocates one bridge table entry for
* each switch port which is used when the port is used without an
* explicit bridge. This prevents the frames from being forwarded
* between all LAN ports by default.
*/
#include <linux/clk.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <net/dsa.h>
#include <dt-bindings/mips/lantiq_rcu_gphy.h>
#include "lantiq_pce.h"
/* GSWIP MDIO Registers */
#define GSWIP_MDIO_GLOB 0x00
#define GSWIP_MDIO_GLOB_ENABLE BIT(15)
#define GSWIP_MDIO_CTRL 0x08
#define GSWIP_MDIO_CTRL_BUSY BIT(12)
#define GSWIP_MDIO_CTRL_RD BIT(11)
#define GSWIP_MDIO_CTRL_WR BIT(10)
#define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
#define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
#define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
#define GSWIP_MDIO_READ 0x09
#define GSWIP_MDIO_WRITE 0x0A
#define GSWIP_MDIO_MDC_CFG0 0x0B
#define GSWIP_MDIO_MDC_CFG1 0x0C
#define GSWIP_MDIO_PHYp(p) (0x15 - (p))
#define GSWIP_MDIO_PHY_LINK_MASK 0x6000
#define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
#define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
#define GSWIP_MDIO_PHY_LINK_UP 0x2000
#define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
#define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
#define GSWIP_MDIO_PHY_SPEED_M10 0x0000
#define GSWIP_MDIO_PHY_SPEED_M100 0x0800
#define GSWIP_MDIO_PHY_SPEED_G1 0x1000
#define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
#define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
#define GSWIP_MDIO_PHY_FDUP_EN 0x0200
#define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
#define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
#define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
#define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
#define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
#define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
#define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
#define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
#define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
#define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
#define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
GSWIP_MDIO_PHY_FCONRX_MASK | \
GSWIP_MDIO_PHY_FCONTX_MASK | \
GSWIP_MDIO_PHY_LINK_MASK | \
GSWIP_MDIO_PHY_SPEED_MASK | \
GSWIP_MDIO_PHY_FDUP_MASK)
/* GSWIP MII Registers */
#define GSWIP_MII_CFG0 0x00
#define GSWIP_MII_CFG1 0x02
#define GSWIP_MII_CFG5 0x04
#define GSWIP_MII_CFG_EN BIT(14)
#define GSWIP_MII_CFG_LDCLKDIS BIT(12)
#define GSWIP_MII_CFG_MODE_MIIP 0x0
#define GSWIP_MII_CFG_MODE_MIIM 0x1
#define GSWIP_MII_CFG_MODE_RMIIP 0x2
#define GSWIP_MII_CFG_MODE_RMIIM 0x3
#define GSWIP_MII_CFG_MODE_RGMII 0x4
#define GSWIP_MII_CFG_MODE_MASK 0xf
#define GSWIP_MII_CFG_RATE_M2P5 0x00
#define GSWIP_MII_CFG_RATE_M25 0x10
#define GSWIP_MII_CFG_RATE_M125 0x20
#define GSWIP_MII_CFG_RATE_M50 0x30
#define GSWIP_MII_CFG_RATE_AUTO 0x40
#define GSWIP_MII_CFG_RATE_MASK 0x70
#define GSWIP_MII_PCDU0 0x01
#define GSWIP_MII_PCDU1 0x03
#define GSWIP_MII_PCDU5 0x05
#define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
#define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
/* GSWIP Core Registers */
#define GSWIP_SWRES 0x000
#define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
#define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
#define GSWIP_VERSION 0x013
#define GSWIP_VERSION_REV_SHIFT 0
#define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
#define GSWIP_VERSION_MOD_SHIFT 8
#define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
#define GSWIP_VERSION_2_0 0x100
#define GSWIP_VERSION_2_1 0x021
#define GSWIP_VERSION_2_2 0x122
#define GSWIP_VERSION_2_2_ETC 0x022
#define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
#define GSWIP_BM_RAM_ADDR 0x044
#define GSWIP_BM_RAM_CTRL 0x045
#define GSWIP_BM_RAM_CTRL_BAS BIT(15)
#define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
#define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
#define GSWIP_BM_QUEUE_GCTRL 0x04A
#define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
/* buffer management Port Configuration Register */
#define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
#define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
#define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
/* buffer management Port Control Register */
#define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
#define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
#define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
/* PCE */
#define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
#define GSWIP_PCE_TBL_MASK 0x448
#define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
#define GSWIP_PCE_TBL_ADDR 0x44E
#define GSWIP_PCE_TBL_CTRL 0x44F
#define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
#define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
#define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
#define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
#define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
#define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
#define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
#define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
#define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
#define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
#define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
#define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
#define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
#define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
#define GSWIP_PCE_GCTRL_0 0x456
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
#define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
#define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
#define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
#define GSWIP_PCE_GCTRL_1 0x457
#define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
#define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
#define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
#define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
#define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
#define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
#define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
#define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
#define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
#define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
#define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
#define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
#define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
#define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
#define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
#define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
#define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
#define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
#define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
#define GSWIP_MAC_FLEN 0x8C5
#define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
#define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
/* Ethernet Switch Fetch DMA Port Control Register */
#define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
#define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
#define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
#define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
#define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
#define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
#define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
#define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
#define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
/* Ethernet Switch Store DMA Port Control Register */
#define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
#define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
#define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
#define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
#define GSWIP_TABLE_ACTIVE_VLAN 0x01
#define GSWIP_TABLE_VLAN_MAPPING 0x02
#define GSWIP_TABLE_MAC_BRIDGE 0x0b
#define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
#define XRX200_GPHY_FW_ALIGN (16 * 1024)
struct gswip_hw_info {
int max_ports;
int cpu_port;
};
struct xway_gphy_match_data {
char *fe_firmware_name;
char *ge_firmware_name;
};
struct gswip_gphy_fw {
struct clk *clk_gate;
struct reset_control *reset;
u32 fw_addr_offset;
char *fw_name;
};
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
struct gswip_vlan {
struct net_device *bridge;
u16 vid;
u8 fid;
};
struct gswip_priv {
__iomem void *gswip;
__iomem void *mdio;
__iomem void *mii;
const struct gswip_hw_info *hw_info;
const struct xway_gphy_match_data *gphy_fw_name_cfg;
struct dsa_switch *ds;
struct device *dev;
struct regmap *rcu_regmap;
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
struct gswip_vlan vlans[64];
int num_gphy_fw;
struct gswip_gphy_fw *gphy_fw;
u32 port_vlan_filter;
};
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
struct gswip_pce_table_entry {
u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
u16 table; // PCE_TBL_CTRL.ADDR = pData->table
u16 key[8];
u16 val[5];
u16 mask;
u8 gmap;
bool type;
bool valid;
bool key_mode;
};
struct gswip_rmon_cnt_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
/** Receive Packet Count (only packets that are accepted and not discarded). */
MIB_DESC(1, 0x1F, "RxGoodPkts"),
MIB_DESC(1, 0x23, "RxUnicastPkts"),
MIB_DESC(1, 0x22, "RxMulticastPkts"),
MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
MIB_DESC(1, 0x20, "RxGoodPausePkts"),
MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
MIB_DESC(1, 0x12, "Rx64BytePkts"),
MIB_DESC(1, 0x13, "Rx127BytePkts"),
MIB_DESC(1, 0x14, "Rx255BytePkts"),
MIB_DESC(1, 0x15, "Rx511BytePkts"),
MIB_DESC(1, 0x16, "Rx1023BytePkts"),
/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
MIB_DESC(1, 0x17, "RxMaxBytePkts"),
MIB_DESC(1, 0x18, "RxDroppedPkts"),
MIB_DESC(1, 0x19, "RxFilteredPkts"),
MIB_DESC(2, 0x24, "RxGoodBytes"),
MIB_DESC(2, 0x26, "RxBadBytes"),
MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
MIB_DESC(1, 0x0C, "TxGoodPkts"),
MIB_DESC(1, 0x06, "TxUnicastPkts"),
MIB_DESC(1, 0x07, "TxMulticastPkts"),
MIB_DESC(1, 0x00, "Tx64BytePkts"),
MIB_DESC(1, 0x01, "Tx127BytePkts"),
MIB_DESC(1, 0x02, "Tx255BytePkts"),
MIB_DESC(1, 0x03, "Tx511BytePkts"),
MIB_DESC(1, 0x04, "Tx1023BytePkts"),
/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
MIB_DESC(1, 0x05, "TxMaxBytePkts"),
MIB_DESC(1, 0x08, "TxSingleCollCount"),
MIB_DESC(1, 0x09, "TxMultCollCount"),
MIB_DESC(1, 0x0A, "TxLateCollCount"),
MIB_DESC(1, 0x0B, "TxExcessCollCount"),
MIB_DESC(1, 0x0D, "TxPauseCount"),
MIB_DESC(1, 0x10, "TxDroppedPkts"),
MIB_DESC(2, 0x0E, "TxGoodBytes"),
};
static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
{
return __raw_readl(priv->gswip + (offset * 4));
}
static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
{
__raw_writel(val, priv->gswip + (offset * 4));
}
static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
u32 offset)
{
u32 val = gswip_switch_r(priv, offset);
val &= ~(clear);
val |= set;
gswip_switch_w(priv, val, offset);
}
static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
u32 cleared)
{
u32 val;
return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
(val & cleared) == 0, 20, 50000);
}
static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
{
return __raw_readl(priv->mdio + (offset * 4));
}
static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
{
__raw_writel(val, priv->mdio + (offset * 4));
}
static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
u32 offset)
{
u32 val = gswip_mdio_r(priv, offset);
val &= ~(clear);
val |= set;
gswip_mdio_w(priv, val, offset);
}
static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
{
return __raw_readl(priv->mii + (offset * 4));
}
static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
{
__raw_writel(val, priv->mii + (offset * 4));
}
static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
u32 offset)
{
u32 val = gswip_mii_r(priv, offset);
val &= ~(clear);
val |= set;
gswip_mii_w(priv, val, offset);
}
static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
int port)
{
switch (port) {
case 0:
gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
break;
case 1:
gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
break;
case 5:
gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
break;
}
}
static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
int port)
{
switch (port) {
case 0:
gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
break;
case 1:
gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
break;
case 5:
gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
break;
}
}
static int gswip_mdio_poll(struct gswip_priv *priv)
{
int cnt = 100;
while (likely(cnt--)) {
u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
return 0;
usleep_range(20, 40);
}
return -ETIMEDOUT;
}
static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
{
struct gswip_priv *priv = bus->priv;
int err;
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
GSWIP_MDIO_CTRL);
return 0;
}
static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
{
struct gswip_priv *priv = bus->priv;
int err;
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
GSWIP_MDIO_CTRL);
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
return gswip_mdio_r(priv, GSWIP_MDIO_READ);
}
static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
{
struct dsa_switch *ds = priv->ds;
ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
if (!ds->slave_mii_bus)
return -ENOMEM;
ds->slave_mii_bus->priv = priv;
ds->slave_mii_bus->read = gswip_mdio_rd;
ds->slave_mii_bus->write = gswip_mdio_wr;
ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
dev_name(priv->dev));
ds->slave_mii_bus->parent = priv->dev;
ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
static int gswip_pce_table_entry_read(struct gswip_priv *priv,
struct gswip_pce_table_entry *tbl)
{
int i;
int err;
u16 crtl;
u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
return err;
gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
GSWIP_PCE_TBL_CTRL);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
return 0;
}
static int gswip_pce_table_entry_write(struct gswip_priv *priv,
struct gswip_pce_table_entry *tbl)
{
int i;
int err;
u16 crtl;
u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
return err;
gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
tbl->table | addr_mode,
GSWIP_PCE_TBL_CTRL);
for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
tbl->table | addr_mode,
GSWIP_PCE_TBL_CTRL);
gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
GSWIP_PCE_TBL_CTRL_GMAP_MASK);
if (tbl->type)
crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
if (tbl->valid)
crtl |= GSWIP_PCE_TBL_CTRL_VLD;
crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
crtl |= GSWIP_PCE_TBL_CTRL_BAS;
gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
}
/* Add the LAN port into a bridge with the CPU port by
* default. This prevents automatic forwarding of
* packages between the LAN ports when no explicit
* bridge is configured.
*/
static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
{
struct gswip_pce_table_entry vlan_active = {0,};
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int cpu_port = priv->hw_info->cpu_port;
unsigned int max_ports = priv->hw_info->max_ports;
int err;
if (port >= max_ports) {
dev_err(priv->dev, "single port for %i supported\n", port);
return -EIO;
}
vlan_active.index = port + 1;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.key[0] = 0; /* vid */
vlan_active.val[0] = port + 1 /* fid */;
vlan_active.valid = add;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
return err;
}
if (!add)
return 0;
vlan_mapping.index = port + 1;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
vlan_mapping.val[0] = 0 /* vid */;
vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
vlan_mapping.val[2] = 0;
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
return err;
}
return 0;
}
static int gswip_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct gswip_priv *priv = ds->priv;
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
int err;
if (!dsa_is_user_port(ds, port))
return 0;
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
if (!dsa_is_cpu_port(ds, port)) {
err = gswip_add_single_port_br(priv, port, true);
if (err)
return err;
}
/* RMON Counter Enable for port */
gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
/* enable port fetch/store dma & VLAN Modification */
gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
GSWIP_FDMA_PCTRLp(port));
gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
GSWIP_SDMA_PCTRLp(port));
if (!dsa_is_cpu_port(ds, port)) {
u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
GSWIP_MDIO_PHY_SPEED_AUTO |
GSWIP_MDIO_PHY_FDUP_AUTO |
GSWIP_MDIO_PHY_FCONTX_AUTO |
GSWIP_MDIO_PHY_FCONRX_AUTO |
(phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
/* Activate MDIO auto polling */
gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
}
return 0;
}
static void gswip_port_disable(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
if (!dsa_is_user_port(ds, port))
return;
if (!dsa_is_cpu_port(ds, port)) {
gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
GSWIP_MDIO_PHY_LINK_MASK,
GSWIP_MDIO_PHYp(port));
/* Deactivate MDIO auto polling */
gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
}
gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
GSWIP_FDMA_PCTRLp(port));
gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
GSWIP_SDMA_PCTRLp(port));
}
static int gswip_pce_load_microcode(struct gswip_priv *priv)
{
int i;
int err;
gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
GSWIP_PCE_TBL_VAL(0));
gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
GSWIP_PCE_TBL_VAL(1));
gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
GSWIP_PCE_TBL_VAL(2));
gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
GSWIP_PCE_TBL_VAL(3));
/* start the table access: */
gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
GSWIP_PCE_TBL_CTRL);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
return err;
}
/* tell the switch that the microcode is loaded */
gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
GSWIP_PCE_GCTRL_0);
return 0;
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
struct gswip_priv *priv = ds->priv;
struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
/* Do not allow changing the VLAN filtering options while in bridge */
if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
return -EIO;
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
if (vlan_filtering) {
/* Use port based VLAN tag */
gswip_switch_mask(priv,
GSWIP_PCE_VCTRL_VSR,
GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
GSWIP_PCE_VCTRL_VEMR,
GSWIP_PCE_VCTRL(port));
gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
GSWIP_PCE_PCTRL_0p(port));
} else {
/* Use port based VLAN tag */
gswip_switch_mask(priv,
GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
GSWIP_PCE_VCTRL_VEMR,
GSWIP_PCE_VCTRL_VSR,
GSWIP_PCE_VCTRL(port));
gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
GSWIP_PCE_PCTRL_0p(port));
}
return 0;
}
static int gswip_setup(struct dsa_switch *ds)
{
struct gswip_priv *priv = ds->priv;
unsigned int cpu_port = priv->hw_info->cpu_port;
int i;
int err;
gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
usleep_range(5000, 10000);
gswip_switch_w(priv, 0, GSWIP_SWRES);
/* disable port fetch/store dma on all ports */
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
for (i = 0; i < priv->hw_info->max_ports; i++) {
gswip_port_disable(ds, i);
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
gswip_port_vlan_filtering(ds, i, false);
}
/* enable Switch */
gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
err = gswip_pce_load_microcode(priv);
if (err) {
dev_err(priv->dev, "writing PCE microcode failed, %i", err);
return err;
}
/* Default unknown Broadcast/Multicast/Unicast port maps */
gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
/* disable PHY auto polling */
gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
/* Configure the MDIO Clock 2.5 MHz */
gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
/* Disable the xMII link */
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
/* enable special tag insertion on cpu port */
gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
GSWIP_FDMA_PCTRLp(cpu_port));
/* accept special tag in ingress direction */
gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
GSWIP_PCE_PCTRL_0p(cpu_port));
gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
GSWIP_MAC_CTRL_2p(cpu_port));
gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
GSWIP_BM_QUEUE_GCTRL);
/* VLAN aware Switching */
gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
/* Flush MAC Table */
gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
GSWIP_PCE_GCTRL_0_MTFL);
if (err) {
dev_err(priv->dev, "MAC flushing didn't finish\n");
return err;
}
gswip_port_enable(ds, cpu_port, NULL);
return 0;
}
static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_GSWIP;
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
static int gswip_vlan_active_create(struct gswip_priv *priv,
struct net_device *bridge,
int fid, u16 vid)
{
struct gswip_pce_table_entry vlan_active = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
int idx = -1;
int err;
int i;
/* Look for a free slot */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (!priv->vlans[i].bridge) {
idx = i;
break;
}
}
if (idx == -1)
return -ENOSPC;
if (fid == -1)
fid = idx;
vlan_active.index = idx;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.key[0] = vid;
vlan_active.val[0] = fid;
vlan_active.valid = true;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
return err;
}
priv->vlans[idx].bridge = bridge;
priv->vlans[idx].vid = vid;
priv->vlans[idx].fid = fid;
return idx;
}
static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
{
struct gswip_pce_table_entry vlan_active = {0,};
int err;
vlan_active.index = idx;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.valid = false;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err)
dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
priv->vlans[idx].bridge = NULL;
return err;
}
static int gswip_vlan_add_unaware(struct gswip_priv *priv,
struct net_device *bridge, int port)
{
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
unsigned int cpu_port = priv->hw_info->cpu_port;
bool active_vlan_created = false;
int idx = -1;
int i;
int err;
/* Check if there is already a page for this bridge */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge) {
idx = i;
break;
}
}
/* If this bridge is not programmed yet, add a Active VLAN table
* entry in a free slot and prepare the VLAN mapping table entry.
*/
if (idx == -1) {
idx = gswip_vlan_active_create(priv, bridge, -1, 0);
if (idx < 0)
return idx;
active_vlan_created = true;
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
/* VLAN ID byte, maps to the VLAN ID of vlan active table */
vlan_mapping.val[0] = 0;
} else {
/* Read the existing VLAN mapping entry from the switch */
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
err = gswip_pce_table_entry_read(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
err);
return err;
}
}
/* Update the VLAN mapping entry and write it to the switch */
vlan_mapping.val[1] |= BIT(cpu_port);
vlan_mapping.val[1] |= BIT(port);
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
/* In case an Active VLAN was creaetd delete it again */
if (active_vlan_created)
gswip_vlan_active_remove(priv, idx);
return err;
}
gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
return 0;
}
static int gswip_vlan_add_aware(struct gswip_priv *priv,
struct net_device *bridge, int port,
u16 vid, bool untagged,
bool pvid)
{
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
unsigned int cpu_port = priv->hw_info->cpu_port;
bool active_vlan_created = false;
int idx = -1;
int fid = -1;
int i;
int err;
/* Check if there is already a page for this bridge */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge) {
if (fid != -1 && fid != priv->vlans[i].fid)
dev_err(priv->dev, "one bridge with multiple flow ids\n");
fid = priv->vlans[i].fid;
if (priv->vlans[i].vid == vid) {
idx = i;
break;
}
}
}
/* If this bridge is not programmed yet, add a Active VLAN table
* entry in a free slot and prepare the VLAN mapping table entry.
*/
if (idx == -1) {
idx = gswip_vlan_active_create(priv, bridge, fid, vid);
if (idx < 0)
return idx;
active_vlan_created = true;
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
/* VLAN ID byte, maps to the VLAN ID of vlan active table */
vlan_mapping.val[0] = vid;
} else {
/* Read the existing VLAN mapping entry from the switch */
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
err = gswip_pce_table_entry_read(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
err);
return err;
}
}
vlan_mapping.val[0] = vid;
/* Update the VLAN mapping entry and write it to the switch */
vlan_mapping.val[1] |= BIT(cpu_port);
vlan_mapping.val[2] |= BIT(cpu_port);
vlan_mapping.val[1] |= BIT(port);
if (untagged)
vlan_mapping.val[2] &= ~BIT(port);
else
vlan_mapping.val[2] |= BIT(port);
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
/* In case an Active VLAN was creaetd delete it again */
if (active_vlan_created)
gswip_vlan_active_remove(priv, idx);
return err;
}
if (pvid)
gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
return 0;
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
static int gswip_vlan_remove(struct gswip_priv *priv,
struct net_device *bridge, int port,
u16 vid, bool pvid, bool vlan_aware)
{
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
unsigned int cpu_port = priv->hw_info->cpu_port;
int idx = -1;
int i;
int err;
/* Check if there is already a page for this bridge */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge &&
(!vlan_aware || priv->vlans[i].vid == vid)) {
idx = i;
break;
}
}
if (idx == -1) {
dev_err(priv->dev, "bridge to leave does not exists\n");
return -ENOENT;
}
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
err = gswip_pce_table_entry_read(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
return err;
}
vlan_mapping.val[1] &= ~BIT(port);
vlan_mapping.val[2] &= ~BIT(port);
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
return err;
}
/* In case all ports are removed from the bridge, remove the VLAN */
if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
err = gswip_vlan_active_remove(priv, idx);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n",
err);
return err;
}
}
/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
if (pvid)
gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
return 0;
}
static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct gswip_priv *priv = ds->priv;
int err;
/* When the bridge uses VLAN filtering we have to configure VLAN
* specific bridges. No bridge is configured here.
*/
if (!br_vlan_enabled(bridge)) {
err = gswip_vlan_add_unaware(priv, bridge, port);
if (err)
return err;
priv->port_vlan_filter &= ~BIT(port);
} else {
priv->port_vlan_filter |= BIT(port);
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
return gswip_add_single_port_br(priv, port, false);
}
static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct gswip_priv *priv = ds->priv;
gswip_add_single_port_br(priv, port, true);
/* When the bridge uses VLAN filtering we have to configure VLAN
* specific bridges. No bridge is configured here.
*/
if (!br_vlan_enabled(bridge))
gswip_vlan_remove(priv, bridge, port, 0, true, false);
}
static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct gswip_priv *priv = ds->priv;
struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
unsigned int max_ports = priv->hw_info->max_ports;
u16 vid;
int i;
int pos = max_ports;
/* We only support VLAN filtering on bridges */
if (!dsa_is_cpu_port(ds, port) && !bridge)
return -EOPNOTSUPP;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
int idx = -1;
/* Check if there is already a page for this VLAN */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge &&
priv->vlans[i].vid == vid) {
idx = i;
break;
}
}
/* If this VLAN is not programmed yet, we have to reserve
* one entry in the VLAN table. Make sure we start at the
* next position round.
*/
if (idx == -1) {
/* Look for a free slot */
for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
if (!priv->vlans[pos].bridge) {
idx = pos;
pos++;
break;
}
}
if (idx == -1)
return -ENOSPC;
}
}
return 0;
}
static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct gswip_priv *priv = ds->priv;
struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
u16 vid;
/* We have to receive all packets on the CPU port and should not
* do any VLAN filtering here. This is also called with bridge
* NULL and then we do not know for which bridge to configure
* this.
*/
if (dsa_is_cpu_port(ds, port))
return;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
}
static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct gswip_priv *priv = ds->priv;
struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
u16 vid;
int err;
/* We have to receive all packets on the CPU port and should not
* do any VLAN filtering here. This is also called with bridge
* NULL and then we do not know for which bridge to configure
* this.
*/
if (dsa_is_cpu_port(ds, port))
return 0;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
if (err)
return err;
}
return 0;
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
}
static void gswip_port_fast_age(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
struct gswip_pce_table_entry mac_bridge = {0,};
int i;
int err;
for (i = 0; i < 2048; i++) {
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.index = i;
err = gswip_pce_table_entry_read(priv, &mac_bridge);
if (err) {
dev_err(priv->dev, "failed to read mac bridge: %d\n",
err);
return;
}
if (!mac_bridge.valid)
continue;
if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
continue;
if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
continue;
mac_bridge.valid = false;
err = gswip_pce_table_entry_write(priv, &mac_bridge);
if (err) {
dev_err(priv->dev, "failed to write mac bridge: %d\n",
err);
return;
}
}
}
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct gswip_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
GSWIP_SDMA_PCTRLp(port));
return;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
break;
case BR_STATE_LEARNING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
break;
case BR_STATE_FORWARDING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
break;
default:
dev_err(priv->dev, "invalid STP state: %d\n", state);
return;
}
gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
GSWIP_SDMA_PCTRLp(port));
gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
GSWIP_PCE_PCTRL_0p(port));
}
static int gswip_port_fdb(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid, bool add)
{
struct gswip_priv *priv = ds->priv;
struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
struct gswip_pce_table_entry mac_bridge = {0,};
unsigned int cpu_port = priv->hw_info->cpu_port;
int fid = -1;
int i;
int err;
if (!bridge)
return -EINVAL;
for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge) {
fid = priv->vlans[i].fid;
break;
}
}
if (fid == -1) {
dev_err(priv->dev, "Port not part of a bridge\n");
return -EINVAL;
}
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.key_mode = true;
mac_bridge.key[0] = addr[5] | (addr[4] << 8);
mac_bridge.key[1] = addr[3] | (addr[2] << 8);
mac_bridge.key[2] = addr[1] | (addr[0] << 8);
mac_bridge.key[3] = fid;
mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
mac_bridge.valid = add;
err = gswip_pce_table_entry_write(priv, &mac_bridge);
if (err)
dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
return err;
}
static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
return gswip_port_fdb(ds, port, addr, vid, true);
}
static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
return gswip_port_fdb(ds, port, addr, vid, false);
}
static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct gswip_priv *priv = ds->priv;
struct gswip_pce_table_entry mac_bridge = {0,};
unsigned char addr[6];
int i;
int err;
for (i = 0; i < 2048; i++) {
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.index = i;
err = gswip_pce_table_entry_read(priv, &mac_bridge);
if (err) {
dev_err(priv->dev, "failed to write mac bridge: %d\n",
err);
return err;
}
if (!mac_bridge.valid)
continue;
addr[5] = mac_bridge.key[0] & 0xff;
addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
addr[3] = mac_bridge.key[1] & 0xff;
addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
addr[1] = mac_bridge.key[2] & 0xff;
addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
if (mac_bridge.val[0] & BIT(port))
cb(addr, 0, true, data);
} else {
if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
cb(addr, 0, false, data);
}
}
return 0;
}
static void gswip_phylink_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
switch (port) {
case 0:
case 1:
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII &&
state->interface != PHY_INTERFACE_MODE_RMII)
goto unsupported;
break;
case 2:
case 3:
case 4:
if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
goto unsupported;
break;
case 5:
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_INTERNAL)
goto unsupported;
break;
default:
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
dev_err(ds->dev, "Unsupported port: %i\n", port);
return;
}
/* Allow all the expected bits */
phylink_set(mask, Autoneg);
phylink_set_port_modes(mask);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
/* With the exclusion of MII and Reverse MII, we support Gigabit,
* including Half duplex
*/
if (state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
bitmap_and(supported, supported, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
return;
unsupported:
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
dev_err(ds->dev, "Unsupported interface: %d\n", state->interface);
return;
}
static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct gswip_priv *priv = ds->priv;
u32 miicfg = 0;
miicfg |= GSWIP_MII_CFG_LDCLKDIS;
switch (state->interface) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_INTERNAL:
miicfg |= GSWIP_MII_CFG_MODE_MIIM;
break;
case PHY_INTERFACE_MODE_REVMII:
miicfg |= GSWIP_MII_CFG_MODE_MIIP;
break;
case PHY_INTERFACE_MODE_RMII:
miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
miicfg |= GSWIP_MII_CFG_MODE_RGMII;
break;
default:
dev_err(ds->dev,
"Unsupported interface: %d\n", state->interface);
return;
}
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
switch (state->interface) {
case PHY_INTERFACE_MODE_RGMII_ID:
gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
break;
default:
break;
}
}
static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct gswip_priv *priv = ds->priv;
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
}
static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev)
{
struct gswip_priv *priv = ds->priv;
/* Enable the xMII interface only for the external PHY */
if (interface != PHY_INTERFACE_MODE_INTERNAL)
gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
}
static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
ETH_GSTRING_LEN);
}
static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
u32 index)
{
u32 result;
int err;
gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
GSWIP_BM_RAM_CTRL_OPMOD,
table | GSWIP_BM_RAM_CTRL_BAS,
GSWIP_BM_RAM_CTRL);
err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
GSWIP_BM_RAM_CTRL_BAS);
if (err) {
dev_err(priv->dev, "timeout while reading table: %u, index: %u",
table, index);
return 0;
}
result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
return result;
}
static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct gswip_priv *priv = ds->priv;
const struct gswip_rmon_cnt_desc *rmon_cnt;
int i;
u64 high;
for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
rmon_cnt = &gswip_rmon_cnt[i];
data[i] = gswip_bcm_ram_entry_read(priv, port,
rmon_cnt->offset);
if (rmon_cnt->size == 2) {
high = gswip_bcm_ram_entry_read(priv, port,
rmon_cnt->offset + 1);
data[i] |= high << 32;
}
}
}
static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(gswip_rmon_cnt);
}
static const struct dsa_switch_ops gswip_switch_ops = {
.get_tag_protocol = gswip_get_tag_protocol,
.setup = gswip_setup,
.port_enable = gswip_port_enable,
.port_disable = gswip_port_disable,
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
.port_bridge_join = gswip_port_bridge_join,
.port_bridge_leave = gswip_port_bridge_leave,
.port_fast_age = gswip_port_fast_age,
.port_vlan_filtering = gswip_port_vlan_filtering,
.port_vlan_prepare = gswip_port_vlan_prepare,
.port_vlan_add = gswip_port_vlan_add,
.port_vlan_del = gswip_port_vlan_del,
net: dsa: lantiq: Add VLAN unaware bridge offloading This allows to offload bridges with DSA to the switch hardware and do the packet forwarding in hardware. This implements generic functions to access the switch hardware tables, which are used to control many features of the switch. This patch activates the MAC learning by removing the MAC address table lock, to prevent uncontrolled forwarding of packets between all the LAN ports, they are added into individual bridge tables entries with individual flow ids and the switch will do the MAC learning for each port separately before they are added to a real bridge. Each bridge consist of an entry in the active VLAN table and the VLAN mapping table, table entries with the same index are matching. In the VLAN unaware mode we configure everything with VLAN ID 0, but we use different flow IDs, the switch should handle all VLANs as normal payload and ignore them. When the hardware looks for the port of the destination MAC address it only takes the entries which have the same flow ID of the ingress packet. The bridges are configured with 64 possible entries with these information: Table Index, 0...63 VLAN ID, 0...4095: VLAN ID 0 is untagged flow ID, 0..63: Same flow IDs share entries in MAC learning table port map, one bit for each port number tagged port map, one bit for each port number Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-06 01:25:07 +03:00
.port_stp_state_set = gswip_port_stp_state_set,
.port_fdb_add = gswip_port_fdb_add,
.port_fdb_del = gswip_port_fdb_del,
.port_fdb_dump = gswip_port_fdb_dump,
.phylink_validate = gswip_phylink_validate,
.phylink_mac_config = gswip_phylink_mac_config,
.phylink_mac_link_down = gswip_phylink_mac_link_down,
.phylink_mac_link_up = gswip_phylink_mac_link_up,
.get_strings = gswip_get_strings,
.get_ethtool_stats = gswip_get_ethtool_stats,
.get_sset_count = gswip_get_sset_count,
};
static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
};
static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
};
static const struct xway_gphy_match_data xrx300_gphy_data = {
.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
};
static const struct of_device_id xway_gphy_match[] = {
{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
{},
};
static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
{
struct device *dev = priv->dev;
const struct firmware *fw;
void *fw_addr;
dma_addr_t dma_addr;
dma_addr_t dev_addr;
size_t size;
int ret;
ret = clk_prepare_enable(gphy_fw->clk_gate);
if (ret)
return ret;
reset_control_assert(gphy_fw->reset);
ret = request_firmware(&fw, gphy_fw->fw_name, dev);
if (ret) {
dev_err(dev, "failed to load firmware: %s, error: %i\n",
gphy_fw->fw_name, ret);
return ret;
}
/* GPHY cores need the firmware code in a persistent and contiguous
* memory area with a 16 kB boundary aligned start address.
*/
size = fw->size + XRX200_GPHY_FW_ALIGN;
fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
if (fw_addr) {
fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
memcpy(fw_addr, fw->data, fw->size);
} else {
dev_err(dev, "failed to alloc firmware memory\n");
release_firmware(fw);
return -ENOMEM;
}
release_firmware(fw);
ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
if (ret)
return ret;
reset_control_deassert(gphy_fw->reset);
return ret;
}
static int gswip_gphy_fw_probe(struct gswip_priv *priv,
struct gswip_gphy_fw *gphy_fw,
struct device_node *gphy_fw_np, int i)
{
struct device *dev = priv->dev;
u32 gphy_mode;
int ret;
char gphyname[10];
snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
if (IS_ERR(gphy_fw->clk_gate)) {
dev_err(dev, "Failed to lookup gate clock\n");
return PTR_ERR(gphy_fw->clk_gate);
}
ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
if (ret)
return ret;
ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
/* Default to GE mode */
if (ret)
gphy_mode = GPHY_MODE_GE;
switch (gphy_mode) {
case GPHY_MODE_FE:
gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
break;
case GPHY_MODE_GE:
gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
break;
default:
dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
return -EINVAL;
}
gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
if (IS_ERR(gphy_fw->reset)) {
if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
dev_err(dev, "Failed to lookup gphy reset\n");
return PTR_ERR(gphy_fw->reset);
}
return gswip_gphy_fw_load(priv, gphy_fw);
}
static void gswip_gphy_fw_remove(struct gswip_priv *priv,
struct gswip_gphy_fw *gphy_fw)
{
int ret;
/* check if the device was fully probed */
if (!gphy_fw->fw_name)
return;
ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
if (ret)
dev_err(priv->dev, "can not reset GPHY FW pointer");
clk_disable_unprepare(gphy_fw->clk_gate);
reset_control_put(gphy_fw->reset);
}
static int gswip_gphy_fw_list(struct gswip_priv *priv,
struct device_node *gphy_fw_list_np, u32 version)
{
struct device *dev = priv->dev;
struct device_node *gphy_fw_np;
const struct of_device_id *match;
int err;
int i = 0;
/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
* GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
* needs a different GPHY firmware.
*/
if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
switch (version) {
case GSWIP_VERSION_2_0:
priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
break;
case GSWIP_VERSION_2_1:
priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
break;
default:
dev_err(dev, "unknown GSWIP version: 0x%x", version);
return -ENOENT;
}
}
match = of_match_node(xway_gphy_match, gphy_fw_list_np);
if (match && match->data)
priv->gphy_fw_name_cfg = match->data;
if (!priv->gphy_fw_name_cfg) {
dev_err(dev, "GPHY compatible type not supported");
return -ENOENT;
}
priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
if (!priv->num_gphy_fw)
return -ENOENT;
priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
"lantiq,rcu");
if (IS_ERR(priv->rcu_regmap))
return PTR_ERR(priv->rcu_regmap);
priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
sizeof(*priv->gphy_fw),
GFP_KERNEL | __GFP_ZERO);
if (!priv->gphy_fw)
return -ENOMEM;
for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
gphy_fw_np, i);
if (err)
goto remove_gphy;
i++;
}
return 0;
remove_gphy:
for (i = 0; i < priv->num_gphy_fw; i++)
gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
return err;
}
static int gswip_probe(struct platform_device *pdev)
{
struct gswip_priv *priv;
struct device_node *mdio_np, *gphy_fw_np;
struct device *dev = &pdev->dev;
int err;
int i;
u32 version;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->gswip = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->gswip))
return PTR_ERR(priv->gswip);
priv->mdio = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(priv->mdio))
return PTR_ERR(priv->mdio);
priv->mii = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(priv->mii))
return PTR_ERR(priv->mii);
priv->hw_info = of_device_get_match_data(dev);
if (!priv->hw_info)
return -EINVAL;
priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->num_ports = priv->hw_info->max_ports;
priv->ds->priv = priv;
priv->ds->ops = &gswip_switch_ops;
priv->dev = dev;
version = gswip_switch_r(priv, GSWIP_VERSION);
/* bring up the mdio bus */
gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
if (gphy_fw_np) {
err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
of_node_put(gphy_fw_np);
if (err) {
dev_err(dev, "gphy fw probe failed\n");
return err;
}
}
/* bring up the mdio bus */
mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
if (mdio_np) {
err = gswip_mdio(priv, mdio_np);
if (err) {
dev_err(dev, "mdio probe failed\n");
goto put_mdio_node;
}
}
err = dsa_register_switch(priv->ds);
if (err) {
dev_err(dev, "dsa switch register failed: %i\n", err);
goto mdio_bus;
}
if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
priv->hw_info->cpu_port);
err = -EINVAL;
goto disable_switch;
}
platform_set_drvdata(pdev, priv);
dev_info(dev, "probed GSWIP version %lx mod %lx\n",
(version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
(version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
return 0;
disable_switch:
gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
dsa_unregister_switch(priv->ds);
mdio_bus:
if (mdio_np)
mdiobus_unregister(priv->ds->slave_mii_bus);
put_mdio_node:
of_node_put(mdio_np);
for (i = 0; i < priv->num_gphy_fw; i++)
gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
return err;
}
static int gswip_remove(struct platform_device *pdev)
{
struct gswip_priv *priv = platform_get_drvdata(pdev);
int i;
/* disable the switch */
gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
dsa_unregister_switch(priv->ds);
if (priv->ds->slave_mii_bus) {
mdiobus_unregister(priv->ds->slave_mii_bus);
of_node_put(priv->ds->slave_mii_bus->dev.of_node);
}
for (i = 0; i < priv->num_gphy_fw; i++)
gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
return 0;
}
static const struct gswip_hw_info gswip_xrx200 = {
.max_ports = 7,
.cpu_port = 6,
};
static const struct of_device_id gswip_of_match[] = {
{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
{},
};
MODULE_DEVICE_TABLE(of, gswip_of_match);
static struct platform_driver gswip_driver = {
.probe = gswip_probe,
.remove = gswip_remove,
.driver = {
.name = "gswip",
.of_match_table = gswip_of_match,
},
};
module_platform_driver(gswip_driver);
MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
MODULE_LICENSE("GPL v2");